TITLE HH sodium channel
: Hodgkin - Huxley squid sodium channel
: The model used in Melnick et al. 2004 Adapt 5 and 11 mV
:
: 5/17/2017 Revised by N.T. Carnevale for the sake of conceptual clarity
: and to facilitate attributed reuse.
: In this version, the reference temperature is 23 deg C
: and the value assigned to celsius is the actual operating temperature
: in degrees celsius.
NEURON {
SUFFIX B_Na
USEION na READ ena WRITE ina
RANGE gnabar, ina
GLOBAL inf, alpha_shift, beta_shift
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
v (mV)
: celsius = 6.3 (degC)
celsius = 23 (degC) : actual operating temperature
dt (ms)
gnabar=0 (mho/cm2) <0,1e9>
ena = 53 (mV)
alpha_shift = 0 (mV)
beta_shift = 0 (mV)
}
STATE {
m h
}
ASSIGNED {
ina (mA/cm2)
inf[2]
}
LOCAL fac[2]
INITIAL {
rate(v*1(/mV))
m = inf[0]
h = inf[1]
}
BREAKPOINT {
SOLVE states
ina = gnabar*m*m*m*h*(v - ena)
}
PROCEDURE states() { : exact when v held constant
rate(v*1(/mV))
m = m + fac[0]*(inf[0] - m)
h = h + fac[1]*(inf[1] - h)
VERBATIM
return 0;
ENDVERBATIM
}
UNITSOFF
FUNCTION alp(v(mV),i) { LOCAL a,b,c,q10 :rest = -70 order m,h
v = v :convert to hh convention
: q10 = 3^((celsius - 6.3)/10)
q10 = 3^((celsius - 23)/10) : actual reference temperature
if (i==0) {
alp = q10*.182*expM1(-v + 7 - 35 + alpha_shift, 9)
}else if (i==1){
alp = q10 * 1 *(0.061*expM1(-v + 13 - 48 + alpha_shift, 3) + 0.0166)
}
}
FUNCTION bet(v,i) { LOCAL a,b,c,q10 :rest = -70 order m,h
v = v
: q10 = 3^((celsius - 6.3)/10)
q10 = 3^((celsius - 23)/10) : actual reference temperature
if (i==0) {
bet = q10*.124*expM1(v - 7 + 35 + beta_shift, 9)
}else if (i==1){
bet = q10 * 1 *.0018*expM1(v - 13 + 84 + beta_shift, 18)
}
}
FUNCTION expM1(x,y) {
if (fabs(x/y) < 1e-6) {
expM1 = y*(1 - x/y/2)
}else{
expM1 = x/(exp(x/y) - 1)
}
}
PROCEDURE rate(v) {LOCAL a, b, tau :rest = -70
: TABLE inf, fac DEPEND dt, celsius FROM -150 TO 100 WITH 200
FROM i=0 TO 1 {
a = alp(v,i) b=bet(v,i)
tau = 1/(a + b)
if (i==0) {
inf[i] = a/(a+b)
}else if (i==1) {
inf[i] = 1/(1+exp((v+75-11)/9))
}
fac[i] = (1 - exp(-dt/tau))
}
}
UNITSON