c 26 March 2007, network version of /purkinje_parallel/purkinje.f, to run on multiple nodes ! 21 March 2007, version of purkinje.f to run on a node. c 13 March 2007, begin construction of Purkinje cell model, starting with bask.f c Sources include Llinas & Sugimori; Roth & Hausser for cell structure and passive c parameters; de Schutter & Bower & Miyasho et al. for many of the active properties; c Roth & Hausser for anomalous rectifier; Martina et al for data on delayed rectifier. c 1 soma cylinder (level 1), 24 smooth dendritic compartments, #2 - 25. c compartments 2 & 3 are dendritic shaft (level 2), 4 - 25 rest of smooth dendrites (level 3. c There are 44 "canonical treelets" for the spiny dendrites; 2 treelets attach to c each of the level 3 smooth dendritic compartments. c A spiny treelet has 12 compartments: 4 along the main root, then 4 in each of 2 symmetrical c branches. The spiny dendrites are compartments 26 - 553. c Axon has 6 10-micron compartments, #554 - 559, level 0. c Active conductances: gnaf (m cubed h) - axon will use shifted version. c gnap (m cubed) c gcaP (m) P channels c gcaT (m h) T channels c gcaR (m h) R channels c gar (m) anomolous rectifier c gKDR (m fourth) delayed rectifier, leaving out inactivation c gKM (m) M current, also called persistent K c gKA (m fourth x h) A current c gKD (m h) D current c gKC - try my original structure c gKAHP - try my original structure. c 12 Active conductances in all PROGRAM PURKINJE_NET PARAMETER (num_purk = 1000, np = 1000, ! i.e. = num_purk x numnodes = 50) integer, parameter :: cellspernode = 20 integer, parameter :: totaxgj = 2500 c integer, parameter :: num_axgjcompallow = 1 integer, parameter :: num_axgjcompallow = 3 double precision, parameter :: gapcon = 6.0d-3 c double precision, parameter :: gapcon = 5.5d-3 c double precision, parameter :: gapcon = 0.0d-3 double precision, parameter :: noisepe = 0.8d0/75.d0 ! 0.8 ms ~= 1333 dt double precision gj_axon554 (cellspernode), gj_axon554_global(np) ! these used by mpi double precision gj_axon555 (cellspernode), gj_axon555_global(np) ! these used by mpi double precision gj_axon556 (cellspernode), gj_axon556_global(np) ! these used by mpi double precision gj_axon557 (cellspernode), gj_axon557_global(np) ! these used by mpi double precision gj_axon558 (cellspernode), gj_axon558_global(np) ! these used by mpi double precision gj_axon559 (cellspernode), gj_axon559_global(np) ! these used by mpi double precision soma_local (cellspernode), soma_global(np) ! these used by mpi integer na, nb, display, ectr /0/ integer gjtable (totaxgj,4) c integer table_axgjcompallow (num_axgjcompallow) /558/ integer table_axgjcompallow (num_axgjcompallow) c x /555,556,557,558,559/ ! IF THIS IS ALTERED, MPI CODE MUST BE ALTERED AS WELL. x /554,555,556 / ! IF THIS IS ALTERED, MPI CODE MUST BE ALTERED AS WELL. INTEGER J1, I, J, K, L, O, ISEED, K1, thisno REAL*8 TIMTOT, Z, Z1, Z2, Z3, curr(559,np), c(559), DT REAL*8 TIMER, gettime, time1, time2, time real*8 ranvec(np), seed /137.d0/ c CINV is 1/C, i.e. inverse capacitance real*8 v(559,np), chi(559,np), cinv(559), gL(559), x gNaF(559), gNaP(559), gCaP(559), gCaT(559), gCaR(559), x gar(559), gKDR(559), gKM(559), gKA(559), gKD(559), x gKC(559), gKAHP(559) real*8 jacob(559,559), betchi(559), gam(0:559,0:559) real*8 x mnaf(559,np), hnaf(559,np), x mnap(559,np), x mcap(559,np), x mcat(559,np), hcat(559,np), x mcar(559,np), hcar(559,np), x mar (559,np), x mkdr(559,np), x mkm(559,np), x mka(559,np), hka(559,np), x mkd(559,np), hkd(559,np), x mkc(559,np), x mkahp(559,np) real*8 gampa(559,np),gnmda(559,np),ggaba_a(559,np) real*8 kdr_shift, cafor(59) real*8 X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640), X dbetam_naf(0:640), X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640), X dbetah_naf(0:640), X alpham_nap(0:640),betam_nap(0:640),dalpham_nap(0:640), X dbetam_nap(0:640), X alpham_cap(0:640),betam_cap(0:640),dalpham_cap(0:640), X dbetam_cap(0:640), X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640), X dbetam_cat(0:640), X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640), X dbetah_cat(0:640), X alpham_car(0:640),betam_car(0:640),dalpham_car(0:640), X dbetam_car(0:640), X alphah_car(0:640),betah_car(0:640),dalphah_car(0:640), X dbetah_car(0:640), X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640), X dbetam_ar(0:640), X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640), X dbetam_kdr(0:640), X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640), X dbetam_km(0:640), X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) , X dbetam_ka(0:640), X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640), X dbetah_ka(0:640), X alpham_kd(0:640), betam_kd(0:640),dalpham_kd(0:640) , X dbetam_kd(0:640), X alphah_kd(0:640), betah_kd(0:640), dalphah_kd(0:640), X dbetah_kd(0:640), X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640), X dbetam_kc(0:640) real*8 vL,vk,vna,var,vca,vgaba_a INTEGER NEIGH(559,6), NNUM(559) c START EXECUTION PHASE include 'mpif.h' call mpi_init (info) call mpi_comm_rank(mpi_comm_world, thisno, info) call mpi_comm_size(mpi_comm_world, nodes , info) time1 = gettime() time1 = gettime() na = thisno * cellspernode + 1 nb = na + cellspernode - 1 ! define which cells to be integrated on this node c kdr_shift = 7.d0 kdr_shift = 10.d0 CALL PURKINJE_SETUP X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf, X alphah_naf, betah_naf, dalphah_naf, dbetah_naf, X alpham_nap, betam_nap, dalpham_nap, dbetam_nap, X alpham_cap, betam_cap, dalpham_cap, dbetam_cap, X alpham_cat, betam_cat, dalpham_cat, dbetam_cat, X alphah_cat, betah_cat, dalphah_cat, dbetah_cat, X alpham_car, betam_car, dalpham_car, dbetam_car, X alphah_car, betah_car, dalphah_car, dbetah_car, X alpham_ar , betam_ar , dalpham_ar , dbetam_ar, X kdr_shift, X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr, X alpham_km , betam_km , dalpham_km , dbetam_km , X alpham_ka , betam_ka , dalpham_ka , dbetam_ka , X alphah_ka , betah_ka , dalphah_ka , dbetah_ka , X alpham_kd , betam_kd , dalpham_kd , dbetam_kd , X alphah_kd , betah_kd , dalphah_kd , dbetah_kd , X alpham_kc , betam_kc , dalpham_kc , dbetam_kc) CALL PURKINJE_MAJ (GL,GAM, X gNaF, gNaP, gCaP, gCaT, gCaR, gar, gKDR, X gKM, gKA, gKD, gKC, gKAHP, X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM,thisno) do i = 1, 559 cinv(i) = 1.d0 / c(i) end do c gnaf = 0.d0 c gnap = 0.d0 c gkdr = 0.d0 c gka = 0.d0 gkd = 0.d0 c gkm = 0.d0 gkc = 0.d0 gkahp = 0.d0 gcat = 0.d0 gcaP = 0.d0 gcaR = 0.d0 c gar = 0.d0 c Below introduces somatic shunt c gL(1) = 100.d0 * gL(1) gL(1) = 5.d0 * gL(1) c below 4 statements disconnect axon from soma. c gam(1,554) = 0.d0 c gam(554,1) = 0.d0 c jacob(1,554) = 0.d0 c jacob(554,1) = 0.d0 MG = 1.0d0 C IN MILLIMOLAR VL = -80.d0 VK = - 85.d0 VNA = 45.d0 VCA = 135.d0 VAR = -30.d0 VGABA_A = -75.d0 DT = .00060d0 c DT = .00200d0 TIMTOT = 175.00d0 c TIMTOT = 8.d0 * dt c timtot = 0.d0 c ? initialize membrane state variables? c v = VL v = -55.d0 k1 = idnint (4.d0 * (v(1,na) + 120.d0)) hnaf = alphah_naf(k1)/(alphah_naf(k1)+betah_naf(k1)) hka = alphah_ka(k1)/(alphah_ka(k1)+betah_ka(k1)) hkd = alphah_kd(k1)/(alphah_kd(k1)+betah_kd(k1)) hcat=alphah_cat(k1)/(alphah_cat(k1)+betah_cat(k1)) hcar=alphah_car(k1)/(alphah_car(k1)+betah_car(k1)) call purkinje_gapbld (thisno, np, totaxgj, gjtable, X table_axgjcompallow, num_axgjcompallow, 1) c Define tonic currents call durand (seed, np, ranvec) do L = 1, np curr(1,L) = 0.35d0 + 0.10d0 * ranvec(L) ! for soma end do c Hyperpolarize one or more cells, to try to unmask spikelets curr(1,21) = -0.25d0 curr(1,22) = -0.25d0 curr(1,23) = -0.25d0 curr(1,24) = -0.25d0 curr(1,25) = -0.25d0 curr(1,26) = -0.25d0 curr(1,27) = -0.25d0 curr(1,28) = -0.25d0 do L = 1, np do i = 554, 559 curr(i,L) = 0.04d0 end do end do O = 0 TIME = 0.d0 TIMER = 0.d0 ! for periodic spikes 2000 TIME = TIME + DT O = O + 1 IF (TIME .GT. TIMTOT) GO TO 2001 c if (mod(O,8000).eq.0) timer = timer + 4.8d0 c curr(1) = 1.50d0 c curr(1) = 0.75d0 c IF (MOD(O,100).EQ. 0 ) THEN c IF ( i.eq.i ) THEN c WRITE (6,904) TIME, v(1), v(14), chi(14), c X V(25), v(554), v(557), v(558), v(559), curr(559) c X ,curr(14) c ENDIF 904 FORMAT(2X,F8.3,2X,8f8.2,f8.4,f9.4) c Set up currents for ectopic spikes. Note the "quantization" of time introduced this way if (mod(O,1333).eq.0) then call durand (seed,np,ranvec) do L = na, nb if ((ranvec(L).gt.0.d0).and.(ranvec(L).le.noisepe)) then curr(559,L) = 0.45d0 ectr = ectr + 1 else curr(559,L) = 0.d0 endif end do end if CALL PURKINJE_INT_NET (V,CHI,CINV, X mnaf,hnaf,mnap,mcap,mcat,hcat,mcar,hcar,mar, x mkdr,mkm,mka,hka,mkd,hkd,mkc,mkahp, x dt,neigh,nnum,jacob,mg, x vL,vk,vna,var,vca,vgaba_a,betchi,gam,gL, x gnaf,gnap,gcaP,gcaT,gCaR,gar, x gKDR,gKM,gKA,gKD,gKC,gKAHP, x gampa,gnmda,ggaba_a, x O,time, X alpham_naf, betam_naf, dalpham_naf, dbetam_naf, X alphah_naf, betah_naf, dalphah_naf, dbetah_naf, X alpham_nap, betam_nap, dalpham_nap, dbetam_nap, X alpham_cap, betam_cap, dalpham_cap, dbetam_cap, X alpham_cat, betam_cat, dalpham_cat, dbetam_cat, X alphah_cat, betah_cat, dalphah_cat, dbetah_cat, X alpham_car, betam_car, dalpham_car, dbetam_car, X alphah_car, betah_car, dalphah_car, dbetah_car, X alpham_ar , betam_ar , dalpham_ar , dbetam_ar, X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr, X alpham_km , betam_km , dalpham_km , dbetam_km , X alpham_ka , betam_ka , dalpham_ka , dbetam_ka , X alphah_ka , betah_ka , dalphah_ka , dbetah_ka , X alpham_kd , betam_kd , dalpham_kd , dbetam_kd , X alphah_kd , betah_kd , dalphah_kd , dbetah_kd , X alpham_kc , betam_kc , dalpham_kc , dbetam_kc , X cafor,curr, X np, initialize, na, nb, thisno, ! np = num_purk, but use shorter name here X gapcon, totaxgj, gjtable) c data broadcasting, followed by reading appropriate axonal voltages into locally known voltage array if (mod(O,5).eq.0) then ! CODE BELOW SHARES ALL AXONAL COMPARTMENTS EXCEPT HILLOCK, AND SOMA. k = 554 do L = na, nb gj_axon554 (L - na + 1) = v(k,L) end do call mpi_allgather (gj_axon554, x cellspernode, mpi_double_precision, x gj_axon554_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(k,L) = gj_axon554_global(L) end do c k = table_axgjcompallow(1) k = 555 do L = na, nb gj_axon555 (L - na + 1) = v(k,L) end do call mpi_allgather (gj_axon555, x cellspernode, mpi_double_precision, x gj_axon555_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(k,L) = gj_axon555_global(L) end do c k = table_axgjcompallow(2) k = 556 do L = na, nb gj_axon556 (L - na + 1) = v(k,L) end do call mpi_allgather (gj_axon556, x cellspernode, mpi_double_precision, x gj_axon556_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(k,L) = gj_axon556_global(L) end do c k = table_axgjcompallow(3) k = 557 do L = na, nb gj_axon557 (L - na + 1) = v(k,L) end do call mpi_allgather (gj_axon557, x cellspernode, mpi_double_precision, x gj_axon557_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(k,L) = gj_axon557_global(L) end do c k = table_axgjcompallow(4) k = 558 do L = na, nb gj_axon558 (L - na + 1) = v(k,L) end do call mpi_allgather (gj_axon558, x cellspernode, mpi_double_precision, x gj_axon558_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(k,L) = gj_axon558_global(L) end do c k = table_axgjcompallow(5) k = 559 do L = na, nb gj_axon559 (L - na + 1) = v(k,L) end do call mpi_allgather (gj_axon559, x cellspernode, mpi_double_precision, x gj_axon559_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(k,L) = gj_axon559_global(L) end do do L = na, nb soma_local (L - na + 1) = v(1,L) end do call mpi_allgather (soma_local, x cellspernode, mpi_double_precision, x soma_global, cellspernode, mpi_double_precision, x mpi_comm_world, info) do L = 1, np v(1,L) = soma_global(L) end do endif GO TO 2000 2001 CONTINUE if (thisno.eq.0) then write(6,897) ectr 897 format(i8,' axonal pulses on node 0') time2 = gettime() write(6,309) time2 - time1 309 format(' Elapsed