TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997
:and modified to reproduce the experimental data of Flipis et al. 2022
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
ek (mV) : must be explicitely def. in hoc
celsius (degC)
gbar=.003 (mho/cm2)
vhalfn=13 (mV)
a0n=0.02 (/ms)
zetan=-3 (1)
gmn=0.7 (1)
nmax=2 (1)
q10=1
vbr=-20 (mV)
vbr2=-65 (mV)
vbr3=5
}
NEURON {
SUFFIX Kv7
USEION k READ ek WRITE ik
RANGE gkdr, gbar, ik
GLOBAL ninf,taun, vbr, vbr2, vbr3
}
STATE {
n
}
ASSIGNED {
ik (mA/cm2)
ninf
gkdr
taun
}
BREAKPOINT {
SOLVE states METHOD cnexp
gkdr = gbar*n
ik = gkdr*(v-ek)
if (v>vbr) {ik=0}
if (v<vbr2) {ik=ik/vbr3}
}
INITIAL {
rates(v)
n=ninf
}
FUNCTION alpn(v(mV)) {
alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
n' = (ninf - n)/taun
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt=q10^((celsius-24)/10)
a = alpn(v)
ninf = 1/(1+a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmax) {taun=nmax}
}