COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal
kv.mod
Potassium channel, Hodgkin-Huxley style kinetics
Kinetic rates based roughly on Sah et al. and Hamill et al. (1991)
Author: Zach Mainen, Salk Institute, 1995, zach@salk.edu
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX kfast : neamed from kv (Armin, Jul 09)
THREADSAFE
USEION k READ ek WRITE ik
RANGE n, gk, gbar, vshift, timefactor_n, ik
RANGE ninf, ntau
GLOBAL Ra, Rb
GLOBAL q10, temp, tadj, vmin, vmax
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
PARAMETER {
gbar = 0 (S/cm2) : 0.03 mho/cm2
v (mV)
vshift = 0 (mV)
tha = 25 (mV) : v 1/2 for inf
qa = 9 (mV) : inf slope
Ra = 0.02 (/ms) : max act rate
Rb = 0.002 (/ms) : max deact rate
dt (ms)
celsius (degC)
temp = 23 (degC) : original temp
q10 = 2.3 : temperature sensitivity
vmin = -120 (mV)
vmax = 1000 (mV)
timefactor_n = 1
}
ASSIGNED {
a (/ms)
b (/ms)
ik (mA/cm2)
gk (S/cm2)
ek (mV)
ninf
ntau (ms)
tadj
}
STATE { n }
INITIAL {
trates(v-vshift)
n = ninf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gk = tadj*gbar*n
ik = gk * (v - ek)
}
DERIVATIVE states { :Computes state variable n
trates(v-vshift) : at the current v and dt.
n' = (ninf-n)/(timefactor_n*ntau)
}
PROCEDURE trates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
TABLE ninf, ntau
DEPEND celsius, temp, Ra, Rb, tha, qa
FROM vmin TO vmax WITH 1600
rates(v): not consistently executed from here if usetable_hh == 1
: tinc = -dt * tadj
: nexp = 1 - exp(tinc/ntau)
}
PROCEDURE rates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
a = Ra * (v - tha) / (1 - exp(-(v - tha)/qa))
b = -Rb * (v - tha) / (1 - exp((v - tha)/qa))
tadj = q10^((celsius - temp)/10)
ntau = 1/tadj/(a+b)
if (ntau<1e-7) {
ntau=1e-7
}
ninf = a/(a+b)
}