time = ',f8.0,' secs') endif 1000 CONTINUE call mpi_finalize(info) END C SETS UP TABLES FOR RATE FUNCTIONS SUBROUTINE PURKINJE_SETUP X (alpham_naf, betam_naf, dalpham_naf, dbetam_naf, X alphah_naf, betah_naf, dalphah_naf, dbetah_naf, X alpham_nap, betam_nap, dalpham_nap, dbetam_nap, X alpham_cap, betam_cap, dalpham_cap, dbetam_cap, X alpham_cat, betam_cat, dalpham_cat, dbetam_cat, X alphah_cat, betah_cat, dalphah_cat, dbetah_cat, X alpham_car, betam_car, dalpham_car, dbetam_car, X alphah_car, betah_car, dalphah_car, dbetah_car, X alpham_ar , betam_ar , dalpham_ar , dbetam_ar, X kdr_shift, X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr, X alpham_km , betam_km , dalpham_km , dbetam_km , X alpham_ka , betam_ka , dalpham_ka , dbetam_ka , X alphah_ka , betah_ka , dalphah_ka , dbetah_ka , X alpham_kd , betam_kd , dalpham_kd , dbetam_kd , X alphah_kd , betah_kd , dalphah_kd , dbetah_kd , X alpham_kc , betam_kc , dalpham_kc , dbetam_kc) INTEGER I,J,K real*8 minf, hinf, taum, tauh, V, Z, X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640), X dbetam_naf(0:640), X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640), X dbetah_naf(0:640), X alpham_nap(0:640),betam_nap(0:640),dalpham_nap(0:640), X dbetam_nap(0:640), X alpham_caP(0:640),betam_caP(0:640),dalpham_caP(0:640), X dbetam_caP(0:640), X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640), X dbetam_cat(0:640), X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640), X dbetah_cat(0:640), X alpham_car(0:640),betam_car(0:640),dalpham_car(0:640), X dbetam_car(0:640), X alphah_car(0:640),betah_car(0:640),dalphah_car(0:640), X dbetah_car(0:640), X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640), X dbetam_ar(0:640), X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640), X dbetam_kdr(0:640), X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640), X dbetam_km(0:640), X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) , X dbetam_ka(0:640), X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640), X dbetah_ka(0:640), X alpham_kd(0:640), betam_kd(0:640),dalpham_kd(0:640) , X dbetam_kd(0:640), X alphah_kd(0:640), betah_kd(0:640), dalphah_kd(0:640), X dbetah_kd(0:640), X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640), X dbetam_kc(0:640) real*8 kdr_shift C FOR VOLTAGE, RANGE IS -120 TO +40 MV (absol.), 0.25 MV RESOLUTION DO 1, I = 0, 640 V = dble (I) V = (V / 4.d0) - 120.d0 c gNaF c T. Miyasho et al. 2001 alpham_naf(i) = 35.d0 / (0.d0 + dexp((v + 5.d0)/(-10.d0))) betam_naf(i) = 7.d0 / (0.d0 + dexp((v+65.d0)/20.d0)) c T. Miyasho et al. 2001 alphah_naf(i) = 0.225d0 / (1.d0 + dexp((v+80.d0)/10.d0)) betah_naf(i) = 7.5d0 / (0.d0 + dexp((v-3.d0)/(-18.d0))) c T. Miyasho et al. 2001 alpham_nap(i) = 200.d0 / (1.d0 + dexp((v-18.d0)/(-16.d0))) betam_nap(i) = 25.d0 / (1.d0 + dexp((v+58.d0)/8.d0)) c P channels, T. Miyasho et al. 2001 alpham_cap(i) = 8.5d0 / (1.d0 + dexp((v-8.d0)/(-12.5d0))) betam_cap(i) = 35.d0 / (1.d0 + dexp((v+74.d0)/14.5d0)) c T-current, from T. Miyasho et al., 2001 alpham_cat(i) = 2.6d0 / (1.d0 + dexp((v+21.d0)/(-8.d0))) betam_cat(i) = 0.18d0 / (1.d0 + dexp((v+40.d0)/4.d0)) alphah_cat(i) = 0.0025d0 / (1.d0 + dexp((v+40.d0)/8.d0)) betah_cat(i) = 0.19d0 / (1.d0 + dexp((v+50.d0)/(-10.d0))) c R-current, from T. Miyasho et al., 2001 alpham_car(i) = 2.6d0 / (1.d0 + dexp((v+7.d0)/(-8.d0))) betam_car(i) = 0.18d0/ (1.d0 + dexp((v+26.d0)/4.d0)) alphah_car(i) = 0.0025/ (1.d0 + dexp((v+32.d0)/8.d0)) betah_car(i) = 0.19d0/ (1.d0 + dexp((v+42.d0)/(-10.d0))) c h-current (anomalous rectifier), Roth and Hausser alpham_ar(i) = 0.00063d0 * dexp (-0.063d0 * (v + 73.2d0)) betam_ar(i) = 0.00063d0 * dexp(0.079d0 * (v +73.2d0)) c delayed rectifier, non-inactivating. Start with mine (e.g. bask.f) c Perhaps modify after comparison with Martina et al., 2003 v = v + kdr_shift c minf = 1.d0/(1.d0+dexp((-v-27.d0)/11.5d0)) minf = 1.d0/(1.d0+dexp((-v-20.d0)/11.5d0)) ! elevate threshold if (v.le.-10.d0) then taum = .25d0 + 4.35d0*dexp((v+10.d0)/10.d0) else taum = .25d0 + 4.35d0*dexp((-v-10.d0)/10.d0) endif alpham_kdr(i) = minf / taum betam_kdr(i) = 1.d0 /taum - alpham_kdr(i) c from Martina, Schultz et al., 1998 - for bask.f v = v - kdr_shift c M-current, from plast.f, with 60 mV shift alpham_km(i) = .02d0/(1.d0+dexp((-v-20.d0)/5.d0)) betam_km(i) = .01d0 * dexp((-v-43.d0)/18.d0) c A current: T. Miyasho et al., 2001 alpham_ka(i) = 1.4d0 / (1.d0 + dexp((v+27.d0)/(-12.d0))) betam_ka(i) = 0.49d0/ (1.d0 + dexp((v+30.d0)/4.d0)) alphah_ka(i) = 0.0175d0/(1.d0 + dexp((v+50.d0)/8.d0)) betah_ka(i) = 1.3 / (1.d0 + dexp((v+13.d0)/(-10.d0))) c D current: T. Miyasho et al., 2001 alpham_kd(i) = 8.5d0 / (1.d0 + dexp((v+17.d0)/(-12.5d0))) betam_kd(i) = 35.0d0/ (1.d0 + dexp((v+99.d0)/14.5d0)) alphah_kd(i) = 0.0015d0/(1.d0 + dexp((v+89.d0)/8.d0)) betah_kd(i) = 0.0055d0 / (1.d0 + dexp((v+83.d0)/(-8.d0))) c voltage part of C-current, using 1994 kinetics, shift 60 mV if (v.le.-10.d0) then alpham_kc(i) = (2.d0/37.95d0)*dexp((v+50.d0)/11.d0 - x (v+53.5)/27.d0) betam_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0)-alpham_kc(i) else alpham_kc(i) = 2.d0*dexp((-v-53.5d0)/27.d0) betam_kc(i) = 0.d0 endif c Speed-up of C kinetics here. alpham_kc(i) = 2.d0 * alpham_kc(i) betam_kc(i) = 2.d0 * betam_kc(i) 1 CONTINUE do 2, i = 0, 639 dalpham_naf(i) = (alpham_naf(i+1)-alpham_naf(i))/.25d0 dbetam_naf(i) = (betam_naf(i+1)-betam_naf(i))/.25d0 dalphah_naf(i) = (alphah_naf(i+1)-alphah_naf(i))/.25d0 dbetah_naf(i) = (betah_naf(i+1)-betah_naf(i))/.25d0 dalpham_nap(i) = (alpham_nap(i+1)-alpham_nap(i))/.25d0 dbetam_nap(i) = (betam_nap(i+1)-betam_nap(i))/.25d0 dalpham_cap(i) = (alpham_cap(i+1)-alpham_cap(i))/.25d0 dbetam_cap(i) = (betam_cap(i+1)-betam_cap(i))/.25d0 dalpham_cat(i) = (alpham_cat(i+1)-alpham_cat(i))/.25d0 dbetam_cat(i) = (betam_cat(i+1)-betam_cat(i))/.25d0 dalphah_cat(i) = (alphah_cat(i+1)-alphah_cat(i))/.25d0 dbetah_cat(i) = (betah_cat(i+1)-betah_cat(i))/.25d0 