COMMENT
Original Mod Files:
Santhakumar V, Aradi I, Soltesz I (2005) J Neurophysiol 93:437-53
https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=51781&file=/dentategyrusnet2005/ccanl.mod
Morgan RJ, Soltesz I (2008) Proc Natl Acad Sci U S A 105:6179-84
Morgan RJ, Santhakumar V, Soltesz I (2007) Prog Brain Res 163:639-58
Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) J Neurophysiol 97:1566-87 https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=124513&file=/dentate_gyrus/ccanl.mod
Current version by A. Hanuschkin <AH, 2011> for:
Yim MY, Hanuschkin A, Wolfart J (2015) Hippocampus 25:297-308.
http://onlinelibrary.wiley.com/doi/10.1002/hipo.22373/abstract
Mod File history:
calcium accumulation into a volume of area*depth next to the membrane with a decay (time constant tau) to resting level
given by caiinf updating ECa for CaN.mod, CaT.mod and CaL.mod <ah 2011>
Warning by Ted Carnevale 2015:
The expression that this mechanism uses to calculate the contribution of ica to the rate of change of calcium concentration in the shell is
-ica*(1e7)/(depth*FARADAY)
but it should really be
-ica*(1e7)/(depth*2*FARADAY)
because the valence of ca is 2. The result of this omission is that the mechanism behaves as if the shell is only 1/2 as thick as the value specified by the depth parameter.
ENDCOMMENT
NEURON {
SUFFIX ccanl
USEION nca READ ncai, inca, enca WRITE enca, ncai VALENCE 2
USEION lca READ lcai, ilca, elca WRITE elca, lcai VALENCE 2
USEION tca READ tcai, itca, etca WRITE etca, tcai VALENCE 2
RANGE caiinf, catau, cai, ncai, lcai,tcai, eca, elca, enca, etca
}
UNITS {
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (milli/liter)
(mA) = (milliamp)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
}
INDEPENDENT {t FROM 0 TO 100 WITH 100 (ms)}
PARAMETER {
celsius = 6.3 (degC)
depth = 200 (nm) : assume volume = area*depth
catau = 9 (ms)
caiinf = 50.e-6 (mM) : takes precedence over cai0_ca_ion
: Do not forget to initialize in hoc if different
: from this default.
cao = 2 (mM)
ica (mA/cm2)
inca (mA/cm2)
ilca (mA/cm2)
itca (mA/cm2)
cai= 50.e-6 (mM)
}
ASSIGNED {
enca (mV)
elca (mV)
etca (mV)
eca (mV)
}
STATE {
ncai (mM)
lcai (mM)
tcai (mM)
}
INITIAL {
VERBATIM
ncai = _ion_ncai;
lcai = _ion_lcai;
tcai = _ion_tcai;
ENDVERBATIM
ncai=caiinf/3
lcai=caiinf/3
tcai=caiinf/3
cai = caiinf
eca = ktf() * log(cao/caiinf)
enca = eca
elca = eca
etca = eca
}
BREAKPOINT {
SOLVE integrate METHOD derivimplicit
cai = ncai+lcai+tcai
eca = ktf() * log(cao/cai)
enca = eca : communicate new Ca reversal potential
elca = eca : communicate new Ca reversal potential
etca = eca : communicate new Ca reversal potential
}
DERIVATIVE integrate {
ncai' = -(inca)/depth/FARADAY * (1e7) + (caiinf/3 - ncai)/catau
lcai' = -(ilca)/depth/FARADAY * (1e7) + (caiinf/3 - lcai)/catau
tcai' = -(itca)/depth/FARADAY * (1e7) + (caiinf/3 - tcai)/catau
}
FUNCTION ktf() (mV) {
ktf = (1000)*R*(celsius +273.15)/(2*FARADAY)
}