// TOTAL DENDRITIC AREA  35186.
 /* suppyrRS/suppyrRS_template.hoc
 automatically written from f2nrn/neuron_code_writer.f
 via subroutines that were inserted into the fortran
 code e.g., suppyrRS/integrate_suppyrRS.hoc
 
 The template's form was derived by
 Tom Morse and Michael Hines
 from a template, pyr3_template created
 by Roger Traub and Maciej Lazarewicz when they ported
 
         Traub RD, Buhl EH, Gloveli T, Whittington MA.
 Fast Rhythmic Bursting Can Be Induced in Layer 2/3
 Cortical Neurons by Enhancing Persistent Na(+)
 Conductance or by Blocking BK Channels.J Neurophysiol.
 2003 Feb;89(2):909-21.
 
 to NEURON
 
 */
 
 begintemplate suppyrRS
	public type
    	public name
    	strdef name
 
 // parts of the template were lifted from a default
 // cell writing from Network Builder NetGUI[0]
 
         public is_art
         public init, topol, basic_shape, subsets
         public geom, biophys 
         public synlist, x, y, z, position
         public connect2target
         public set_netcon_src_comp
         // the above function added to set neton
         // compartment source in the presyn cell
 
         public comp, level, Soma, Dendrites
         public Soma_Dendrites, Axon, all
         public presyn_comp, top_level
         // it is the responsibility of the calling
         // program to set the above presynaptic
         // compartment number
 
         external traub_connect
         objref this
  create  comp[ 74+1]
         objref level[ 12+1], Soma, Dendrites
         objref Soma_Dendrites, Axon
         objref synlist
func type() {return  0 }

         proc init() {
           doubler = 1
  comp[0] delete_section() // clean up for fortran code
            traub_connect( 74+1)
 
            titlePrint()
 
            presyn_comp = 72
            // in Traub model;changed by calling prog.
            objref Soma, Axon, Dendrites, Soma_Dendrites
            objref level
 
            topol()
            shape()
 
            geom()        // the geometry and
            subsets()        // subsets and
            biophys()  // active currents
            synlist = new List() // list of synapses
 // NetGUI[0] stores synapses in the cell object, in 
 // Traub model it is easier to store them outside
            set_doubler() // to double or not
            if (doubler) {double_dend_cond()}
                          /* for taking
  spine membrane area correction into account (the 
  method used doubles max cond's when spines present)
 */
             more_adjustments()
	name = "suppyrRS"
         }
         proc double_dend_cond() {
         /* this function gets replaced later with 
 another one if double_dend_cond() is tacked on. */
         }
 
         proc titlePrint() {
 
 /*              print "
                 print "-----"
                 print "
             print "suppyrRS Neuron Model based on "
             print "Traub RD et al (2005, 2003)"
                 print "
                 print "-----"
 Remove title printing with this comment for now.  
 Printing otherwise repeats (for each cell)
 -too voluminous for a network creation */
         }
 