dalpham_car(i) = (alpham_car(i+1)-alpham_car(i))/.25d0 dbetam_car(i) = (betam_car(i+1)-betam_car(i))/.25d0 dalphah_car(i) = (alphah_car(i+1)-alphah_car(i))/.25d0 dbetah_car(i) = (betah_car(i+1)-betah_car(i))/.25d0 dalpham_ar(i) = (alpham_ar(i+1)-alpham_ar(i))/.25d0 dbetam_ar(i) = (betam_ar(i+1)-betam_ar(i))/.25d0 dalpham_kdr(i) = (alpham_kdr(i+1)-alpham_kdr(i))/.25d0 dbetam_kdr(i) = (betam_kdr(i+1)-betam_kdr(i))/.25d0 dalpham_km(i) = (alpham_km(i+1)-alpham_km(i))/.25d0 dbetam_km(i) = (betam_km(i+1)-betam_km(i))/.25d0 dalpham_ka(i) = (alpham_ka(i+1)-alpham_ka(i))/.25d0 dbetam_ka(i) = (betam_ka(i+1)-betam_ka(i))/.25d0 dalphah_ka(i) = (alphah_ka(i+1)-alphah_ka(i))/.25d0 dbetah_ka(i) = (betah_ka(i+1)-betah_ka(i))/.25d0 dalpham_kd(i) = (alpham_kd(i+1)-alpham_kd(i))/.25d0 dbetam_kd(i) = (betam_kd(i+1)-betam_kd(i))/.25d0 dalphah_kd(i) = (alphah_kd(i+1)-alphah_kd(i))/.25d0 dbetah_kd(i) = (betah_kd(i+1)-betah_kd(i))/.25d0 dalpham_kc(i) = (alpham_kc(i+1)-alpham_kc(i))/.25d0 dbetam_kc(i) = (betam_kc(i+1)-betam_kc(i))/.25d0 2 CONTINUE END SUBROUTINE PURKINJE_MAJ (GL,GAM, X gNaF, gNaP, gCaP, gCaT, gCaR, gar, gKDR, X gKM, gKA, gKD, gKC, gKAHP, X CAFOR,JACOB,C,BETCHI,NEIGH,NNUM,thisno) c Conductances: see main program. c Note VAR = equil. potential for anomalous rectifier. c 1 soma cylinder (level 1), 24 smooth dendritic compartments, #2 - 25. c compartments 2 & 3 are dendritic shaft (level 2), 4 - 25 rest of smooth dendrites (level 3. c There are 44 "canonical treelets" for the spiny dendrites; 2 treelets attach to c each of the level 3 smooth dendritic compartments (22 of them). c A spiny treelet has 12 compartments: 4 along the main root, then 4 in each of 2 symmetrical c branches. The spiny dendrites are compartments 26 - 553, level 4. c Axon has 6 5-micron compartments, #554 - 559, level 0. c Drop "glc"-like terms, just using "gl"-like c CAFOR corresponds to "phi" in Traub et al., 1994 c Consistent set of units: nF, mV, ms, nA, microS REAL*8 C(559),GL(559),GAM(0:559,0:559) REAL*8 gnaf(559), gnap(559), gcap(559), gcat(559), gcar(559) REAL*8 gar(559), gKDR(559), gKM(559), gKA(559), gKD(559), X gKC(559), gKAHP(559) REAL*8 JACOB(559,559),RI_SD,RI_AXON,RM_SD,RM_AXON,CDENS INTEGER LEVEL(559), thisno REAL*8 GNAF_DENS(0:4), GNAP_DENS(0:4) REAL*8 GCAP_DENS(0:4), GCAT_DENS(0:4), GCAR_DENS(0:4) REAL*8 GAR_DENS(0:4) REAL*8 GKDR_DENS(0:4), GKM_DENS(0:4), GKA_DENS(0:4) REAL*8 GKD_DENS(0:4), GKC_DENS(0:4), GKAHP_DENS(0:4) REAL*8 RES, RINPUT, z1, z2, z, somaar REAL*8 RSOMA, PI, BETCHI(559), CAFOR(559) REAL*8 RAD(559), LEN(559), GAM1, GAM2, ELEN(559) REAL*8 RIN, D(559), AREA(559), RI INTEGER NEIGH(559,6), NNUM(559) C FOR ESTABLISHING TOPOLOGY OF COMPARTMENTS RI_SD = 115.d0 ! Roth & Hausser c RM_SD = 125000.d0 ! Roth & Hausser c RM_SD = 100000.d0 ! close to Roth & Hausser RM_SD = 50000.d0 ! close to Miyasho et al. RI_AXON = 100.d0 c RM_AXON = 125000.d0 ! NOTE same as for SD RM_AXON = 2000.d0 CDENS = 0.8d0 ! Roth & Hausser PI = 3.14159d0 c See T. Miyasho et al., Brain Research 2001, for initial densities, but c there will be changes. e.g. Ca spikes have voltage-dependent fast-repol. c so I will make dendritic gKDR larger and gKC smaller. c ALSO, since there is now axon with voltage-shifted gNaF activation, I will c try much smaller gNaF somatic density (Miyasho et al. have 10,000 ohm-cm-sqd) c gNaF gnaf_dens(0) = 3500.d0 gnaf_dens(1) = 5000.d0 c gnaf_dens(1) = 7000.d0 gnaf_dens(2) = 10.d0 gnaf_dens(3) = 0.d0 gnaf_dens(4) = 0.d0 c gNaP gnap_dens(0) = 0.1d0 gnap_dens(1) = 5.0d0 gnap_dens(2) = 1.0d0 gnap_dens(3) = 0.0d0 gnap_dens(4) = 0.d0 c gCaP gcaP_dens(0) = 0.0d0 gcaP_dens(1) = 0.0d0 gcaP_dens(2) = 0.0d0 gcaP_dens(3) = 5.0d0 gcaP_dens(4) = 5.0d0 c gCaT gcaT_dens(0) = 0.0d0 gcaT_dens(1) = 0.0d0 gcaT_dens(2) = 0.5d0 gcaT_dens(3) = 1.5d0 gcaT_dens(4) = 1.5d0 c gCaR gcaR_dens(0) = 0.0d0 gcaR_dens(1) = 0.0d0 gcaR_dens(2) = 0.0d0 gcaR_dens(3) = 8.0d0 gcaR_dens(4) = 8.0d0 c gar - Miyasho only have Ih at soma, but many princ cells have dendritic Ih gar_dens(0) = 0.0d0 gar_dens(1) = 0.005d0 gar_dens(2) = 0.005d0 gar_dens(3) = 0.005d0 gar_dens(4) = 0.005d0 c gKDR c gKDR_dens(0) = 3500.0d0 gKDR_dens(0) = 1000.0d0 c gKDR_dens(1) = 7000.0d0 gKDR_dens(1) = 1000.0d0 gKDR_dens(2) = 0.5d0 gKDR_dens(3) = 0.5d0 gKDR_dens(4) = 0.5d0 c gKM gKM_dens(0) = 1.00d0 gKM_dens(1) = 1.00d0 gKM_dens(2) = 1.00d0 gKM_dens(3) = 0.04d0 gKM_dens(4) = 0.04d0 c gKA gKA_dens(0) = 1.0d0 gKA_dens(1) = 15.0d0 gKA_dens(2) = 80.0d0 gKA_dens(3) = 80.0d0 gKA_dens(4) = 80.0d0 c gKD gKD_dens(0) = 0.0d0 gKD_dens(1) = 0.0d0 gKD_dens(2) = 80.0d0 gKD_dens(3) = 80.0d0 c gKD_dens(3) = 200.0d0 gKD_dens(4) = 80.0d0 c gKD_dens(4) = 200.0d0 c gKC gKC_dens(0) = 0.0d0 gKC_dens(1) = 0.0d0 gKC_dens(2) = 25.0d0 gKC_dens(3) = 25.0d0 gKC_dens(4) = 25.0d0 c gKAHP gkahp_dens(0) = 0.d0 gkahp_dens(1) = 0.d0 gkahp_dens(2) = 0.d0 gkahp_dens(3) = 1.60d0 gkahp_dens(4) = 1.60d0 if (thisno.eq.0) then WRITE (6,9988) 9988 FORMAT(2X,'I',4X,'NADENS',' CADENS(P)',' KDRDEN',' KAHPDE', X ' KCDENS',' KADENS') DO 9989, I = 0, 4 WRITE (6,9990) I, gnaf_dens(i), gcaR_dens(i), gkdr_dens(i), X gkahp_dens(i), gkc_dens(i), gka_dens(i) 9990 FORMAT(2X,I2,2X,F7.2,1X,F6.2,1X,F7.2,1X,F6.2,1X,F6.2,1X,F6.2) 9989 CONTINUE endif level(1) = 1 level(2) = 2 level(3) = 2 do i = 4, 25 level(i) = 3 end do do i = 26, 553 level(i) = 4 end do do i = 554, 559 level(i) = 0 end do c connectivity of axon nnum(554) = 2 nnum(555) = 2 nnum(556) = 2 nnum(557) = 2 nnum(558) = 2 nnum(559) = 1 neigh(554,1) = 1 neigh(554,2) = 555 neigh(555,1) = 554 neigh(555,2) = 556 neigh(556,1) = 555 neigh(556,2) = 557 neigh(557,1) = 556 neigh(557,2) = 558 neigh(558,1) = 557 neigh(558,2) = 559 neigh(559,1) = 558 c connectivity of SD part nnum(1) = 2 ! SOMA neigh(1,1) = 554 neigh(1,2) = 2 c Now proximal smooth dendrite: no spiny treelets attached nnum(2) = 2 neigh(2,1) = 1 neigh(2,2) = 3 nnum(3) = 3 neigh(3,1) = 2 neigh(3,2) = 4 neigh(3,3) = 5 c Now distal smooth dendrite (level 3): 2 spiny treelets to each