: ks.mod is the slow K+ current from
: Baker 2005, parameter assignments and formula's from page 854
: bug fix by Marcus Petersson 20100215 (see gating variable power)
NEURON {
SUFFIX ks
NONSPECIFIC_CURRENT i
RANGE gbar, ena
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 0.2e-6 : =2e-9/(100e-12*1e8) (S/cm2) : 2(nS)/100(um)^2
ek=-85 (mV)
A_anS = 0.00122 (/ms) : A for alpha n
B_anS = -10.5 (mV)
C_anS = 23.6 (mV)
A_bnS = 0.000739 (/ms) : A for beta n
B_bnS = 57.1 (mV)
C_bnS = 21.8 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
i (mA/cm2)
g (S/cm2)
tau_n (ms)
ninf
}
STATE { n }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * n : not n^4 bug fix by Marcus Petersson 20100215
i = g * (v-ek)
}
INITIAL {
: assume that equilibrium has been reached
n = alphan(v)/(alphan(v)+betan(v))
}
DERIVATIVE states {
rates(v)
n' = (ninf - n)/tau_n
}
FUNCTION alphan(Vm (mV)) (/ms) {
if (-Vm-B_anS != 0) {
alphan=A_anS*(Vm+B_anS)/(1-exp((-Vm-B_anS)/C_anS))
} else {
alphan=A_anS*C_anS
}
}
FUNCTION betan(Vm (mV)) (/ms) {
if (Vm+B_bnS != 0) {
betan=A_bnS*(-B_bnS-Vm)/(1-exp((Vm+B_bnS)/C_bnS))
} else {
betan=A_bnS*C_bnS
}
}
FUNCTION rates(Vm (mV)) (/ms) {
tau_n = 1.0 / (alphan(Vm) + betan(Vm))
ninf = alphan(Vm) * tau_n
}