# -*- coding: utf-8 -*-
"""
Spyder Editor.
"""
from neuron import h
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from synaptic_metrics import synaptic_metrics
from cell_models import CCKCell
from opt import myinit, mystyle
import pickle, os
# Make plots nicer!
plt.style.use("seaborn-colorblind")
plt.rcParams.update(mystyle())
# If we had not included gui in the list of things to import
h.load_file("stdrun.hoc")
replications = 10
trials = 200
# Variable to store the results
cols = ["peak", "time_rise", "time_decay", "dvdt", "latency",
"thalf", "replication"]
df_soma = pd.DataFrame(columns=cols, index=range(trials*replications))
counter = 0
synsE = []
results = {}
for nrep in range(replications):
print(f"\nReplication of the experiment: {nrep}\n")
voltages_s, times = [], []
for ntrial in range(trials):
np.random.seed(1000*nrep + ntrial)
eps = np.random.rand()
if eps < 19/23:
r1 = np.random.poisson(lam=10, size=1).item()
else:
r1 = 0
synsE.append(r1)
print(f"Trial {ntrial}...Esyn: {r1}")
# plot_all, plot_single = True, False
plot_single = False
soma_stim = True
# Create a CCK Cell instance
cell = CCKCell(0)
dends = []
for sec in cell.all:
if "lmM" in str(sec) or "radDist" in str(sec):
dends.append(sec(0.5))
# Synapses lists
synAMPA1, vsAMPA1 = [], []
loc1, lec, inputs = [], [], []
gAMPA = 0.0013038
for i in range(r1):
spiketimes = [700.0]
inputs.append(h.Vector(spiketimes))
lec.append(h.VecStim())
lec[-1].play(inputs[-1])
# Choose a location at random @ SLM
loc1.append(np.random.randint(low=0, high=len(dends)))
# New Synapse and store in a list
# AMPA synapse
synAMPA1.append(h.Exp2Syn(dends[loc1[-1]]))
synAMPA1[-1].e = 0 # reversal potential
synAMPA1[-1].tau1 = 0.5 # rise time
synAMPA1[-1].tau2 = 3.0 # decay time
# New VecStim object
vsAMPA1.append(h.NetCon(lec[-1], synAMPA1[-1]))
vsAMPA1[-1].delay = 0.0 # delay in ms
vsAMPA1[-1].weight[0] = gAMPA #
# =========================================================================
# SAVE VECTORS
# =========================================================================
soma_v_vec = h.Vector() # Membrane potential vector
soma_v_vec.record(cell.soma(0.5)._ref_v)
t_vec = h.Vector() # Time stamp vector
t_vec.record(h._ref_t)
# =========================================================================
# STIMULATION
# =========================================================================
stim2 = h.IClamp(cell.soma(0.5))
stim2.delay = 0
stim2.dur = 2000
stim2.amp = -0.0315
simdur = 2000.0
myinit(vinit=-70)
h.continuerun(simdur)
# =========================================================================
# SAVE and PLOT the results
# =========================================================================
t_vec = np.array(t_vec)
soma_v_vec = np.array(soma_v_vec)
n1 = np.abs(t_vec - 690).argmin()
n2 = np.abs(t_vec - 900).argmin()
v_soma = soma_v_vec[n1:n2] - soma_v_vec[n1]
time = t_vec[n1:n2]
if r1 > 0:
peak_s, trise_s, thalf_s, tdecay_s, dvdt_s, latency_s, _ = synaptic_metrics(
v_soma, time
)
else:
peak_s, trise_s, tdecay_s, dvdt_s, thalf_s, latency_s = 0, 0, 0, 0, 0, 0
df_soma.loc[counter].peak = peak_s
df_soma.loc[counter].time_rise = trise_s
df_soma.loc[counter].time_decay = tdecay_s
df_soma.loc[counter].dvdt = dvdt_s
df_soma.loc[counter].thalf = thalf_s
df_soma.loc[counter].latency = latency_s
df_soma.loc[counter].replication = nrep
counter += 1
voltages_s.append(v_soma)
times.append(time)
results[f"Replication_{nrep}_voltage_soma"] = voltages_s
results[f"Replication_{nrep}_time"] = times
# plt.figure()
# sns.boxplot(data=df_soma, y="peak")
# sns.swarmplot(data=df_soma, y="peak")
# plt.ylabel('voltage [ms]')
# plt.xticks([])
# plt.title("LEC driven response on CCK+ cells")
# plt.show()
plt.figure()
samples = np.random.choice(range(trials), size=10, replace=False)
nreps = np.random.choice(range(replications), size=10, replace=True)
for i in range(10):
ntr = samples[i]
nrep = nreps[i]
v1s = results[f"Replication_{nrep}_voltage_soma"][ntr]
t1 = results[f"Replication_{nrep}_time"][ntr]
plt.plot(t1, v1s, label="control", color="black", linewidth=1.5)
plt.xlabel("time (ms)")
plt.ylabel("voltage (mV)")
plt.title("CCK+ cells")
if plot_single:
plt.figure(figsize=(8, 6))
plt.plot(t_vec[n1:n2],
soma_v_vec[n1:n2] - soma_v_vec[n1],
linewidth=3, label="soma")
plt.ylabel("Membrane Voltage (mV)")
ymin = np.min(soma_v_vec[n1:n2] - soma_v_vec[n1]) - 2
ymax = np.max(soma_v_vec[n1:n2] - soma_v_vec[n1]) + 2
plt.ylim([ymin, ymax])
plt.xlabel("Time (ms)")
plt.legend()
plt.show()
# Save the data
dirname = "data_interneurons_synapses/"
if not os.path.exists(dirname):
os.mkdir(dirname)
with open(dirname + 'cck.pkl', 'wb') as handle:
pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)