TITLE t-type calcium channel with high threshold for activation
: used in somatic and dendritic regions
: it calculates I_Ca using channel permeability instead of conductance
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER { :parameters that can be entered when function is called in cell-setup
v (mV)
tBase = 23.5 (degC)
celsius = 22 (degC)
gcatbar = 0 (mho/cm2) : initialized conductance
ki = 0.001 (mM)
cai = 5.e-5 (mM) : initial internal Ca++ concentration
cao = 2 (mM) : initial external Ca++ concentration
tfa = 1 : activation time constant scaling factor
tfi = 0.68 : inactivation time constant scaling factor
eca = 140 : Ca++ reversal potential
}
NEURON {
SUFFIX cat
USEION ca READ cai,cao
USEION Ca WRITE iCa VALENCE 2
: The T-current does not activate calcium-dependent currents.
: The construction with dummy ion Ca prevents the updating of the
: internal calcium concentration.
RANGE gcatbar, hinf, minf, taum, tauh, iCa, gmax
}
STATE { m h } : unknown activation and inactivation parameters to be solved in the DEs
ASSIGNED { : parameters needed to solve DE
iCa (mA/cm2)
gcat (mho/cm2)
gmax (mho/cm2)
minf
hinf
taum (ms)
tauh (ms)
}
INITIAL {
: tadj = 3^((celsius-tBase)/10) : assume Q10 of 3
rates(v)
m = minf
h = hinf
gcat = gcatbar*m*m*h*h2(cai)
gmax = gcat
}
BREAKPOINT {
SOLVE states METHOD cnexp
gcat = gcatbar*m*m*h*h2(cai) : maximum channel permeability
iCa = gcat*ghk(v,cai,cao) : dummy calcium current induced by this channel
if (gcat > gmax) {
gmax = gcat
}
}
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) { LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) { : temperature-dependent adjustment factor
KTF = ((25(mV)/293.15(degC))*(celsius + 273.15(degC)))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) (/ms) {
alph = 1.6e-4(/ms)*exp(-(v+57(mV))/19(mV))
}
FUNCTION beth(v(mV)) (/ms) {
beth = 1(/ms)/(exp((-v+15(mV))/10(mV))+1.0)
}
FUNCTION alpm(v(mV)) (/ms) {
alpm = 0.1967(/ms)*(-1.0(/mV)*v+19.88)/(exp((-1.0*v+19.88(mV))/10.0(mV))-1.0)
}
FUNCTION betm(v(mV)) (/ms) {
betm = 0.046(/ms)*exp(-v/22.73(mV))
}
:if state_cagk is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer. This is because
: only BREAKPOINT sets up the correct pointers to range variables.
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
m' = (minf - m)/taum
h' = (hinf - h)/tauh
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
TABLE taum, minf, tauh, hinf FROM -150 TO 150 WITH 300
a = alpm(v)
taum = 1/(tfa*(a + betm(v))) : estimation of activation tau
minf = a/(a+betm(v)) : estimation of activation steady state
a = alph(v)
tauh = 1/(tfi*(a + beth(v))) : estimation of inactivation tau
hinf = a/(a+beth(v)) : estimation of inactivation steady state
}