         proc set_doubler() {doubler=1}
         // this function gets replaced with one that
         // sets doubler to 0 when there are no spines
         // in the cell (for no spines the additional
         // hoc code is written from integrate_cell.f
         // where cell is nRT, TCR.  Woops I just
         // found that deepaxax, deepbask, deepLTS,
         // supaxax, supbask, supLTS all use the script
         // cell/run_fortran.sh to replace the =1's with
         // =0's.  I will change the fortran code to
         // make it all run_fortran.sh replacements or
         // not for uniformity.
         proc topol() {
 // create comp[ 75] // note one greater than numcomp due to fortran indicies
  // last argument, parent location for connection
  // is overwritten to 1 for parents with connected children 
  // in below traub_connect proc calls
 traub_connect(this,  1,  69,   0.19978229, 0)
 traub_connect(this,  1,  2,   0.012551651, 1)
 traub_connect(this,  1,  3,   0.012551651, 1)
 traub_connect(this,  1,  4,   0.012551651, 1)
 traub_connect(this,  1,  5,   0.012551651, 1)
 traub_connect(this,  1,  6,   0.012551651, 1)
 traub_connect(this,  1,  7,   0.012551651, 1)
 traub_connect(this,  1,  8,   0.012551651, 1)
 traub_connect(this,  1,  9,   0.012551651, 1)
 traub_connect(this,  1,  38,   0.748136781, 1)
 traub_connect(this,  2,  14,   0.00628318,  1.)
 traub_connect(this,  3,  15,   0.00628318,  1.)
 traub_connect(this,  4,  16,   0.00628318,  1.)
 traub_connect(this,  5,  17,   0.00628318,  1.)
 traub_connect(this,  6,  18,   0.00628318,  1.)
 traub_connect(this,  7,  19,   0.00628318,  1.)
 traub_connect(this,  8,  20,   0.00628318,  1.)
 traub_connect(this,  9,  21,   0.00628318,  1.)
 traub_connect(this,  10,  38,   0.0123730314,  1.)
 traub_connect(this,  10,  22,   0.00628318,  1.)
 traub_connect(this,  11,  38,   0.0123730314,  1.)
 traub_connect(this,  11,  23,   0.00628318,  1.)
 traub_connect(this,  12,  38,   0.0123730314,  1.)
 traub_connect(this,  12,  24,   0.00628318,  1.)
 traub_connect(this,  13,  38,   0.0123730314,  1.)
 traub_connect(this,  13,  25,   0.00628318,  1.)
 traub_connect(this,  14,  26,   0.00628318,  1.)
 traub_connect(this,  15,  27,   0.00628318,  1.)
 traub_connect(this,  16,  28,   0.00628318,  1.)
 traub_connect(this,  17,  29,   0.00628318,  1.)
 traub_connect(this,  18,  30,   0.00628318,  1.)
 traub_connect(this,  19,  31,   0.00628318,  1.)
 traub_connect(this,  20,  32,   0.00628318,  1.)
 traub_connect(this,  21,  33,   0.00628318,  1.)
 traub_connect(this,  22,  34,   0.00628318,  1.)
 traub_connect(this,  23,  35,   0.00628318,  1.)
 traub_connect(this,  24,  36,   0.00628318,  1.)
 traub_connect(this,  25,  37,   0.00628318,  1.)
 traub_connect(this,  38,  39,   0.359911659,  1.)
 traub_connect(this,  39,  40,   0.287532183,  1.)
 traub_connect(this,  40,  41,   0.144583738, 1)
 traub_connect(this,  40,  42,   0.144583738, 1)
 traub_connect(this,  41,  42,   0.10053088, 1)
 traub_connect(this,  41,  43,   0.10053088,  1.)
 traub_connect(this,  42,  44,   0.10053088,  1.)
 traub_connect(this,  43,  45,   0.0277326566, 1)
 traub_connect(this,  43,  46,   0.0277326566, 1)
 traub_connect(this,  43,  47,   0.0277326566, 1)
 traub_connect(this,  43,  48,   0.0277326566, 1)
 traub_connect(this,  44,  49,   0.0277326566, 1)
 traub_connect(this,  44,  50,   0.0277326566, 1)
 traub_connect(this,  44,  51,   0.0277326566, 1)
 traub_connect(this,  44,  52,   0.0277326566, 1)
 traub_connect(this,  45,  53,   0.0160849408,  1.)
 traub_connect(this,  45,  46,   0.0160849408, 1)
 traub_connect(this,  45,  47,   0.0160849408, 1)
 traub_connect(this,  45,  48,   0.0160849408, 1)
 traub_connect(this,  46,  54,   0.0160849408,  1.)
 traub_connect(this,  46,  47,   0.0160849408, 1)
 traub_connect(this,  46,  48,   0.0160849408, 1)
 traub_connect(this,  47,  55,   0.0160849408,  1.)
 traub_connect(this,  47,  48,   0.0160849408, 1)
 traub_connect(this,  48,  56,   0.0160849408,  1.)
 traub_connect(this,  49,  57,   0.0160849408,  1.)
 traub_connect(this,  49,  50,   0.0160849408, 1)
 traub_connect(this,  49,  51,   0.0160849408, 1)
 traub_connect(this,  49,  52,   0.0160849408, 1)
 traub_connect(this,  50,  58,   0.0160849408,  1.)
 traub_connect(this,  50,  51,   0.0160849408, 1)
 traub_connect(this,  50,  52,   0.0160849408, 1)
 traub_connect(this,  51,  59,   0.0160849408,  1.)
 traub_connect(this,  51,  52,   0.0160849408, 1)
 traub_connect(this,  52,  60,   0.0160849408,  1.)
 traub_connect(this,  53,  61,   0.0160849408,  1.)
 traub_connect(this,  54,  62,   0.0160849408,  1.)
 traub_connect(this,  55,  63,   0.0160849408,  1.)
 traub_connect(this,  56,  64,   0.0160849408,  1.)
 traub_connect(this,  57,  65,   0.0160849408,  1.)
 traub_connect(this,  58,  66,   0.0160849408,  1.)
 traub_connect(this,  59,  67,   0.0160849408,  1.)
 traub_connect(this,  60,  68,   0.0160849408,  1.)
 traub_connect(this,  69,  70,   0.0472757183,  1.)
 traub_connect(this,  70,  71,   0.0208024203, 1)
 traub_connect(this,  70,  73,   0.0208024203, 1)
 traub_connect(this,  71,  72,   0.01570795,  1.)
 traub_connect(this,  71,  73,   0.01570795, 1)
 traub_connect(this,  73,  74,   0.01570795,  1.)
 access comp[1] // handy statement if want to start gui's from nrnmainmenu
 }
         proc geom() {
 // the "traub level" subsets are created and defined below
 top_level =  12
 objref level[top_level+1]
 for i=0,top_level { level[i] = new SectionList() }
  
