TITLE Axonal voltage-gated potassium current
COMMENT
Hallermann, de Kock, Stuart and Kole, Nature Neuroscience, 2012
doi:10.1038/nn.3132
n8*h1 + n8*h2 Hodgkin-Huxley model
ENDCOMMENT
NEURON {
SUFFIX Kv1
USEION k READ ek WRITE ik
RANGE gkv1, ikv1, gbar
GLOBAL ninf, ntau, vShift, ekt
GLOBAL h1inf, h1tau
GLOBAL h2inf, h2tau
GLOBAL h3inf, h3tau
}
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
(nA) = (nanoamp)
(pA) = (picoamp)
(S) = (siemens)
(nS) = (nanosiemens)
(pS) = (picosiemens)
(um) = (micron)
(molar) = (1/liter)
(mM) = (millimolar)
}
CONSTANT {
a1 = 48.02279
a2 = 42.662
b1 = 58.44509
c1 = 13.44182
c2 = 49.38797
a1H1 = 1.300293e-03
a2H1 = 6.247311
b2H1 = 66.13843
c1H1 = 8.611435
c2H1 = 7.948768
a12H2fact = 1.554639e-02
propH2 = 0.73157
sToMs = 0.001
}
PARAMETER {
v (mV)
ekt = -88 (mV)
vShift = 0
vShift_inact = 0
gbar (pS/um2)
temp = 33 (degC) : original temp
q10 = 3 : temperature sensitivity
q10h = 3 : temperature sensitivity for inactivation
celsius (degC)
}
ASSIGNED {
ik (mA/cm2)
ikv1 (mA/cm2)
gkv1 (mho/cm2)
ek (mV)
ninf
ntau (ms)
nalpha (1/ms)
nbeta (1/ms)
h1inf
h1tau (ms)
h1alpha (1/ms)
h1beta (1/ms)
h2inf
h2tau (ms)
h2alpha (1/ms)
h2beta (1/ms)
h3inf
h3tau (ms)
h3alpha (1/ms)
h3beta (1/ms)
tadj
tadjh
}
STATE {
n
h1
h2
}
INITIAL {
rates(v)
n = ninf
h1 = h1inf
h2 = h2inf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gkv1 = gbar * ( (1-propH2)*n^8*h1 + propH2*n^8*h2 )
ikv1 = (1e-4)*gkv1 * (v - ek)
ik = ikv1
}
DERIVATIVE states {
rates(v)
n' = (ninf-n)/ntau
h1' = (h1inf-h1)/h1tau
h2' = (h2inf-h2)/h2tau
}
PROCEDURE rates(v (mV)) {
tadj = q10^((celsius - temp)/10)
tadjh = q10h^((celsius - temp)/10)
nalpha = tadj*nalphafkt(v-vShift)
nbeta = tadj*nbetafkt(v-vShift)
ninf = nalpha/(nalpha+nbeta)
ntau = 1/(nalpha + nbeta)
h1alpha = tadjh*h1alphafkt(v-vShift-vShift_inact)
h1beta = tadjh*h1betafkt(v-vShift-vShift_inact)
h1inf = h1alpha/(h1alpha+h1beta)
h1tau = 1/(h1alpha + h1beta)
h2alpha = tadjh*h2alphafkt(v-vShift-vShift_inact)
h2beta = tadjh*h2betafkt(v-vShift-vShift_inact)
h2inf = h2alpha/(h2alpha+h2beta)
h2tau = 1/(h2alpha + h2beta)
}
FUNCTION nalphafkt(v (mV)) (1/ms) {
nalphafkt = sToMs * a1*(-(v+b1))/( exp(-(v+b1)/c1) -1)
}
FUNCTION nbetafkt(v (mV)) (1/ms) {
nbetafkt = sToMs * a2*exp(-(v)/c2)
}
FUNCTION h1alphafkt(v (mV)) (1/ms) {
h1alphafkt = sToMs * a1H1*exp(-(v)/c1H1)
}
FUNCTION h1betafkt(v (mV)) (1/ms) {
h1betafkt = sToMs * a2H1/(exp(-(v+b2H1)/c2H1)+1)
}
FUNCTION h2alphafkt(v (mV)) (1/ms) {
h2alphafkt = sToMs * a12H2fact*a1H1*exp(-(v)/c1H1)
}
FUNCTION h2betafkt(v (mV)) (1/ms) {
h2betafkt = sToMs * a12H2fact*a2H1/(exp(-(v+b2H1)/c2H1)+1)
}