TITLE LVA (T-type) calcium (Ca2+) channel with high threshold for activation
COMMENT
Based on Magee and Johnston, 1995, J Physiol, 487:67-90, doi: 10.1113/jphysiol.1995.sp020862
Used in somatic and dendritic regions.
It calculates I_Ca using conductance (not permeability).
Important:
The T-current does not activate calcium-dependent currents.
The construction with dummy ion `Ca` prevents the updating of the internal calcium concentration.
ENDCOMMENT
NEURON {
SUFFIX cat
USEION ca READ cai, cao
USEION Ca WRITE iCa VALENCE 2
RANGE gcatbar, iCa
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {:parameters that can be entered when function is called in hoc file
tBase = 23.5 (degC)
gcatbar = 0 (S/cm2) : initialized conductance
ki = 0.001 (mM)
tfa = 1 : activation time constant scaling factor
tfi = 0.68 : inactivation time constant scaling factor
}
ASSIGNED {: parameters needed to solve DE
v (mV)
celsius (degC) : initially was 22
cai (mM) : initial internal Ca++ concentration, initially 5.e-6
cao (mM) : initial external Ca++ concentration, initially 2
eca (mV) : Ca++ reversal potential, 140
iCa (mA/cm2)
gcat (S/cm2)
minf (1)
hinf (1)
taum (ms)
tauh (ms)
}
STATE { m h }: unknown activation and inactivation parameters to be solved in the DEs
BREAKPOINT {
SOLVE states METHOD cnexp
gcat = gcatbar*pow(m, 2)*h*h2(cai) : maximum channel conductunce
iCa = gcat*ghk(v, cai, cao) : dummy calcium current induced by this channel
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
m' = (minf - m)/taum
h' = (hinf - h)/tauh
}
INITIAL {
rates(v)
m = minf
h = hinf
}
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v (mV), ci (mM), co (mM)) (mV) {
LOCAL nu, f
f = KTF(celsius)/2
nu = v/f
ghk = -f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) {: temperature-dependent adjustment factor
KTF = (0.0853(mV/degC)*(celsius + 273.15(degC)))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION vtrap(x (mV), y (mV)) (1) {
:Traps for 0 in denominator of rate eqns. Taylor expansion is used.
if (fabs(x/y) < 1e-6) {
vtrap = 1(/mV)*y*(1 - x/y/2)
} else {
vtrap = 1(/mV)*x/(exp(x/y) - 1)
}
}
FUNCTION alph(v (mV)) (/ms) {
alph = 1.6e-4(/ms)*exp(-(v+57(mV))/19(mV))
}
FUNCTION beth(v (mV)) (/ms) {
beth = 1(/ms)/(exp(-(v-15(mV))/10(mV)) + 1.0)
}
FUNCTION alpm(v (mV)) (/ms) {
alpm = 0.1967(/ms)*vtrap(-(v-19.88(mV)), 10.0(mV))
}
FUNCTION betm(v (mV)) (/ms) {
betm = 0.046(/ms)*exp(-v/22.73(mV))
}
PROCEDURE rates(v (mV)) { :callable from hoc
taum = 1/(tfa*(alpm(v) + betm(v))) : estimation of activation tau
minf = alpm(v)/(alpm(v)+betm(v)) : estimation of activation steady state
tauh = 1/(tfi*(alph(v) + beth(v))) : estimation of inactivation tau
hinf = alph(v)/(alph(v)+beth(v)) : estimation of inactivation steady state
}