nnum(4) = 6 neigh(4,1) = 3 neigh(4,2) = 5 neigh(4,3) = 12 neigh(4,4) = 18 neigh(4,5) = 26 ! base of spiny treelet neigh(4,6) = 38 ! base of spiny treelet nnum(5) = 5 neigh(5,1) = 3 neigh(5,2) = 4 neigh(5,3) = 6 neigh(5,4) = 50 ! base of spiny treelet neigh(5,5) = 62 ! base of spiny treelet nnum(6) = 4 neigh(6,1) = 5 neigh(6,2) = 7 neigh(6,3) = 74 neigh(6,4) = 86 nnum(7) = 4 neigh(7,1) = 6 neigh(7,2) = 8 neigh(7,3) = 98 neigh(7,4) = 110 nnum(8) = 4 neigh(8,1) = 7 neigh(8,2) = 9 neigh(8,3) = 122 neigh(8,4) = 134 nnum(9) = 4 neigh(9,1) = 8 neigh(9,2) = 10 neigh(9,3) = 146 neigh(9,4) = 158 nnum(10) = 4 neigh(10,1) = 9 neigh(10,2) = 11 neigh(10,3) = 170 neigh(10,4) = 182 nnum(11) = 3 neigh(11,1) = 10 neigh(11,2) = 194 neigh(11,3) = 206 nnum(12) = 5 neigh(12,1) = 4 neigh(12,2) = 18 neigh(12,3) = 13 neigh(12,4) = 218 neigh(12,5) = 230 nnum(13) = 4 neigh(13,1) = 12 neigh(13,2) = 14 neigh(13,3) = 242 neigh(13,4) = 254 nnum(14) = 4 neigh(14,1) = 13 neigh(14,2) = 15 neigh(14,3) = 266 neigh(14,4) = 278 nnum(15) = 4 neigh(15,1) = 14 neigh(15,2) = 16 neigh(15,3) = 290 neigh(15,4) = 302 nnum(16) = 4 neigh(16,1) = 15 neigh(16,2) = 17 neigh(16,3) = 314 neigh(16,4) = 326 nnum(17) = 3 neigh(17,1) = 16 neigh(17,2) = 338 neigh(17,3) = 350 nnum(18) = 5 neigh(18,1) = 4 neigh(18,2) = 12 neigh(18,3) = 19 neigh(18,4) = 362 neigh(18,5) = 374 nnum(19) = 4 neigh(19,1) = 18 neigh(19,2) = 20 neigh(19,3) = 386 neigh(19,4) = 398 nnum(20) = 4 neigh(20,1) = 19 neigh(20,2) = 21 neigh(20,3) = 410 neigh(20,4) = 422 nnum(21) = 4 neigh(21,1) = 20 neigh(21,2) = 22 neigh(21,3) = 434 neigh(21,4) = 446 nnum(22) = 4 neigh(22,1) = 21 neigh(22,2) = 23 neigh(22,3) = 458 neigh(22,4) = 470 nnum(23) = 4 neigh(23,1) = 22 neigh(23,2) = 24 neigh(23,3) = 482 neigh(23,4) = 494 nnum(24) = 4 neigh(24,1) = 23 neigh(24,2) = 25 neigh(24,3) = 506 neigh(24,4) = 518 nnum(25) = 3 neigh(25,1) = 24 neigh(25,2) = 530 neigh(25,3) = 542 c Attachments of bases of treelets: one side to a smooth compartment, the other to next more distal part of treelet do i = 26, 530, 24 nnum(i) = 2 neigh(i,1) = (i - 26)/24 + 4 neigh(i,2) = i + 1 end do do i = 38, 542, 24 nnum(i) = 2 neigh(i,1) = (i - 38)/24 + 4 neigh(i,2) = i + 1 end do c Now connect up the rest of the treelets do i = 27, 543, 12 nnum(i) = 2 neigh(i,1) = i-1 neigh(i,2) = i+1 end do do i = 28, 544, 12 nnum(i) = 2 neigh(i,1) = i-1 neigh(i,2) = i+1 end do do i = 29, 545, 12 nnum(i) = 3 neigh(i,1) = i-1 neigh(i,2) = i+1 neigh(i,3) = i+5 end do do i = 30, 546, 12 nnum(i) = 3 neigh(i,1) = i-1 neigh(i,2) = i+1 neigh(i,3) = i+4 end do do i = 31, 547, 12 nnum(i) = 2 neigh(i,1) = i-1 neigh(i,2) = i+1 end do do i = 32, 548, 12 nnum(i) = 2 neigh(i,1) = i-1 neigh(i,2) = i+1 end do do i = 33, 549, 12 nnum(i) = 1 neigh(i,1) = i-1 end do do i = 34, 550, 12 nnum(i) = 3 neigh(i,1) = i-5 neigh(i,2) = i-4 neigh(i,3) = i+1 end do do i = 35, 551, 12 nnum(i) = 2 neigh(i,1) = i-1 neigh(i,2) = i+1 end do do i = 36, 552, 12 nnum(i) = 2 neigh(i,1) = i-1 neigh(i,2) = i+1 end do do i = 37, 553, 12 nnum(i) = 1 neigh(i,1) = i-1 end do if (thisno.eq.0) then DO 332, I = 1, 559 WRITE(6,3330) I, NEIGH(I,1),NEIGH(I,2),NEIGH(I,3),NEIGH(I,4), X NEIGH(I,5),NEIGH(I,6) 3330 FORMAT(2X,I5,I5,I5,I5,I5,I5,I5) 332 CONTINUE DO 858, I = 1,559 DO 858, J = 1, NNUM(I) K = NEIGH(I,J) IT = 0 DO 859, L = 1, NNUM(K) IF (NEIGH(K,L).EQ.I) IT = 1 859 CONTINUE IF (IT.EQ.0) THEN WRITE(6,8591) I, K 8591 FORMAT(' ASYMMETRY IN NEIGH MATRIX ',I4,I4) ENDIF 858 CONTINUE endif c length and radius of axonal compartments do i = 554, 559 c len(i) = 5.d0 len(i) = 10.d0 end do rad(554) = 0.750d0 rad(555) = 0.700d0 rad(556) = 0.650d0 rad(557) = 0.600d0 rad(558) = 0.550d0 rad(559) = 0.5d0 c length and radius of SD compartments len(1) = 29.d0 rad(1) = 9.d0 ! SOMA c Smooth dendrites do i = 2, 25 len(i) = 15.d0 end do c Possibly lengthen dendritic shaft, to isolate (relatively) rest of dendrites. len(2) = 30.d0 len(3) = 30.d0 rad(2) = 2.25d0 ! proximal shaft rad(3) = 2.25d0 ! proximal shaft rad(2) = 1.80d0 ! proximal shaft ! What happens if this is narrower? rad(3) = 1.80d0 ! proximal shaft do i = 4, 11 rad(i) = 1.8d0 ! a bit smaller end do do i = 12, 25 rad(i) = 1.42d0 end do c Spiny dendrites do i = 26, 553 len(i) = 25.d0 end do do j = 26, 29 do i = 0, 516, 12 rad(i + j) = 0.75d0 end do end do do j = 30, 37 do i = 0, 516, 12 rad(i + j) = 0.60d0 end do end do if (thisno.eq.0) then WRITE(6,919) 919 FORMAT('COMPART.',' LEVEL ',' RADIUS ',' LENGTH(MU)') DO 920, I = 1, 559 920 WRITE(6,921) I, LEVEL(I), RAD(I), LEN(I) 921 FORMAT(I3,5X,I2,3X,F6.2,1X,F6.1,2X,F4.3) endif DO 120, I = 1, 559 AREA(I) = 2.d0 * PI * RAD(I) * LEN(I) K = LEVEL(I) if (k .eq. 4) area(i) = 3.d0 * area(i) ! spine correction C(I) = CDENS * AREA(I) * (1.D-8) if (k.ge.1) then GL(I) = (1.D-2) * AREA(I) / RM_SD else GL(I) = (1.D-2) * AREA(I) / RM_AXON endif GNAF(I) = GNAF_DENS(K) * AREA(I) * (1.D-5) GNAP(I) = GNAP_DENS(K) * AREA(I) * (1.D-5) GCAP(I) = GCAP_DENS(K) * AREA(I) * (1.D-5) GCAT(I) = GCAT_DENS(K) * AREA(I) * (1.D-5) GCAR(I) = GCAR_DENS(K) * AREA(I) * (1.D-5) GKDR(I) = GKDR_DENS(K) * AREA(I) * (1.D-5) GKA(I) = GKA_DENS(K) * AREA(I) * (1.D-5) GKD(I) = GKD_DENS(K) * AREA(I) * (1.D-5) GKC(I) = GKC_DENS(K) * AREA(I) * (1.D-5) GKAHP(I) = GKAHP_DENS(K) * AREA(I) * (1.D-5) GKM(I) = GKM_DENS(K) * AREA(I) * (1.D-5) GAR(I) = GAR_DENS(K) * AREA(I) * (1.D-5) c above conductances should be in microS 120 continue Z = 0.d0 DO I = 2, 25 Z = Z + AREA(I) 1019 END DO z1 = 0.d0 do i = 26, 553 z1 = z1 + area(i) end do if (thisno.eq.0) then WRITE(6,1020) area(1),Z, z1 1020 FORMAT(2X,' SOMA AREA ',F7.0, X 'smooth dend ',f7.0,' spiny dends c spines ',f7.0) endif DO 140, I = 1, 559 DO 140, K = 1, NNUM(I) J = NEIGH(I,K) if (level(i).eq.0) then RI = RI_AXON else RI = RI_SD endif GAM1 =100.d0 * PI * RAD(I) * RAD(I) / ( RI * LEN(I) ) if (level(j).eq.0) then RI = RI_AXON else RI = RI_SD endif GAM2 =100.d0 * PI * RAD(J) * RAD(J) / ( RI * LEN(J) ) GAM(I,J) = 2.d0/( (1.d0/GAM1) + (1.d0/GAM2) ) 