/*! \file
* \brief Task scheduling policies.
*
* This file contains some fundamental scheduling policies for the pool class.
* A scheduling policy is realized by a task container which controls the access to
* the tasks. Fundamentally the container determines the order the tasks are processed
* by the thread pool.
* The task containers need not to be thread-safe because they are used by the pool
* in thread-safe way.
*
* Copyright (c) 2005-2007 Philipp Henkel
*
* Use, modification, and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
* http://threadpool.sourceforge.net
*
*/
#ifndef THREADPOOL_SCHEDULING_POLICIES_HPP_INCLUDED
#define THREADPOOL_SCHEDULING_POLICIES_HPP_INCLUDED
#include <queue>
#include <deque>
#include "task_adaptors.hpp"
namespace boost { namespace threadpool
{
/*! \brief SchedulingPolicy which implements FIFO ordering.
*
* This container implements a FIFO scheduling policy.
* The first task to be added to the scheduler will be the first to be removed.
* The processing proceeds sequentially in the same order.
* FIFO stands for "first in, first out".
*
* \param Task A function object which implements the operator()(void).
*
*/
template <typename Task = task_func>
class fifo_scheduler
{
public:
typedef Task task_type; //!< Indicates the scheduler's task type.
protected:
std::deque<task_type> m_container; //!< Internal task container.
public:
/*! Adds a new task to the scheduler.
* \param task The task object.
* \return true, if the task could be scheduled and false otherwise.
*/
bool push(task_type const & task)
{
m_container.push_back(task);
return true;
}
/*! Removes the task which should be executed next.
*/
void pop()
{
m_container.pop_front();
}
/*! Gets the task which should be executed next.
* \return The task object to be executed.
*/
task_type const & top() const
{
return m_container.front();
}
/*! Gets the current number of tasks in the scheduler.
* \return The number of tasks.
* \remarks Prefer empty() to size() == 0 to check if the scheduler is empty.
*/
size_t size() const
{
return m_container.size();
}
/*! Checks if the scheduler is empty.
* \return true if the scheduler contains no tasks, false otherwise.
* \remarks Is more efficient than size() == 0.
*/
bool empty() const
{
return m_container.empty();
}
/*! Removes all tasks from the scheduler.
*/
void clear()
{
m_container.clear();
}
};
/*! \brief SchedulingPolicy which implements LIFO ordering.
*
* This container implements a LIFO scheduling policy.
* The last task to be added to the scheduler will be the first to be removed.
* LIFO stands for "last in, first out".
*
* \param Task A function object which implements the operator()(void).
*
*/
template <typename Task = task_func>
class lifo_scheduler
{
public:
typedef Task task_type; //!< Indicates the scheduler's task type.
protected:
std::deque<task_type> m_container; //!< Internal task container.
public:
/*! Adds a new task to the scheduler.
* \param task The task object.
* \return true, if the task could be scheduled and false otherwise.
*/
bool push(task_type const & task)
{
m_container.push_front(task);
return true;
}
/*! Removes the task which should be executed next.
*/
void pop()
{
m_container.pop_front();
}
/*! Gets the task which should be executed next.
* \return The task object to be executed.
*/
task_type const & top() const
{
return m_container.front();
}
/*! Gets the current number of tasks in the scheduler.
* \return The number of tasks.
* \remarks Prefer empty() to size() == 0 to check if the scheduler is empty.
*/
size_t size() const
{
return m_container.size();
}
/*! Checks if the scheduler is empty.
* \return true if the scheduler contains no tasks, false otherwise.
* \remarks Is more efficient than size() == 0.
*/
bool empty() const
{
return m_container.empty();
}
/*! Removes all tasks from the scheduler.
*/
void clear()
{
m_container.clear();
}
};
/*! \brief SchedulingPolicy which implements prioritized ordering.
*
* This container implements a scheduling policy based on task priorities.
* The task with highest priority will be the first to be removed.
* It must be possible to compare two tasks using operator<.
*
* \param Task A function object which implements the operator() and operator<. operator< must be a partial ordering.
*
* \see prio_thread_func
*
*/
template <typename Task = prio_task_func>
class prio_scheduler
{
public:
typedef Task task_type; //!< Indicates the scheduler's task type.
protected:
std::priority_queue<task_type> m_container; //!< Internal task container.
public:
/*! Adds a new task to the scheduler.
* \param task The task object.
* \return true, if the task could be scheduled and false otherwise.
*/
bool push(task_type const & task)
{
m_container.push(task);
return true;
}
/*! Removes the task which should be executed next.
*/
void pop()
{
m_container.pop();
}
/*! Gets the task which should be executed next.
* \return The task object to be executed.
*/
task_type const & top() const
{
return m_container.top();
}
/*! Gets the current number of tasks in the scheduler.
* \return The number of tasks.
* \remarks Prefer empty() to size() == 0 to check if the scheduler is empty.
*/
size_t size() const
{
return m_container.size();
}
/*! Checks if the scheduler is empty.
* \return true if the scheduler contains no tasks, false otherwise.
* \remarks Is more efficient than size() == 0.
*/
bool empty() const
{
return m_container.empty();
}
/*! Removes all tasks from the scheduler.
*/
void clear()
{
while(!m_container.empty())
{
m_container.pop();
}
}
};
} } // namespace boost::threadpool
#endif // THREADPOOL_SCHEDULING_POLICIES_HPP_INCLUDED