TITLE minimal model of AMPA receptors
COMMENT
-----------------------------------------------------------------------------
Minimal kinetic model for glutamate AMPA receptors
==================================================
Model of Destexhe, Mainen & Sejnowski, 1994:
(closed) + T <-> (open)
The simplest kinetics are considered for the binding of transmitter (T)
to open postsynaptic receptors. The corresponding equations are in
similar form as the Hodgkin-Huxley model:
dr/dt = alpha * [T] * (1-r) - beta * r
I = gmax * [open] * (V-Erev)
where [T] is the transmitter concentration and r is the fraction of
receptors in the open form.
If the time course of transmitter occurs as a pulse of fixed duration,
then this first-order model can be solved analytically, leading to a very
fast mechanism for simulating synaptic currents, since no differential
equation must be solved (see Destexhe, Mainen & Sejnowski, 1994).
-----------------------------------------------------------------------------
Based on voltage-clamp recordings of AMPA receptor-mediated currents in rat
hippocampal slices (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994), this
model was fit directly to experimental recordings in order to obtain the
optimal values for the parameters (see Destexhe, Mainen and Sejnowski, 1996).
-----------------------------------------------------------------------------
This mod file includes a mechanism to describe the time course of transmitter
on the receptors. The time course is approximated here as a brief pulse
triggered when the presynaptic compartment produces an action potential.
The pointer "pre" represents the voltage of the presynaptic compartment and
must be connected to the appropriate variable in oc.
-----------------------------------------------------------------------------
See details in:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. An efficient method for
computing synaptic conductances based on a kinetic model of receptor binding
Neural Computation 6: 10-14, 1994.
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Written by Alain Destexhe, Laval University, 1995
Modified by M. Badoual, 2004
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS AMPAKIT
RANGE onset,periodpre, periodpost, delta,nbrepre, nbrepost, change, tau0, tau1, g,gmax, e, i,C
NONSPECIFIC_CURRENT i
GLOBAL Erev,Cmax,Cdur
}
UNITS {
(celsius) = (degC)
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
(mM) = (milli/liter)
}
PARAMETER {
onset = 10 (ms)
periodpre = 50 (ms) :periode
periodpost=20
delta= 10 (ms) :temps entre pre et post
nbrepre=2 :nbre de repetitions
nbrepost=1
tau0 = 0.34 (ms)
tau1 = 2.0 (ms)
Erev = 0 (mV) : reversal potential
Cmax = 1 (mM) : max transmitter concentration
Cdur = 1 (ms) : transmitter duration (rising phase)
gmax = 0.002 (umho) : maximum conductance
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (umho) : conductance
C (mM) : transmitter concentration
change
}
LOCAL a[2]
LOCAL tpeak
LOCAL adjust
LOCAL amp
INITIAL {
C = 0
}
BREAKPOINT {
g = cond(t,onset)
C = trans(t,onset)
if (nbrepre>1) {
FROM j=1 TO (nbrepre-1) {
g = g+cond(t,onset+j*periodpre)
C = C+trans(t,onset+j*periodpre)
}
}
i = g*(v - Erev)
}
FUNCTION myexp(x) {
if (x < -100) {
myexp = 0
}else{
myexp = exp(x)
}
}
FUNCTION cond(x (ms), onset1 (ms)) (umho) {
tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
adjust=1/((1-myexp(-tpeak/tau0))-(1-myexp(-tpeak/tau1)))
amp=adjust*gmax
if (x < onset1) {
cond = 0
}else{
a[0]=1-myexp(-(x-onset1)/tau0)
a[1]=1-myexp(-(x-onset1)/tau1)
cond = amp*(a[0]-a[1])
}
}
FUNCTION trans(x (ms), onset1 (ms)) (mM) {
if ((x>onset1) && (x-onset1<=Cdur)) {
trans=Cmax
} else {
trans=0
}
}