: nav1p9.mod is the NaV1.9 Na+ current from
: Baker 2005, parameter assignments and formula's from page 854
NEURON {
SUFFIX nav1p9
NONSPECIFIC_CURRENT i
RANGE gbar, ena
}
UNITS {
(S) = (siemens)
(mV) = (millivolts)
(mA) = (milliamp)
}
PARAMETER {
gbar = 10e-6 : =100e-9/(100e-12*1e8) (S/cm2) : 100(nS)/100(um)^2
ena=79.6 (mV)
A_am9 = 1.548 (/ms) : A for alpha m(9 etc ...)
B_am9 = -11.01 (mV)
C_am9 = -14.871 (mV)
A_ah9 = 0.2574 (/ms) : A for alpha h
B_ah9 = 63.264 (mV)
C_ah9 = 3.7193 (mV)
A_bm9 = 8.685 (/ms) : A for beta m
B_bm9 = 112.4 (mV) : table has minus sign typo (Baker, personal comm.)
C_bm9 = 22.9 (mV)
A_bh9 = 0.53984 (/ms) : A for beta h
B_bh9 = 0.27853 (mV)
C_bh9 = -9.0933 (mV)
}
ASSIGNED {
v (mV) : NEURON provides this
i (mA/cm2)
g (S/cm2)
tau_h (ms)
tau_m (ms)
minf
hinf
}
STATE { m h }
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m * h
i = g * (v-ena)
}
INITIAL {
: assume that equilibrium has been reached
m = alpham(v)/(alpham(v)+betam(v))
h = alphah(v)/(alphah(v)+betah(v))
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/tau_m
h' = (hinf - h)/tau_h
}
FUNCTION alpham(Vm (mV)) (/ms) {
alpham=A_am9/(1+exp((Vm+B_am9)/C_am9))
}
FUNCTION alphah(Vm (mV)) (/ms) {
alphah=A_ah9/(1+exp((Vm+B_ah9)/C_ah9))
}
FUNCTION betam(Vm (mV)) (/ms) {
betam=A_bm9/(1+exp((Vm+B_bm9)/C_bm9))
}
FUNCTION betah(Vm (mV)) (/ms) {
betah=A_bh9/(1+exp((Vm+B_bh9)/C_bh9))
}
FUNCTION rates(Vm (mV)) (/ms) {
tau_m = 1.0 / (alpham(Vm) + betam(Vm))
minf = alpham(Vm) * tau_m
tau_h = 1.0 / (alphah(Vm) + betah(Vm))
hinf = alphah(Vm) * tau_h
}