TITLE Stochastic Hodgkin and Huxley model incorporating channel noise (approximate effective version).
COMMENT
This mod-file implementes a stochastic version of the HH model incorporating channel noise.
This version is the approximate ``effective'' version, i.e. it employs a Ornstein-Uhlenbeck process with
the same mean and variance of the Markov model. Note that the time constant of the exponentially
decaying covariance function of this effective model is just an approximation of the time constant
of the Markov model.
Author: Daniele Linaro - daniele.linaro@unige.it
Date: September 2010
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(pS) = (picosiemens)
(um) = (micrometer)
} : end UNITS
NEURON {
SUFFIX HHcnf
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
NONSPECIFIC_CURRENT il
RANGE el, gl
RANGE gnabar, gkbar
RANGE gna, gk
RANGE gamma_na, gamma_k
RANGE m_inf, h_inf, n_inf
RANGE tau_m, tau_h, tau_n, tau_y, tau_z
RANGE var_y, var_z
RANGE noise_y, noise_z
RANGE Nna, Nk
RANGE seed
: these auxiliary variables are only needed if the exact method of solution is used
RANGE mu_y, mu_z
THREADSAFE
} : end NEURON
PARAMETER {
gnabar = 0.12 (S/cm2)
gkbar = 0.036 (S/cm2)
gl = 0.0003 (S/cm2)
el = -54.3 (mV) : leakage reversal potential
gamma_na = 20 (pS) : single channel sodium conductance
gamma_k = 15 (pS) : single channel potassium conductance
seed = 5061983 : always use the same seed
} : end PARAMETER
STATE {
m h n yy zz
} : end STATE
ASSIGNED {
ina (mA/cm2)
ik (mA/cm2)
il (mA/cm2)
gna (S/cm2)
gk (S/cm2)
ena (mV)
ek (mV)
dt (ms)
area (um2)
celsius (degC)
v (mV)
Nna (1) : number of potassium channels
Nk (1) : number of sodium channels
m_inf h_inf n_inf
noise_y noise_z
var_y (ms2) var_z (ms2)
tau_m (ms) tau_h (ms) tau_n (ms) tau_y (ms) tau_z (ms)
: these auxiliary variables are only needed if the exact method of solution is used
mu_y mu_z
} : end ASSIGNED
INITIAL {
Nna = ceil(((1e-8)*area)*(gnabar)/((1e-12)*gamma_na)) : area in um2 -> 1e-8*area in cm2; gnabar in S/cm2; gamma_na in pS -> 1e-12*gamma_na in S
Nk = ceil(((1e-8)*area)*(gkbar)/((1e-12)*gamma_k)) : area in um2 -> 1e-8*area in cm2; gkbar in S/cm2; gamma_k in pS -> 1e-12*gamma_k in S
rates(v)
m = m_inf
h = h_inf
n = n_inf
yy = 0.
zz = 0.
set_seed(seed)
} : end INITIAL
BREAKPOINT {
SOLVE states
gna = gnabar * (m*m*m*h + zz)
if (gna < 0) {
gna = 0
}
gk = gkbar * (n*n*n*n + yy)
if (gk < 0) {
gk = 0
}
ina = gna * (v - ena)
ik = gk * (v - ek)
il = gl * (v - el)
} : end BREAKPOINT
PROCEDURE states() {
rates(v)
m = m + dt * (m_inf-m)/tau_m
h = h + dt * (h_inf-h)/tau_h
n = n + dt * (n_inf-n)/tau_n
: Exact
yy = yy*mu_y + noise_y
zz = zz*mu_z + noise_z
: Euler-Maruyama
:yy = yy - dt * yy / tau_y + noise_y
:zz = zz - dt * zz / tau_z + noise_z
:consistency()
VERBATIM
return 0;
ENDVERBATIM
} : end PROCEDURE states()
PROCEDURE rates(Vm (mV)) {
LOCAL a,b,m3_inf,n4_inf,q10,sum,var_z1,var_z2,var_z3,var_z4,var_z5,var_z6,var_z7,tau_z1,tau_z2,tau_z3,tau_z4,tau_z5,tau_z6,tau_z7,var_y1,var_y2,var_y3,var_y4,one_minus_m,one_minus_h,one_minus_n
UNITSOFF
q10 = 3.^((celsius-6.3)/10.)
