from matplotlib.ticker import MaxNLocator, NullFormatter
import matplotlib as mpl
import matplotlib.pylab as plt
import numpy as np
mpl.rcParams.update({'axes.labelsize': 15, 'xtick.labelsize': 14, 'ytick.labelsize': 14})
# custom colors
Blue, Orange, Green, Red, Purple, Brown, Pink, Grey,\
Kaki, Cyan = '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',\
'#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'
def set_plot(ax, spines=['left', 'bottom'],\
num_xticks=5, num_yticks=5,\
xlabel='', ylabel='', tck_outward=5,\
xticks=None, yticks=None,\
xticks_labels=None, yticks_labels=None,\
xticks_rotation=0, yticks_rotation=0,\
xlim_enhancment=2, ylim_enhancment=2,\
xlim=None, ylim=None):
# drawing spines
adjust_spines(ax, spines, tck_outward=tck_outward)
# Boundaries
if xlim is None:
xmin, xmax = ax.get_xaxis().get_view_interval()
dx = xmax-xmin
ax.set_xlim([xmin-xlim_enhancment*dx/100.,xmax+xlim_enhancment*dx/100.])
else:
ax.set_xlim(xlim)
if ylim is None:
ymin, ymax = ax.get_yaxis().get_view_interval()
dy = ymax-ymin
ax.set_ylim([ymin-ylim_enhancment*dy/100.,ymax+ylim_enhancment*dy/100.])
else:
ax.set_ylim(ylim)
if (xticks is None) and ('bottom' or 'top' in spines):
ax.xaxis.set_major_locator( MaxNLocator(nbins = num_xticks) )
else:
ax.xaxis.set_minor_formatter(NullFormatter())
ax.set_xticks(xticks)
if xticks_labels is not None:
ax.set_xticklabels(xticks_labels, rotation=xticks_rotation)
if (yticks is None) and ('left' or 'right' in spines):
ax.yaxis.set_major_locator( MaxNLocator(nbins = num_yticks) )
else:
ax.yaxis.set_minor_formatter(NullFormatter())
ax.set_yticks(yticks)
if yticks_labels is not None:
ax.set_yticklabels(yticks_labels, rotation=yticks_rotation)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
def ticks_number(ax, xticks=3, yticks=3):
if xticks>1:
ax.xaxis.set_major_locator( MaxNLocator(nbins = xticks) )
if yticks>1:
ax.yaxis.set_major_locator( MaxNLocator(nbins = yticks) )
def adjust_spines(ax, spines, tck_outward=3):
for loc, spine in ax.spines.items():
if loc in spines:
spine.set_position(('outward', tck_outward)) # outward by 10 points by default
spine.set_smart_bounds(True)
else:
spine.set_color('none') # don't draw spine
# turn off ticks where there is no spine
if 'left' in spines:
ax.yaxis.set_ticks_position('left')
else:
# no yaxis ticks
ax.yaxis.set_ticks([])
if 'bottom' in spines:
ax.xaxis.set_ticks_position('bottom')
else:
# no xaxis ticks
ax.xaxis.set_ticks([])
def add_errorbar(ax, x, y, sy, width=.25, color='k', facecolor='lightgray', lw=4):
bar = ax.bar(x, y, width, edgecolor=color, yerr=sy,\
error_kw={'ecolor':color,'linewidth':lw}, capsize=10, lw=lw, facecolor=facecolor)
return bar
def set_subplot_safe_for_labels(fig, FIGSIZE=None, FONTSIZE=16,
hspace=0.1, vspace=0.1):
if FIGSIZE is None:
FIGSIZE = [fig.get_figwidth(), fig.get_figheight()]
x0, y0 = .15*FONTSIZE/FIGSIZE[0], .15*FONTSIZE/FIGSIZE[0]
fig.subplots_adjust(\
bottom=x0, left=y0,\
right=max([1.-0.02*FONTSIZE/FIGSIZE[0],x0*1.1]),
top=max([1.-0.02*FONTSIZE/FIGSIZE[1],y0*1.1]),
hspace=hspace)
def replace_axis_by_legend(ax, text, x0=0.1, y0=0.1, on_fig=False):
ax.axis('off')
if on_fig:
ax.annotate(text, (x0, y0), xycoords='figure fraction')
else:
ax.annotate(text, (x0, y0), xycoords='axes fraction')
def cm2inch(*tupl):
inch = 2.54
if isinstance(tupl[0], tuple):
return tuple(i/inch for i in tupl[0])
else:
return tuple(i/inch for i in tupl)
def build_bar_legend(X, ax, mymap, label='$\\nu$ (Hz)',\
bounds=None, ticks_labels=None,
orientation='vertical', scale='linear',\
color_discretization=None):
""" X -> ticks """
if color_discretization is None:
color_discretization = len(X)
# scale : 'linear' / 'log' / 'custom'
if scale is 'linear':
if bounds is None:
bounds = [X[0]+(X[1]-X[0])/2., X[-1]+(X[1]-X[0])/2.]
bounds = np.linspace(bounds[0], bounds[1], color_discretization)
elif scale is 'log10':
if bounds is None:
bounds = [int(np.log(X[0])/np.log(10))-.1*int(np.log(X[0])/np.log(10)),\
int(np.log(X[-1])/np.log(10))+1+.1*int(np.log(X[-1])/np.log(10))]
else:
bounds = [np.log(bounds[0])/np.log(10), np.log(bounds[1])/np.log(10)]
bounds = np.logspace(bounds[0], bounds[1], color_discretization)
elif scale is 'custom':
bounds = np.linspace(X[0]+(X[1]-X[0])/2., X[-1]+(X[1]-X[0])/2., color_discretization)
norm = mpl.colors.BoundaryNorm(bounds, mymap.N)
cb = mpl.colorbar.ColorbarBase(ax, cmap=mymap, norm=norm,\
orientation=orientation)
cb.set_ticks(X)
if ticks_labels is not None:
cb.set_ticklabels(ticks_labels)
cb.set_label(label)
return cb
def get_linear_colormap(color1='blue', color2='red'):
return mpl.colors.LinearSegmentedColormap.from_list(\
'mycolors',[color1, color2])
def show(module=None):
plt.show(block=False)
input('Hit Enter To Close')
plt.close()
if __name__=='__main__':
import matplotlib.pylab as plt
plt.subplots()
add_errorbar(plt.gca(), [0], [1], [.2])
set_plot(plt.gca())
show()