: nav1p8.mod is the NaV1.8 Na+ current from
: Baker 2005, parameter assignments and formula's from page 854
NEURON {
SUFFIX nav1p8
NONSPECIFIC_CURRENT i
RANGE gbar, ena
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 22e-6 : =220e-9/(100e-12*1e8) (S/cm2) : 220(nS)/100(um)^2
ena=79.6 (mV)
A_am8 = 3.83 (/ms) : A for alpha m(8 etc ...)
B_am8 = 2.58 (mV)
C_am8 = -11.47 (mV)
A_ah8 = 0.013536 (/ms) : A for alpha h
B_ah8 = 105 (mV)
C_ah8 = 46.33 (mV)
A_bm8 = 6.894 (/ms) : A for beta m
B_bm8 = 61.2 (mV)
C_bm8 = 19.8 (mV)
A_bh8 = 0.61714 (/ms) : A for beta h
B_bh8 = -21.8 (mV)
C_bh8 = -11.998 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
i (mA/cm2)
g (S/cm2)
tau_h (ms)
tau_m (ms)
minf
hinf
}
STATE { m h }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m^3 * h
i = g * (v-ena)
}
INITIAL {
: assume that equilibrium has been reached
m = alpham(v)/(alpham(v)+betam(v))
h = alphah(v)/(alphah(v)+betah(v))
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/tau_m
h' = (hinf - h)/tau_h
}
FUNCTION alpham(Vm (mV)) (/ms) {
alpham=A_am8/(1+exp((Vm+B_am8)/C_am8))
}
FUNCTION alphah(Vm (mV)) (/ms) {
alphah=A_ah8*exp(-(Vm+B_ah8)/C_ah8)
}
FUNCTION betam(Vm (mV)) (/ms) {
betam=A_bm8/(1+exp((Vm+B_bm8)/C_bm8))
}
FUNCTION betah(Vm (mV)) (/ms) {
betah=A_bh8/(1+exp((Vm+B_bh8)/C_bh8))
}
FUNCTION rates(Vm (mV)) (/ms) {
tau_m = 1.0 / (alpham(Vm) + betam(Vm))
minf = alpham(Vm) * tau_m
tau_h = 1.0 / (alphah(Vm) + betah(Vm))
hinf = alphah(Vm) * tau_h
}