140 CONTINUE c gam computed in microS DO 299, I = 1, 559 c299 BETCHI(I) = .20d0 ! NOTE HOW FAST 299 BETCHI(I) = .80d0 ! NOTE HOW FAST BETCHI( 1) = .05d0 DO 300, I = 1, 559 c300 D(I) = 1.D-4 c300 D(I) = 3.D-2 300 D(I) = 6.D-2 DO 301, I = 1, 559 IF (LEVEL(I).EQ.1) D(I) = 3.D-2 301 CONTINUE DO 160, I = 1, 559 160 CAFOR(I) = 5200.d0 / (AREA(I) * D(I)) C NOTE CORRECTION do 200, i = 1, 559 200 C(I) = 1000.d0 * C(I) C TO GO FROM MICROF TO NF. DO 909, I = 1, 559 JACOB(I,I) = - GL(I) DO 909, J = 1, NNUM(I) K = NEIGH(I,J) IF (I.EQ.K) THEN WRITE(6,510) I 510 FORMAT(' UNEXPECTED SYMMETRY IN NEIGH ',I4) ENDIF JACOB(I,K) = GAM(I,K) JACOB(I,I) = JACOB(I,I) - GAM(I,K) 909 CONTINUE c 15 Jan. 2001: make correction for c(i) do i = 1, 559 do j = 1, 559 jacob(i,j) = jacob(i,j) / c(i) end do end do if (thisno.eq.0) then DO 500, I = 1, 559 WRITE (6,501) I,C(I) 501 FORMAT(1X,I3,' C(I) = ',F8.5) 500 CONTINUE endif END SUBROUTINE PURKINJE_INT_NET (V,CHI,CINV, X mnaf,hnaf,mnap,mcap,mcat,hcat,mcar,hcar,mar, x mkdr,mkm,mka,hka,mkd,hkd,mkc,mkahp, x dt,neigh,nnum,jacob,mg, x vL,vk,vna,var,vca,vgaba_a,betchi,gam,gL, x gnaf,gnap,gcaP,gcaT,gCaR,gar, x gKDR,gKM,gKA,gKD,gKC,gKAHP, x gampa,gnmda,ggaba_a, x O,time, X alpham_naf, betam_naf, dalpham_naf, dbetam_naf, X alphah_naf, betah_naf, dalphah_naf, dbetah_naf, X alpham_nap, betam_nap, dalpham_nap, dbetam_nap, X alpham_cap, betam_cap, dalpham_cap, dbetam_cap, X alpham_cat, betam_cat, dalpham_cat, dbetam_cat, X alphah_cat, betah_cat, dalphah_cat, dbetah_cat, X alpham_car, betam_car, dalpham_car, dbetam_car, X alphah_car, betah_car, dalphah_car, dbetah_car, X alpham_ar , betam_ar , dalpham_ar , dbetam_ar, X alpham_kdr, betam_kdr, dalpham_kdr, dbetam_kdr, X alpham_km , betam_km , dalpham_km , dbetam_km , X alpham_ka , betam_ka , dalpham_ka , dbetam_ka , X alphah_ka , betah_ka , dalphah_ka , dbetah_ka , X alpham_kd , betam_kd , dalpham_kd , dbetam_kd , X alphah_kd , betah_kd , dalphah_kd , dbetah_kd , X alpham_kc , betam_kc , dalpham_kc , dbetam_kc , X cafor,curr, ! below are specifically network variables: X np, initialize, na, nb, thisno, ! np = num_purk, but use shorter name here X gapcon, totaxgj, gjtable) integer np, na, nb, thino, totaxgj, initialize, thisno real*8 gapcon integer gjtable(totaxgj,4) c CINV is 1/C, i.e. inverse capacitance real*8 v(559,np), chi(559,np), cinv(559) real*8 mnaf(559,np),hnaf(559,np),mnap(559,np),mkdr(559,np), x mka(559,np),hka(559,np),mkm(559,np),mkc(559,np),mkahp(559,np), x mkd(559,np),hkd(559,np),mcap(559,np),mcar(559,np),hcar(559,np), x mcat(559,np),hcat(559,np),mar(559,np),jacob(559,559),betchi(559), x gam(0:559,0:559),gL(559), x gnaf(559),gnap(559),gkdr(559), x gka(559),gkd(559), x gkm(559),gkc(559),gkahp(559), x gcat(559),gar(559), x gcap(559),gcar(559), x gampa(559,np),gnmda(559,np),ggaba_a(559,np),cafor(559) real*8 X alpham_naf(0:640),betam_naf(0:640),dalpham_naf(0:640), X dbetam_naf(0:640), X alphah_naf(0:640),betah_naf(0:640),dalphah_naf(0:640), X dbetah_naf(0:640), X alpham_nap(0:640),betam_nap(0:640),dalpham_nap(0:640), X dbetam_nap(0:640), X alpham_cap(0:640),betam_cap(0:640),dalpham_cap(0:640), X dbetam_cap(0:640), X alpham_cat(0:640),betam_cat(0:640),dalpham_cat(0:640), X dbetam_cat(0:640), X alphah_cat(0:640),betah_cat(0:640),dalphah_cat(0:640), X dbetah_cat(0:640), X alpham_car(0:640),betam_car(0:640),dalpham_car(0:640), X dbetam_car(0:640), X alphah_car(0:640),betah_car(0:640),dalphah_car(0:640), X dbetah_car(0:640), X alpham_ar(0:640), betam_ar(0:640), dalpham_ar(0:640), X dbetam_ar(0:640), X alpham_kdr(0:640),betam_kdr(0:640),dalpham_kdr(0:640), X dbetam_kdr(0:640), X alpham_km(0:640), betam_km(0:640), dalpham_km(0:640), X dbetam_km(0:640), X alpham_ka(0:640), betam_ka(0:640),dalpham_ka(0:640) , X dbetam_ka(0:640), X alphah_ka(0:640), betah_ka(0:640), dalphah_ka(0:640), X dbetah_ka(0:640), X alpham_kd(0:640), betam_kd(0:640),dalpham_kd(0:640) , X dbetam_kd(0:640), X alphah_kd(0:640), betah_kd(0:640), dalphah_kd(0:640), X dbetah_kd(0:640), X alpham_kc(0:640), betam_kc(0:640), dalpham_kc(0:640), X dbetam_kc(0:640) real*8 fastna_shift c the f's are the functions giving 1st derivatives for evolution of c the differential equations for the voltages (v), calcium (chi), and c other state variables. real*8 fv(559), fchi(559), x fmnaf(559),fhnaf(559),fmkdr(559), x fmka(559),fhka(559),fmkd(559), x fhkd(559),fmnap(559), x fmkm(559),fmkc(559),fmkahp(559), x fmcat(559),fhcat(559),fmar(559), x fmcap(559),fmcar(559),fhcar(559) c below are for calculating the partial derivatives real*8 dfv_dv(559,559), dfv_dchi(559), dfv_dmnaf(559), x dfv_dhnaf(559),dfv_dmnap(559), x dfv_dmkdr(559),dfv_dmka(559),dfv_dhka(559), x dfv_dmkd(559),dfv_dhkd(559),dfv_dmkm(559),dfv_dmkc(559), xdfv_dmkahp(559),dfv_dmcat(559),dfv_dhcat(559),dfv_dmcap(559), x dfv_dmar(559),dfv_dmcar(559),dfv_dhcar(559) real*8 dfchi_dv(559), dfchi_dchi(559), x dfmnaf_dmnaf(559), dfmnaf_dv(559),dfhnaf_dhnaf(559), x dfhnaf_dv(559), x dfmnap_dmnap(559), dfmnap_dv(559), x dfmkdr_dmkdr(559),dfmkdr_dv(559), x dfmka_dmka(559),dfmka_dv(559),dfhka_dhka(559),dfhka_dv(559), x dfmkd_dmkd(559),dfmkd_dv(559),dfhkd_dhkd(559),dfhkd_dv(559), x dfmkm_dmkm(559),dfmkm_dv(559),dfmkc_dmkc(559),dfmkc_dv(559), x dfmcap_dmcap(559),dfmcap_dv(559), x dfmcat_dmcat(559),dfmcat_dv(559),dfhcat_dhcat(559), x dfhcat_dv(559), x dfmcar_dmcar(559),dfmcar_dv(559),dfhcar_dhcar(559), x dfhcar_dv(559), x dfmar_dmar(559),dfmar_dv(559),dfmkahp_dchi(559), x dfmkahp_dmkahp(559), dt2, outrcd(20), time REAL*8 dt,mg,vL,vk,vna,var,vca,vgaba_a,curr(559,np),Z,Z1,Z2 INTEGER O, K0, K1, K2, NEIGH(559,6), NNUM(559), L, L1 REAL*8 OPEN(559),gamma(559),gamma_prime(559) c gamma is function of chi used in calculating KC conductance REAL*8 alpham_ahp(559), alpham_ahp_prime(559) REAL*8 gna_tot(559),gk_tot(559),gca_tot(559),gar_tot(559) DO L = na, nb ! Integrate the cells on this node DO 301, I = 1, 559 FV(I) = -GL(I) * (V(I,L) - VL) * cinv(i) DO 302, J = 1, NNUM(I) K = NEIGH(I,J) 302 FV(I) = FV(I) + GAM(I,K) * (V(K,L) - V(I,L)) * cinv(i) 301 CONTINUE c CALL FNMDA (V, OPEN, MG) OPEN = 0.d0 DO 421, I = 1, 559 421 FV(I) = FV(I) + ( CURR(I,L) X - gampa(I,L) * V(I,L) c X - (gampa(I,L) + open(i) * gnmda(I,L))*V(I,L) X - ggaba_a(I,L)*(V(I,L)-Vgaba_a) ) * cinv(i) c above assumes equil. potential for AMPA & NMDA = 0 mV ! gj code here, right after fv(i) = ...curr(i)... do m = 1, totaxgj if (gjtable(m,1).eq.L) then L1 = gjtable(m,3) igap1 = gjtable(m,2) igap2 = gjtable(m,4) fv(igap1) = fv(igap1) + gapcon * & (v(igap2,L1) - v(igap1,L)) * cinv(igap1) else if (gjtable(m,3).eq.L) then L1 = gjtable(m,1) igap1 = gjtable(m,4) igap2 = gjtable(m,2) fv(igap1) = fv(igap1) + gapcon * & (v(igap2,L1) - v(igap1,L)) * cinv(igap1) endif end do ! do m do i = 1, 559 gamma(i) = dmin1 (1.d0, .004d0 * chi(i,L)) if (chi(i,L).le.250.d0) then gamma_prime(i) = .004d0 else gamma_prime(i) = 0.d0 endif end do DO 88, I = 1, 559 gna_tot(i) = gnaf(i) * (mnaf(i,L)**3) * hnaf(i,L) + x gnap(i) * (mnap(i,L)**3) gk_tot(i) = gkdr(i) * (mkdr(i,L)**4) + x gka(i) * (mka(i,L)**4) * hka(i,L) + x gkd(i) * (mkd(i,L)**4) * hkd(i,L) + x gkm(i) * mkm(i,L) + x gkc(i) * mkc(i,L) * gamma(i) + x gkahp(i)* mkahp(i,L) gca_tot(i) = gcat(i) * mcat(i,L) * hcat(i,L) + ! NOTE CHANGE TO 1st power m x gcaP(i) * mcaP(i,L) + x gcaR(i) * mcaR(i,L) * hcaR(i,L) gar_tot(i) = gar(i) * mar(i,L) 88 FV(I) = FV(I) - ( gna_tot(i) * (v(i,L) - vna) X + gk_tot(i) * (v(i,L) - vK) X + gca_tot(i) * (v(i,L) - vCa) X + gar_tot(i) * (v(i,L) - var) ) * cinv(i) do i = 1, 559 do j = 1, 559 if (i.ne.j) then dfv_dv(i,j) = jacob(i,j) else dfv_dv(i,j) = jacob(i,i) - cinv(i) * X (gna_tot(i) + gk_tot(i) + gca_tot(i) + gar_tot(i) X + ggaba_a(i,L) + gampa(i,L) X + open(i) * gnmda(I,L) ) endif end do end do do i = 1, 559 dfv_dchi(i) = - cinv(i) * gkc(i) * mkc(i,L) * x gamma_prime(i) * (v(i,L)-vK) dfv_dmnaf(i) = -3.d0 * cinv(i) * (mnaf(i,L)**2) * X (gnaf(i) * hnaf(i,L) + gnap(i)) * (v(i,L) - vna) dfv_dhnaf(i) = - cinv(i) * gnaf(i) * (mnaf(i,L)**3) * X (v(i,L) - vna) dfv_dmnap(i) = -3.d0 * cinv(i) * (mnap(i,L)**2) * X (gnap(i) + gnap(i)) * (v(i,L) - vna) dfv_dmkdr(i) = -4.d0 * cinv(i) * gkdr(i) * (mkdr(i,L)**3) X * (v(i,L) - vK) dfv_dmka(i) = -4.d0 * cinv(i) * gka(i) * (mka(i,L)**3) * X hka(i,L) * (v(i,L) - vK) dfv_dhka(i) = - cinv(i) * gka(i) * (mka(i,L)**4) * X (v(i,L) - vK) dfv_dmkd(i) = -4.d0 * cinv(i) * gkd(i) * (mkd(i,L)**3) * X hkd(i,L) * (v(i,L) - vK) dfv_dhkd(i) = - cinv(i) * gkd(i) * (mkd(i,L)**4) * X (v(i,L) - vK) dfv_dmkm(i) = - cinv(i) * gkm(i) * (v(i,L) - vK) dfv_dmkc(i) = - cinv(i) * gkc(i) * gamma(i) * (v(i,L)-vK) dfv_dmkahp(i)= - cinv(i) * gkahp(i) * (v(i,L) - vK) dfv_dmcat(i) = -1.d0 * cinv(i) * gcat(i) * 1.d0 * X hcat(i,L) * (v(i,L) - vCa) dfv_dhcat(i) = - cinv(i) * gcat(i) * mcat(i,L) * X (v(i,L) - vCa) dfv_dmcar(i) = -1.d0 * cinv(i) * gcar(i) * 1.d0 * X hcar(i,L) * (v(i,L) - vCa) dfv_dhcar(i) = - cinv(i) * gcar(i) * mcar(i,L) * X (v(i,L) - vCa) dfv_dmcap(i) = -1.d0 * cinv(i) * gcap(i) * 1.d0 * X (v(i,L) - vCa) dfv_dmar(i) = - cinv(i) * gar(i) * (v(i,L) - var) end do do i = 1, 559 fchi(i) = - cafor(i) * gca_tot(i) * (v(i,L) - vca) x - betchi(i) * chi(i,L) dfchi_dv(i) = - cafor(i) * gca_tot(i) dfchi_dchi(i) = - betchi(i) end do do i = 1, 559 c alpham_ahp(i) = dmin1(0.2d-4 * chi(i),0.01d0) ! original from baskint alpham_ahp(i) = dmin1(6.0d-4 * chi(i,L),0.30d0) ! speed this up if (chi(i,L).le.500.d0) then alpham_ahp_prime(i) = 6.0d-4 else alpham_ahp_prime(i) = 0.d0 endif end do do i = 1, 559 fmkahp(i) = alpham_ahp(i) * (1.d0 - mkahp(i,L)) c x -.001d0 * mkahp(i,L) x -.060d0 * mkahp(i,L) ! speed this up significantly dfmkahp_dmkahp(i) = - alpham_ahp(i) - .060d0 dfmkahp_dchi(i) = alpham_ahp_prime(i) * x (1.d0 - mkahp(i,L)) end do do i = 1, 559 K1 = IDNINT ( 4.d0 * (V(I,L) + 120.d0) ) ! For SD IF (K1.GT.640) K1 = 640 IF (K1.LT. 0) K1 = 0 c fastNa_shift = 2.0d0 ! For axon fastNa_shift = 6.0d0 ! For axon c fastNa_shift = 0.0d0 ! For axon K0 = IDNINT ( 4.d0 * (V(I,L)+ fastNa_shift+ 120.d0) ) IF (K0.GT.640) K0 = 640 IF (K0.LT. 0) K0 = 0 if (i.lt.554) then k2 = k1 else k2 = k0 endif fmnaf(i) = alpham_naf(k2) * (1.d0 - mnaf(i,L)) - X betam_naf(k2) * mnaf(i,L) fhnaf(i) = alphah_naf(k1) * (1.d0 - hnaf(i,L)) - X betah_naf(k1) * hnaf(i,L) fmnap(i) = alpham_nap(k1) * (1.d0 - mnap(i,L)) - X betam_nap(k1) * mnap(i,L) fmkdr(i) = alpham_kdr(k1) * (1.d0 - mkdr(i,L)) - X betam_kdr(k1) * mkdr(i,L) fmka(i) = alpham_ka (k1) * (1.d0 - mka(i,L)) - X betam_ka (k1) * mka(i,L) fhka(i) = alphah_ka (k1) * (1.d0 - hka(i,L)) - X betah_ka (k1) * hka(i,L) fmkd(i) = alpham_kd (k1) * (1.d0 - mkd(i,L)) - X betam_kd (k1) * mkd(i,L) fhkd(i) = alphah_kd (k1) * (1.d0 - hkd(i,L)) - X betah_kd (k1) * hkd(i,L) fmkm(i) = alpham_km (k1) * (1.d0 - mkm(i,L)) - X betam_km (k1) * mkm(i,L) fmkc(i) = alpham_kc (k1) * (1.d0 - mkc(i,L)) - X betam_kc (k1) * mkc(i,L) fmcat(i) = alpham_cat(k1) * (1.d0 - mcat(i,L)) - X betam_cat(k1) * mcat(i,L) fhcat(i) = alphah_cat(k1) * (1.d0 - hcat(i,L)) - X betah_cat(k1) * hcat(i,L) fmcar(i) = alpham_car(k1) * (1.d0 - mcar(i,L)) - X betam_car(k1) * mcar(i,L) fhcar(i) = alphah_car(k1) * (1.d0 - hcar(i,L)) - X betah_car(k1) * hcar(i,L) fmcap(i) = alpham_cap(k1) * (1.d0 - mcap(i,L)) - X betam_cap(k1) * mcap(i,L) fmar(i) = alpham_ar (k1) * (1.d0 - mar(i,L)) - X betam_ar (k1) * mar(i,L) dfmnaf_dv(i) = dalpham_naf(k2) * (1.d0 - mnaf(i,L)) - X dbetam_naf(k2) * mnaf(i,L) dfhnaf_dv(i) = dalphah_naf(k1) * (1.d0 - hnaf(i,L)) - X dbetah_naf(k1) * hnaf(i,L) dfmnap_dv(i) = dalpham_nap(k1) * (1.d0 - mnap(i,L)) - X dbetam_nap(k1) * mnap(i,L) dfmkdr_dv(i) = dalpham_kdr(k1) * (1.d0 - mkdr(i,L)) - X dbetam_kdr(k1) * mkdr(i,L) dfmka_dv(i) = dalpham_ka(k1) * (1.d0 - mka(i,L)) - X dbetam_ka(k1) * mka(i,L) dfhka_dv(i) = dalphah_ka(k1) * (1.d0 - hka(i,L)) - X dbetah_ka(k1) * hka(i,L) dfmkd_dv(i) = dalpham_kd(k1) * (1.d0 - mkd(i,L)) - X dbetam_kd(k1) * mkd(i,L) dfhkd_dv(i) = dalphah_kd(k1) * (1.d0 - hkd(i,L)) - X