%% THIS IS FOR TA CONSTANT WITH A-CURRENT
clear;
global x1 y gsyn ta tb c1 c2 c3 tk tw tmed tlo c4 ga c5
global r1 r2 r3
global z2
xmin=10.0;
xmax=1000.0;
dx=5.0;
x=[xmin:dx:xmax];
k=length(x);
% parameters
c1=4.0;
c2=4.6;
c3=3.0;
ta=400.0;
tb=5.0;
tk=125.0;
tw=15.0;
gsyn=4.0;
y=5.0;
tmed=1200.0;
tlo=465.0;
c4=1.0;
ga=3.5;
c5=1.0;
r1=5.0;
r2=0.1;
r3=5.0;
% initial guess
z2=2.0;
z4=5.0;
% find tf for different x
for i=1:k
x1=x(i);
z2=fzero('DBjcns2',z2);
tf(i)=z2;
% delt(i)=tmed*log((1-exp(-z2/tlo))/c4);
z3=ga*(1.0-exp(-z2/tlo))/c4;
% z3=(1.0-exp(-z2/tlo))/c4;
% z4=ga*((1-exp(-z2/tlo))/c4);
z4=fzero('DBjcns3',z4);
delt(i)=0.0;
% if (z3 > 1.0) delt(i)=tmed*log(z4);
if (z3 > 1.0) delt(i)=z4;
end;
% else {delt(i)=0.0};
% delt(i)=tmed*log(z3);
% % checks solutions graphically ...
% t=[0:0.01:1000.0];
% do=(1-exp(-x1/ta))/(1-exp(-x1/ta)*exp(-y/tb));
% gpeak=gsyn*do;
% tfo=(gpeak*c1*exp(-t/tk)+c2*exp(-t/tw)-c3);
% clf;
% plot(t,tfo);
% hold on
% plot([0,1000.0],[0,0]);
% z2
% pause(0.1);
end;
% plot phase vs period
period=x+y;
%phase=(tf+delt)./(y+x);
phase=(tf+delt)./period;
figure(1)
%clf;
plot(period,phase,'linewidth',2);
xlabel('period','fontsize',14);
ylabel('phase','fontsize',14);
% plot gpeak vs period
%do=(1-exp(-x./ta))./(1-exp(-x./ta)*exp(-y/tb));
%gpeak=gsyn*do;
%figure(2)
%clf;
%plot(period,gpeak,'linewidth',2);
%xlabel('period','fontsize',14);
%ylabel('gpeak','fontsize',14);
% plot ta vs period
%figure(3)
%clf;
%plot(period,delt,'linewidth',2);
%xlabel('period','fontsize',14);
%ylabel('tf','fontsize',14);