 comp[ 1] { level[ 1].append() L=  15. diam = 2*  8. }
 comp[ 2] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 3] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 4] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 5] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 6] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 7] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 8] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 9] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 10] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 11] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 12] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 13] { level[ 2].append() L=  50. diam = 2*  0.5 }
 comp[ 14] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 15] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 16] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 17] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 18] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 19] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 20] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 21] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 22] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 23] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 24] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 25] { level[ 3].append() L=  50. diam = 2*  0.5 }
 comp[ 26] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 27] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 28] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 29] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 30] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 31] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 32] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 33] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 34] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 35] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 36] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 37] { level[ 4].append() L=  50. diam = 2*  0.5 }
 comp[ 38] { level[ 5].append() L=  50. diam = 2*  4. }
 comp[ 39] { level[ 6].append() L=  50. diam = 2*  3.6 }
 comp[ 40] { level[ 7].append() L=  50. diam = 2*  3.2 }
 comp[ 41] { level[ 8].append() L=  50. diam = 2*  2. }
 comp[ 42] { level[ 8].append() L=  50. diam = 2*  2. }
 comp[ 43] { level[ 9].append() L=  50. diam = 2*  2. }
 comp[ 44] { level[ 9].append() L=  50. diam = 2*  2. }
 comp[ 45] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 46] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 47] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 48] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 49] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 50] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 51] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 52] { level[ 10].append() L=  50. diam = 2*  0.8 }
 comp[ 53] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 54] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 55] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 56] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 57] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 58] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 59] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 60] { level[ 11].append() L=  50. diam = 2*  0.8 }
 comp[ 61] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 62] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 63] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 64] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 65] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 66] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 67] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 68] { level[ 12].append() L=  50. diam = 2*  0.8 }
 comp[ 69] { level[ 0].append() L=  25. diam = 2*  0.9 }
 comp[ 70] { level[ 0].append() L=  50. diam = 2*  0.7 }
 comp[ 71] { level[ 0].append() L=  50. diam = 2*  0.5 }
 comp[ 72] { level[ 0].append() L=  50. diam = 2*  0.5 }
 comp[ 73] { level[ 0].append() L=  50. diam = 2*  0.5 }
 comp[ 74] { level[ 0].append() L=  50. diam = 2*  0.5 }
 } 
 // Here are some commonly used subsets of sections
         objref all
         proc subsets() { local i
           objref Soma, Dendrites, Soma_Dendrites, Axon
           objref all
           Soma = new SectionList()
           Dendrites = new SectionList()
           Soma_Dendrites = new SectionList()
           Axon = new SectionList()
           for i=1,top_level {
             forsec level[i] { // recall level 0 is axon, 1 is soma, higher are dends
               Soma_Dendrites.append()
                 if (i>1) {Dendrites.append()}
             }
           }
           forsec level[1] {
             Soma.append()
           }
           forsec level[0] { Axon.append() }
           all = new SectionList()
           for i=1, 74 comp[i] all.append()
          }
 
