TITLE L-type calcium channel with low threshold for activation
: used in somatic and proximal dendritic regions
: it calculates I_Ca using channel permeability instead of conductance
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER { :parameters that can be entered when function is called in cell-setup
v (mV)
celsius = 34 (degC)
gcalbar = 0 (mho/cm2) : initialized conductance
ki = 0.001 (mM)
cai = 5.e-5 (mM) : initial internal Ca++ concentration
cao = 2 (mM) : initial external Ca++ concentration
tfa = 5 : time constant scaling factor
eca = 140 (mV) : Ca++ reversal potential
}
NEURON {
SUFFIX cal
USEION ca READ cai,cao WRITE ica
RANGE gcalbar, gmax, gcal, minf, taum
}
STATE { m } : unknown parameter to be solved in the DEs
ASSIGNED { : parameters needed to solve DE
ica (mA/cm2)
gcal (mho/cm2)
gmax (mho/cm2)
minf
taum (ms)
}
INITIAL { : initialize the following parameter using rates()
rates(v)
m = minf
gcal = gcalbar*m*h2(cai)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcal = gcalbar*m*h2(cai) : maximum channel permeability
ica = gcal*ghk(v,cai,cao): calcium current induced by this channel
if (gcal > gmax) {
gmax = gcal
}
}
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) { : temperature-dependent adjustment factor
KTF = ((25.(mV)/293.15(degC))*(celsius + 273.15(degC)))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alpm(v (mV)) (/ms) {
alpm = 0.055(/ms/mV)*(-27.01(mV) - v)/(exp((-27.01(mV)-v)/3.8(mV)) - 1)
}
FUNCTION betm(v (mV)) (/ms) {
betm =0.94(/ms)*exp((-63.01(mV)-v)/17(mV))
}
:if state_cagk is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer. This is because
:only BREAKPOINT sets up the correct pointers to range variables.
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
m' = (minf - m)/taum
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
TABLE taum, minf FROM -150 TO 150 WITH 300
a = alpm(v)
taum = 1/(tfa*(a+betm(v))) : estimation of activation tau
minf = a/(a+betm(v)) : estimation of activation steady state value
}