: alpha_m and beta_m
a = alpham(Vm)
b = betam(Vm)
sum = a+b
tau_m = 1. / (q10*sum)
m_inf = a / sum
one_minus_m = 1. - m_inf
m3_inf = m_inf*m_inf*m_inf
: alpha_h and beta_h
a = alphah(Vm)
b = betah(Vm)
sum = a+b
tau_h = 1. / (q10*sum)
h_inf = a / sum
one_minus_h = 1. - h_inf
tau_z1 = tau_h
tau_z2 = tau_m
tau_z3 = tau_m/2
tau_z4 = tau_m/3
tau_z5 = tau_m*tau_h/(tau_m+tau_h)
tau_z6 = tau_m*tau_h/(tau_m+2*tau_h)
tau_z7 = tau_m*tau_h/(tau_m+3*tau_h)
var_z1 = 1.0 / Nna * m3_inf*m3_inf*h_inf * one_minus_h
var_z2 = 3.0 / Nna * m3_inf*m_inf*m_inf*h_inf*h_inf * one_minus_m
var_z3 = 3.0 / Nna * m3_inf*m_inf*h_inf*h_inf * one_minus_m*one_minus_m
var_z4 = 1.0 / Nna * m3_inf*h_inf*h_inf * one_minus_m*one_minus_m*one_minus_m
var_z5 = 3.0 / Nna * m3_inf*m_inf*m_inf*h_inf * one_minus_m*one_minus_h
var_z6 = 3.0 / Nna * m3_inf*m_inf*h_inf * one_minus_m*one_minus_m*one_minus_h
var_z7 = 1.0 / Nna * m3_inf*h_inf * one_minus_m*one_minus_m*one_minus_m*one_minus_h
tau_z = (var_z1+var_z2+var_z3+var_z4+var_z5+var_z6+var_z7) / (var_z1/tau_z1+var_z2/tau_z2+var_z3/tau_z3+var_z4/tau_z4+var_z5/tau_z5+var_z6/tau_z6+var_z7/tau_z7)
var_z = 1.0 / Nna * m3_inf * h_inf * (1.0 - m3_inf*h_inf)
: Exact
mu_z = exp(-dt/tau_z)
noise_z = sqrt(var_z * (1-mu_z*mu_z)) * normrand(0,1)
: Euler-Maruyama
:noise_z = sqrt(2 * dt * var_z / tau_z) * normrand(0,1)
: alpha_n and beta_n
a = alphan(Vm)
b = betan(Vm)
sum = a+b
tau_n = 1. / (q10*sum)
n_inf = a / sum
one_minus_n = 1. - n_inf
n4_inf = n_inf * n_inf * n_inf * n_inf
var_y1 = 4.0/Nk * n4_inf*n_inf*n_inf*n_inf * one_minus_n
var_y2 = 6.0/Nk * n4_inf*n_inf*n_inf * one_minus_n*one_minus_n
var_y3 = 4.0/Nk * n4_inf*n_inf * one_minus_n*one_minus_n*one_minus_n
var_y4 = 1.0/Nk * n4_inf * one_minus_n*one_minus_n*one_minus_n*one_minus_n
tau_y = (var_y1+var_y2+var_y3+var_y4) / (var_y1/tau_n + var_y2/tau_n/2 + var_y3/tau_n/3 + var_y4/tau_n/4)
var_y = 1.0/Nk * n4_inf * (1.0-n4_inf)
: Exact
mu_y = exp(-dt/tau_y)
noise_y = sqrt(var_y * (1-mu_y*mu_y)) * normrand(0,1)
: Euler-Maruyama
:noise_y = sqrt(2 * dt * var_y / tau_y) * normrand(0,1)
UNITSON
}
PROCEDURE consistency(){
if (m > 1) {
m = 1
}
if (m < 0) {
m = 0
}
if (h > 1) {
h = 1
}
if (h < 0) {
h = 0
}
if (n > 1) {
n = 1
}
if (n < 0) {
n = 0
}
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}
FUNCTION alpham(Vm (mV)) (/ms) {
UNITSOFF
alpham = .1 * vtrap(-(Vm+40),10)
UNITSON
}
FUNCTION betam(Vm (mV)) (/ms) {
UNITSOFF
betam = 4 * exp(-(Vm+65)/18)
UNITSON
}
FUNCTION alphah(Vm (mV)) (/ms) {
UNITSOFF
alphah = .07 * exp(-(Vm+65)/20)
UNITSON
}
FUNCTION betah(Vm (mV)) (/ms) {
UNITSOFF
betah = 1 / (exp(-(Vm+35)/10) + 1)
UNITSON
}
FUNCTION alphan(Vm (mV)) (/ms) {
UNITSOFF
alphan = .01*vtrap(-(Vm+55),10)
UNITSON
}
FUNCTION betan(Vm (mV)) (/ms) {
UNITSOFF
betan = .125*exp(-(Vm+65)/80)
UNITSON
}
COMMENT
PROCEDURE evaluate_fct(v(mV)) {
LOCAL a, b, q10, sum
UNITSOFF
q10 = 3^((celsius-6.3)/10)
: alpha_m and beta_m
a = alpham(v)
b = betam(v)
sum = a+b
tau_m = 1. / (q10*sum)
m_inf = a / sum
var_m = (a*(1-m) + b*m) / Nna
m_noise = nom * sqrt(var_m * dt) * normrand(0,1)
: alpha_h and beta_h
a = alphah(v)
b = betah(v)
sum = a+b
tau_h = 1. / (q10*sum)
h_inf = a / sum
var_h = (a*(1-h) + b*h) / Nna
h_noise = noh * sqrt(var_h * dt) * normrand(0,1)
: alpha_n and beta_n
a = alphan(v)
b = betan(v)
sum = a+b
tau_n = 1. / (q10*sum)
n_inf = a / sum
var_n = (a*(1-n) + b*n) / Nk
n_noise = non * sqrt(var_n * dt) * normrand(0,1)
UNITSON
}
ENDCOMMENT