        proc shape() {
 
    comp[1] {pt3dclear() pt3dadd(0.0, 0.0, 0.0, 16.0) pt3dadd(0.0, 7.5, 0.0, 16.0)}
    comp[1] {pt3dadd(-0.0, 15.0, 0.0, 16.0)}
    comp[69] {pt3dclear() pt3dadd(0.0, 0.0, 0.0, 1.8) pt3dadd(-0.0, -12.5, 0.0, 1.8)}
    comp[69] {pt3dadd(-0.0, -25.0, 0.0, 1.8)}
    comp[38] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 8.0) pt3dadd(-0.0, 40.0, 0.0, 8.0)}
    comp[38] {pt3dadd(-0.0, 65.0, 0.0, 8.0)}
    comp[9] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(-0.0, -5.0, -15.0, 1.0)}
    comp[9] {pt3dadd(0.0, -25.0, -30.0, 1.0)}
    comp[8] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(15.0, -5.0, 0.0, 1.0)}
    comp[8] {pt3dadd(30.0, -25.0, 0.0, 1.0)}
    comp[7] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(-0.0, -5.0, 15.0, 1.0)}
    comp[7] {pt3dadd(0.0, -25.0, 30.0, 1.0)}
    comp[6] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(-15.0, -5.0, 0.0, 1.0)}
    comp[6] {pt3dadd(-30.0, -25.0, 0.0, 1.0)}
    comp[5] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(17.320509, 10.0, -17.320509, 1.0)}
    comp[5] {pt3dadd(34.641018, 5.0, -34.64101, 1.0)}
    comp[4] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(17.320509, 10.0, 17.320509, 1.0)}
    comp[4] {pt3dadd(34.640957, 5.0, 34.640995, 1.0)}
    comp[3] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(-17.320509, 10.0, -17.320509, 1.0)}
    comp[3] {pt3dadd(-34.641, 5.0, -34.641014, 1.0)}
    comp[2] {pt3dclear() pt3dadd(-0.0, 15.0, 0.0, 1.0) pt3dadd(-17.320509, 10.0, 17.320509, 1.0)}
    comp[2] {pt3dadd(-34.64103, 5.0, 34.64107, 1.0)}
    comp[70] {pt3dclear() pt3dadd(-0.0, -25.0, 0.0, 1.4) pt3dadd(-0.0, -50.0, 0.0, 1.4)}
    comp[70] {pt3dadd(-0.0, -75.0, 0.0, 1.4)}
    comp[39] {pt3dclear() pt3dadd(-0.0, 65.0, 0.0, 7.2) pt3dadd(-0.0, 90.0, 0.0, 7.2)}
    comp[39] {pt3dadd(-0.0, 115.0, 0.0, 7.2)}
    comp[13] {pt3dclear() pt3dadd(-0.0, 65.0, 0.0, 1.0) pt3dadd(-0.0, 65.0, -25.0, 1.0)}
    comp[13] {pt3dadd(-0.0, 65.0, -50.0, 1.0)}
    comp[12] {pt3dclear() pt3dadd(-0.0, 65.0, 0.0, 1.0) pt3dadd(25.0, 65.0, 0.0, 1.0)}
