: $Id: Ican.mod,v 1.8 2000/01/05 18:30:23 billl Exp $
TITLE Slow Ca-dependent cation current
: Stolen from Jun on 5/22/96
:
:
: Ca++ dependent nonspecific cation current ICAN
: Differential equations
:
: Model of Destexhe, 1992. Based on a first order kinetic scheme
: <closed> + n cai <-> <open> (alpha,beta)
:
: Following this model, the activation fct will be half-activated at
: a concentration of Cai = (beta/alpha)^(1/n) = cac (parameter)
: The mod file is here written for the case n=2 (2 binding sites)
: ---------------------------------------------
:
: Kinetics based on: Partridge & Swandulla, TINS 11: 69-72, 1988.
:
: This current has the following properties:
: - inward current (non specific for cations Na, K, Ca, ...)
: - activated by intracellular calcium
: - NOT voltage dependent
:
: Written by Alain Destexhe, Salk Institute, Dec 7, 1992
:
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ican
USEION other2 WRITE iother2 VALENCE 1
USEION Ca READ Cai VALENCE 2
USEION ca READ cai
RANGE gbar, i, g, ratc, ratC
GLOBAL m_inf, tau_m, beta, cac, taumin, erev, x
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
erev = 10 (mV)
cai = .00005 (mM) : initial [Ca]i = 50 nM
Cai = .00005 (mM) : initial [Ca]i = 50 nM
gbar = 1e-5 (mho/cm2)
beta = 2.5 (1/ms) : backward rate constant
cac = 1e-4 (mM) : middle point of activation fct
taumin = 0.1 (ms) : minimal value of time constant
ratc = 1
ratC = 1
x = 2
}
STATE {
m
}
INITIAL {
:
: activation kinetics are assumed to be at 22 deg. C
: Q10 is assumed to be 3
:
VERBATIM
cai = _ion_cai;
Cai = _ion_Cai;
ENDVERBATIM
tadj = 3.0 ^ ((celsius-22.0)/10)
evaluate_fct(v,cai,Cai)
m = m_inf
}
ASSIGNED {
i (mA/cm2)
iother2 (mA/cm2)
g (mho/cm2)
m_inf
tau_m (ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m*m
i = g * (v - erev)
iother2 = i
}
DERIVATIVE states {
evaluate_fct(v,cai,Cai)
m' = (m_inf - m) / tau_m
}
UNITSOFF
PROCEDURE evaluate_fct(v(mV),cai(mM),Cai(mM)) { LOCAL alpha2, tcar
tcar = ratc*cai + ratC*Cai
alpha2 = beta * (tcar/cac)^x
tau_m = 1 / (alpha2 + beta) / tadj
m_inf = alpha2 / (alpha2 + beta)
if(tau_m < taumin) { tau_m = taumin } : min value of time cst
}
UNITSON