TITLE kdr.mod
COMMENT
Delayed rectifying potassium current for pyramidal cell and interneurons defined in
Timofeev et. al., 2000, Cerebral Cortex (https://doi.org/10.1093/cercor/10.12.1185)
and Bazhenov et. al. 2002 (J Neuro) and
Chen et. al., 2012, J. Physiol. (doi: https://doi.org/10.1113/jphysiol.2012.227462)
This code is adapted from hh.mod distributed with NEURON source code
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
? interface
NEURON {
SUFFIX kdr
USEION k READ ek WRITE ik
RANGE gkbar, gk
RANGE ninf, ntau
:THREADSAFE : assigned GLOBALs will be per thread
}
PARAMETER {
gkbar = 0.200 (S/cm2) <0,1e9>
ek = -95 (mV)
}
STATE {
n
}
ASSIGNED {
v (mV)
:celsius (degC)
gk (S/cm2)
ik (mA/cm2)
ninf
ntau (ms)
}
? currents
BREAKPOINT {
SOLVE states METHOD cnexp
gk = gkbar*n
ik = 2.952882641412121*gk*(v - ek) :2.95 is q_T from Timofeev 2000; also, C++ code prescribe 2.3^((36-23)/10)
}
INITIAL {
rates(v)
n = ninf
}
? states
DERIVATIVE states {
rates(v)
n' = (ninf-n)/ntau
}
? rates
PROCEDURE rates(v(mV)) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
LOCAL a, b, sum
UNITSOFF
:"n" potassium gating
a = 0.02 * vtrap(-(v-25),9)
b = 0.002 * vtrap(v-25,9) :note the lack of a negative sign in the first argument to vtrap; also no negative sign in front of entire equation, because of reversed order of denominator
sum = a + b
ntau = 0.3386521313023745/sum :numerator is 1/2.952882641412121
ninf = a/sum
}
FUNCTION vtrap(x,y) { :Traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2) :derived by Taylor expanding exp to quadratic term, then binomial approximation
}else{
vtrap = x/(exp(x/y) - 1)
}
}
UNITSON