TITLE Slow Ca-dependent cation current
:
: Ca++ dependent nonspecific cation current ICAN
: Differential equations
:
: Model based on a first order kinetic scheme
:
: + n cai <-> (alpha,beta)
:
: Following this model, the activation fct will be half-activated at
: a concentration of Cai = (beta/alpha)^(1/n) = cac (parameter)
:
: The mod file is here written for the case n=2 (2 binding sites)
: ---------------------------------------------
:
: Kinetics based on: Partridge & Swandulla, TINS 11: 69-72, 1988.
:
: This current has the following properties:
: - inward current (non specific for cations Na, K, Ca, ...)
: - activated by intracellular calcium
: - NOT voltage dependent
:
: A minimal value for the time constant has been added
:
: Ref: Destexhe et al., J. Neurophysiology 72: 803-818, 1994.
: See also: http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca
:
: Updated by Kiki Sidiropoulou (2010) so that dADP has slow inactivation kinetics and it is activated after 5 spikes
: modified by Canavier too include separate pool for ICan calcium microdomain
: at this point ican doesn't activate other pools of calcium need to declare a new ion species
: because at this point the code requires pools for SK+BK+T inactivation and ICAN that decay at different rates
INDEPENDENT {
t FROM 0 TO 1 WITH 1 (ms)
}
NEURON {
SUFFIX ican
USEION ca READ cai
USEION na WRITE ina
RANGE depth,taur,frac,ica,ican
RANGE gbar,m_inf,tau_m,in,mystart
RANGE beta,cac,taumin
POINTER cip3p
}
UNITS {
(mA)=(milliamp)
(mV)=(millivolt)
(molar)=(1/liter)
(mM)=(millimolar)
(um)=(micron)
(msM)=(ms mM)
FARADAY=(faraday) (coulomb)
}
PARAMETER {
v (mV)
depth=0.08 (um) : depth of shell 0.00027
frac=0
taur=100 (ms) : rate of calcium removal
:cainf=100e-6 (mM)
en=-20 (mV) : reversal potential
eca=140 (mV) : reversal potential
cai (mM) : will now decay to bulk cai
gbar=0.0001 (mho/cm2)
beta=0.0001 (1/ms) : backward rate constant
cac=0.15 (mM) :0.02
: middle point of activation fct, for ip3 as somacar, for current injection
taumin=0.1 (ms) : minimal value of time constant
}
STATE {
can (mM)
m
}
ASSIGNED {
cip3p (mA/cm2)
ica (mA/cm2)
ican (mA/cm2)
drive_channel (mM/ms)
in (mA/cm2)
ina (mA/cm2)
m_inf
tau_m (ms)
tadj
:cai (mM)
}
BREAKPOINT {
SOLVE states METHOD derivimplicit
in=gbar*m*m*(v-en)
ican=gbar*frac*m*m*(v-eca)
ina=0.7*in
}
DERIVATIVE states {
evaluate_fct(v,can)
m'=(m_inf-m)/tau_m
drive_channel=-(10000)*(ican-100*cip3p)/(2*FARADAY*depth) :
if (drive_channel<=0.0) {drive_channel=0.0} : cannot pump inward
can'=drive_channel/18+(cai-can)/(taur)
}
UNITSOFF
INITIAL {
: activation kinetics are assumed to be at 22 deg. C
: Q10 is assumed to be 3
can=cai
tadj=3.0^((celsius-22.0)/10)
evaluate_fct(v,can)
m=m_inf
}
PROCEDURE evaluate_fct(v(mV),cai(mM)) {
LOCAL alpha2
alpha2=beta*(cai/cac)^2
if (cai<1.09e-4) {alpha2=0}
tau_m=1/(alpha2+beta)/tadj
m_inf=alpha2/(alpha2+beta)
if (tau_m<taumin) {tau_m=taumin} : min value of time cst
}
UNITSON