dbetah_kd(k1) * hkd(i,L) dfmkm_dv(i) = dalpham_km(k1) * (1.d0 - mkm(i,L)) - X dbetam_km(k1) * mkm(i,L) dfmkc_dv(i) = dalpham_kc(k1) * (1.d0 - mkc(i,L)) - X dbetam_kc(k1) * mkc(i,L) dfmcat_dv(i) = dalpham_cat(k1) * (1.d0 - mcat(i,L)) - X dbetam_cat(k1) * mcat(i,L) dfhcat_dv(i) = dalphah_cat(k1) * (1.d0 - hcat(i,L)) - X dbetah_cat(k1) * hcat(i,L) dfmcar_dv(i) = dalpham_car(k1) * (1.d0 - mcar(i,L)) - X dbetam_car(k1) * mcar(i,L) dfhcar_dv(i) = dalphah_car(k1) * (1.d0 - hcar(i,L)) - X dbetah_car(k1) * hcar(i,L) dfmcap_dv(i) = dalpham_cap(k1) * (1.d0 - mcap(i,L)) - X dbetam_cap(k1) * mcap(i,L) dfmar_dv(i) = dalpham_ar(k1) * (1.d0 - mar(i,L)) - X dbetam_ar(k1) * mar(i,L) dfmnaf_dmnaf(i) = - alpham_naf(k2) - betam_naf(k2) dfhnaf_dhnaf(i) = - alphah_naf(k1) - betah_naf(k1) dfmnap_dmnap(i) = - alpham_nap(k1) - betam_nap(k1) dfmkdr_dmkdr(i) = - alpham_kdr(k1) - betam_kdr(k1) dfmka_dmka(i) = - alpham_ka (k1) - betam_ka (k1) dfhka_dhka(i) = - alphah_ka (k1) - betah_ka (k1) dfmkd_dmkd(i) = - alpham_kd (k1) - betam_kd (k1) dfhkd_dhkd(i) = - alphah_kd (k1) - betah_kd (k1) dfmkm_dmkm(i) = - alpham_km (k1) - betam_km (k1) dfmkc_dmkc(i) = - alpham_kc (k1) - betam_kc (k1) dfmcat_dmcat(i) = - alpham_cat(k1) - betam_cat(k1) dfhcat_dhcat(i) = - alphah_cat(k1) - betah_cat(k1) dfmcar_dmcar(i) = - alpham_car(k1) - betam_car(k1) dfhcar_dhcar(i) = - alphah_car(k1) - betah_car(k1) dfmcap_dmcap(i) = - alpham_cap(k1) - betam_cap(k1) dfmar_dmar(i) = - alpham_ar (k1) - betam_ar (k1) end do dt2 = 0.5d0 * dt * dt do i = 1, 559 v(i,L) = v(i,L) + dt * fv(i) do j = 1, 559 v(i,L) = v(i,L) + dt2 * dfv_dv(i,j) * fv(j) end do v(i,L) = v(i,L) + dt2 * ( dfv_dchi(i) * fchi(i) X + dfv_dmnaf(i) * fmnaf(i) X + dfv_dhnaf(i) * fhnaf(i) X + dfv_dmnap(i) * fmnap(i) X + dfv_dmkdr(i) * fmkdr(i) X + dfv_dmka(i) * fmka(i) X + dfv_dhka(i) * fhka(i) X + dfv_dmkd(i) * fmkd(i) X + dfv_dhkd(i) * fhkd(i) X + dfv_dmkm(i) * fmkm(i) X + dfv_dmkc(i) * fmkc(i) X + dfv_dmkahp(i)* fmkahp(i) X + dfv_dmcat(i) * fmcat(i) X + dfv_dhcat(i) * fhcat(i) X + dfv_dmcar(i) * fmcar(i) X + dfv_dhcar(i) * fhcar(i) X + dfv_dmcap(i) * fmcap(i) X + dfv_dmar(i) * fmar(i) ) chi(i,L) = chi(i,L) + dt * fchi(i) + dt2 * X (dfchi_dchi(i) * fchi(i) + dfchi_dv(i) * fv(i)) mnaf(i,L) = mnaf(i,L) + dt * fmnaf(i) + dt2 * X (dfmnaf_dmnaf(i) * fmnaf(i) + dfmnaf_dv(i)*fv(i)) hnaf(i,L) = hnaf(i,L) + dt * fhnaf(i) + dt2 * X (dfhnaf_dhnaf(i) * fhnaf(i) + dfhnaf_dv(i)*fv(i)) mnap(i,L) = mnap(i,L) + dt * fmnap(i) + dt2 * X (dfmnap_dmnap(i) * fmnap(i) + dfmnap_dv(i)*fv(i)) mkdr(i,L) = mkdr(i,L) + dt * fmkdr(i) + dt2 * X (dfmkdr_dmkdr(i) * fmkdr(i) + dfmkdr_dv(i)*fv(i)) mka(i,L) = mka(i,L) + dt * fmka(i) + dt2 * X (dfmka_dmka(i) * fmka(i) + dfmka_dv(i) * fv(i)) hka(i,L) = hka(i,L) + dt * fhka(i) + dt2 * X (dfhka_dhka(i) * fhka(i) + dfhka_dv(i) * fv(i)) mkd(i,L) = mkd(i,L) + dt * fmkd(i) + dt2 * X (dfmkd_dmkd(i) * fmkd(i) + dfmkd_dv(i) * fv(i)) hkd(i,L) = hkd(i,L) + dt * fhkd(i) + dt2 * X (dfhkd_dhkd(i) * fhkd(i) + dfhkd_dv(i) * fv(i)) mkm(i,L) = mkm(i,L) + dt * fmkm(i) + dt2 * X (dfmkm_dmkm(i) * fmkm(i) + dfmkm_dv(i) * fv(i)) mkc(i,L) = mkc(i,L) + dt * fmkc(i) + dt2 * X (dfmkc_dmkc(i) * fmkc(i) + dfmkc_dv(i) * fv(i)) mkahp(i,L) = mkahp(i,L) + dt * fmkahp(i) + dt2 * X (dfmkahp_dmkahp(i)*fmkahp(i) + dfmkahp_dchi(i)*fchi(i)) mcat(i,L) = mcat(i,L) + dt * fmcat(i) + dt2 * X (dfmcat_dmcat(i) * fmcat(i) + dfmcat_dv(i) * fv(i)) hcat(i,L) = hcat(i,L) + dt * fhcat(i) + dt2 * X (dfhcat_dhcat(i) * fhcat(i) + dfhcat_dv(i) * fv(i)) mcar(i,L) = mcar(i,L) + dt * fmcar(i) + dt2 * X (dfmcar_dmcar(i) * fmcar(i) + dfmcar_dv(i) * fv(i)) hcar(i,L) = hcar(i,L) + dt * fhcar(i) + dt2 * X (dfhcar_dhcar(i) * fhcar(i) + dfhcar_dv(i) * fv(i)) mcap(i,L) = mcap(i,L) + dt * fmcap(i) + dt2 * X (dfmcap_dmcap(i) * fmcap(i) + dfmcap_dv(i) * fv(i)) mar(i,L) = mar(i,L) + dt * fmar(i) + dt2 * X (dfmar_dmar(i) * fmar(i) + dfmar_dv(i) * fv(i)) end do END DO ! DO L c IF (MOD(O,75).EQ.0) THEN c IF ((thisno.eq.0).and.(MOD(O,150).EQ.0)) THEN IF ((thisno.eq.0).and.(MOD(O, 75).EQ.0)) THEN OUTRCD(1) = TIME OUTRCD(2) = v(1,5) outrcd(3) = v(14,5) outrcd(4) = V(17,5) outrcd(5) = v( 22,5) outrcd(6) = v(555,5) outrcd(7) = v(559,5) outrcd(8) = v(1,6) outrcd(9) = v(559,6) outrcd(10)= chi(14,5) outrcd(11)= chi(17,5) outrcd(12) = curr(1,5) outrcd(13) = curr(559,5) z = 0.d0 do L = 1, np z = z + v(558,L) end do outrcd(14) = - z / dble(np) ! "Field" outrcd(15) = gna_tot(1) * (v(1,nb)-vna) * cinv(1) outrcd(16) = gk_tot(1) * (v(1,nb)-vk) * cinv(1) outrcd(17) = gna_tot(559) * (v(559,nb)-vca)*cinv(559) outrcd(18) = gk_tot(559) * (v(559,nb)-vk)*cinv(559) outrcd(19) = v(1,7) outrcd(20) = v(1,8) OPEN(11,FILE='PURK_BIGNET21.OU') WRITE (11,FMT='(20F10.3)') (OUTRCD(I),I=1,20) C900 FORMAT (100A4) ENDIF IF ((thisno.eq.1).and.(MOD(O, 75).EQ.0)) THEN OUTRCD(1) = TIME do i = 2, 16, 2 outrcd(i) = v(1,na + (i-2)/2) outrcd(i+1) = v(558,na + (i-2)/2) end do z = 0.d0 z1 = 0.d0 do L = 1, np z = z + v(558,L) if (v(558,L).ge.-20.d0) z1 = z1 + 1.d0 end do outrcd(18) = - z / dble(np) ! "Axonal field" outrcd(19) = z1 ! number of gj sites > -20 mV z = 0.d0 do L = 1, np z = z + v( 1,L) end do outrcd(20) = - z / dble(np) ! "Somatic field" OPEN(12,FILE='PURK_BIGNET21A.OU') WRITE (12,FMT='(20F10.3)') (OUTRCD(I),I=1,20) C900 FORMAT (100A4) ENDIF END SUBROUTINE FNMDA (VSTOR,OPEN,MG) REAL*8 VSTOR(559), OPEN(559) REAL*8 A, BB1, BB2, VM, A1, A2, B1, B2, MG c modify so that potential is absolute and not relative to c "rest" A = DEXP(-2.847d0) BB1 = DEXP(-.693d0) BB2 = DEXP(-3.101d0) C TO DETERMINE VOLTAGE-DEPENDENCE OF NMDA CHANNELS DO 1, I = 1, 559 c VM = VSTOR(I) - 60. VM = VSTOR(I) A1 = DEXP(-.016d0*VM - 2.91d0) A2 = 1000.d0 * MG * DEXP (-.045d0 * VM - 6.97d0) B1 = DEXP(.009d0*VM + 1.22d0) B2 = DEXP(.017d0*VM + 0.96d0) OPEN(I) = 1.d0/(1.d0 + (A1+A2)*(A1*BB1 + A2*BB2) / X (A*A1*(B1+BB1) + A*A2*(B2+BB2)) ) C FROM JAHR & STEVENS, EQ. 4A C DO 124, J = 1, 19 C OPEN(J) = 1./(1.+.667* EXP(-0.07*(VSTOR(J)-60.)) ) C FROM CHUCK STEVENS 1 CONTINUE END