: Calcium ion accumulation with radial diffusion, buffering and pumping
NEURON {
THREADSAFE
SUFFIX cadp
USEION ca READ cao, cai, ica WRITE cai, ica
RANGE ica_pmp, ex_buffer_ratio, f, AvgCaExBuffer, diam_factor, TotalPump, ca, CaEndBuffer, EndBuffer, CaExBuffer, ExBuffer, pump, pumpca
GLOBAL vrat, TotalEndBuffer, TotalExBuffer, k1, k2, k3, k4, k1bufend, k2bufend, k1bufex, k2bufex, DCa, fl_ratio, dep_factor
USEION dep READ depi VALENCE 1
NONSPECIFIC_CURRENT icont
}
DEFINE Nannuli 4
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
(mol) = (1)
}
PARAMETER {
DCa = 0.6 (um2/ms)
k1bufend = 100 (/mM-ms) : Yamada et al. 1989
k2bufend = 0.1 (/ms)
TotalEndBuffer = 0.003 (mM)
k1bufex = 100 (/mM-ms)
k2bufex = 0.017 (/ms) : Based on OGB-1 kd
TotalExBuffer = 0.04 (mM) :
k1 = 1 (/mM-ms)
k3 = 1 (/ms)
: to eliminate pump, set TotalPump to 0 in hoc
TotalPump = 1e-14 (mol/cm2)
fl_ratio=14 (1)
diam_factor=1 (1)
dep_factor=1 (1)
}
ASSIGNED {
diam (um)
L (um)
ica (mA/cm2)
cai (mM)
vrat[Nannuli] : numeric value of vrat[i] equals the volume
: of annulus i of a 1um diameter cylinder
: multiply by diam^2 to get volume per um length
depi
k2 (/ms)
k4 (/mM-ms)
ka_end (/mM)
ka_ex (/mM)
B0end (mM)
B0ex (mM)
cao (mM)
ica_pmp (mA/cm2)
icont (mA/cm2)
parea (um)
AvgCaExBuffer (mM) : [CaExBuffer] averaged over all shells.
f (1)
diamf (um)
}
CONSTANT { volo = 1e10 (um2) }
STATE {
: ca[0] is equivalent to cai
: ca[] are very small, so specify absolute tolerance
ca[Nannuli] (mM) <1e-10>
CaEndBuffer[Nannuli] (mM)
EndBuffer[Nannuli] (mM)
CaExBuffer[Nannuli] (mM)
ExBuffer[Nannuli] (mM)
pump (mol/cm2)
pumpca (mol/cm2)
}
BREAKPOINT {
SOLVE state METHOD sparse
ica = ica_pmp
icont = -ica_pmp
AvgCaExBuffer = 0.0
FROM i=0 TO Nannuli-1 {
AvgCaExBuffer = AvgCaExBuffer + (CaExBuffer[i] * vrat[i])
}
AvgCaExBuffer = AvgCaExBuffer * (4/PI)
f = TotalExBuffer + (fl_ratio - 1) * AvgCaExBuffer
}
LOCAL factors_done
INITIAL {
k2=sqrt(cai/cao) :Set the equilibrium at cai0_ca_ion
k4=sqrt(cai/cao)
diamf=diam*diam_factor
parea = PI*diamf
pump = TotalPump/(1 + (cai*k1/k2))
pumpca = TotalPump - pump
if (factors_done == 0) { : flag becomes 1 in the first segment
factors_done = 1 : all subsequent segments will have
factors() : vrat = 0 unless vrat is GLOBAL
}
ka_end = k1bufend/k2bufend
ka_ex = k1bufex/k2bufex
B0end = TotalEndBuffer/(1 + ka_end*cai)
B0ex = TotalExBuffer/(1 + ka_ex*cai)
: ex_buffer_ratio = 0.0
FROM i=0 TO Nannuli-1 {
ca[i] = cai
EndBuffer[i] = B0end
CaEndBuffer[i] = TotalEndBuffer - B0end
ExBuffer[i] = B0ex
CaExBuffer[i] = TotalExBuffer - B0ex
:ex_buffer_ratio = ex_buffer_ratio + (CaExBuffer[i] * vrat[i])
}
:ex_buffer_ratio=(ex_buffer_ratio/(PI/4))/(TotalExBuffer - (ex_buffer_ratio/(PI/4)))
}
LOCAL frat[Nannuli] : scales the rate constants for model geometry
PROCEDURE factors() {
LOCAL r, dr2
r = 1/2 : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus,
: half thickness of all other annuli
vrat[0] = 0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {
vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2 : interior half
r = r - dr2
frat[i+1] = 2*PI*r/(2*dr2) : outer radius of annulus
: div by distance between centers
r = r - dr2
vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus
}
}
LOCAL dsq, dsqvol : can't define local variable in KINETIC block
: or use in COMPARTMENT statement
KINETIC state {
COMPARTMENT i, diamf*diamf*vrat[i] {ca CaIndBuffer IndBuffer CaExBuffer ExBuffer}
COMPARTMENT (1e10)*parea {pump pumpca}
COMPARTMENT volo {cao}
:LONGITUDINAL_DIFFUSION i, DCa*diamf*diamf*vrat[i] {ca}
:pump
~ ca[0] + pump <-> pumpca (k1*(1-depi*dep_factor)*parea*(1e10), k2*(1-depi*dep_factor)*parea*(1e10))
~ pumpca <-> pump + cao (k3*(1-depi*dep_factor)*parea*(1e10), k4*(1-depi*dep_factor)*parea*(1e10))
CONSERVE pump + pumpca = TotalPump * parea * (1e10)
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea
: all currents except pump
~ ca[0] << (-(ica-ica_pmp)*PI*diamf/(2*FARADAY)) : ica is Ca efflux
FROM i=0 TO Nannuli-2 {
~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])
}
dsq = diamf*diamf
FROM i=0 TO Nannuli-1 {
dsqvol = dsq*vrat[i]
~ ca[i] + EndBuffer[i] <-> CaEndBuffer[i] (k1bufend*dsqvol, k2bufend*dsqvol)
~ ca[i] + ExBuffer[i] <-> CaExBuffer[i] (k1bufex*dsqvol, k2bufex*dsqvol)
}
cai = ca[0]
}