    comp[12] {pt3dadd(50.0, 65.0, 0.0, 1.0)}
    comp[11] {pt3dclear() pt3dadd(-0.0, 65.0, 0.0, 1.0) pt3dadd(-0.0, 65.0, 25.0, 1.0)}
    comp[11] {pt3dadd(0.0, 65.0, 50.0, 1.0)}
    comp[10] {pt3dclear() pt3dadd(-0.0, 65.0, 0.0, 1.0) pt3dadd(-25.0, 65.0, 0.0, 1.0)}
    comp[10] {pt3dadd(-50.0, 65.0, 0.0, 1.0)}
    comp[21] {pt3dclear() pt3dadd(0.0, -25.0, -30.0, 1.0) pt3dadd(0.0, -45.0, -45.0, 1.0)}
    comp[21] {pt3dadd(0.0, -65.0, -60.0, 1.0)}
    comp[20] {pt3dclear() pt3dadd(30.0, -25.0, 0.0, 1.0) pt3dadd(45.0, -45.0, 0.0, 1.0)}
    comp[20] {pt3dadd(60.0, -65.0, 0.0, 1.0)}
    comp[19] {pt3dclear() pt3dadd(0.0, -25.0, 30.0, 1.0) pt3dadd(0.0, -45.0, 45.0, 1.0)}
    comp[19] {pt3dadd(0.0, -65.0, 60.0, 1.0)}
    comp[18] {pt3dclear() pt3dadd(-30.0, -25.0, 0.0, 1.0) pt3dadd(-45.0, -45.0, 0.0, 1.0)}
    comp[18] {pt3dadd(-60.0, -65.0, 0.0, 1.0)}
    comp[17] {pt3dclear() pt3dadd(34.641018, 5.0, -34.64101, 1.0) pt3dadd(51.961525, 0.0, -51.961517, 1.0)}
    comp[17] {pt3dadd(69.28174, -5.0, -69.28177, 1.0)}
    comp[16] {pt3dclear() pt3dadd(34.640957, 5.0, 34.640995, 1.0) pt3dadd(51.961487, 0.0, 51.961525, 1.0)}
    comp[16] {pt3dadd(69.28227, -5.0, 69.2822, 1.0)}
    comp[15] {pt3dclear() pt3dadd(-34.641, 5.0, -34.641014, 1.0) pt3dadd(-51.961494, 0.0, -51.961517, 1.0)}
    comp[15] {pt3dadd(-69.2822, -5.0, -69.282326, 1.0)}
    comp[14] {pt3dclear() pt3dadd(-34.64103, 5.0, 34.64107, 1.0) pt3dadd(-51.961548, 0.0, 51.961563, 1.0)}
    comp[14] {pt3dadd(-69.281975, -5.0, 69.282005, 1.0)}
    comp[73] {pt3dclear() pt3dadd(-0.0, -75.0, 0.0, 1.0) pt3dadd(-9.735465, -98.0265, 0.0, 1.0)}
    comp[73] {pt3dadd(-19.470894, -121.05301, 0.0, 1.0)}
    comp[71] {pt3dclear() pt3dadd(-0.0, -75.0, 0.0, 1.0) pt3dadd(9.735455, -98.0265, 0.0, 1.0)}
    comp[71] {pt3dadd(19.470905, -121.05301, 0.0, 1.0)}
    comp[40] {pt3dclear() pt3dadd(-0.0, 115.0, 0.0, 6.4) pt3dadd(0.0, 140.0, 0.0, 6.4)}
    comp[40] {pt3dadd(-0.0, 165.0, 0.0, 6.4)}
    comp[25] {pt3dclear() pt3dadd(-0.0, 65.0, -50.0, 1.0) pt3dadd(0.0, 65.0, -75.0, 1.0)}
    comp[25] {pt3dadd(-0.0, 65.0, -100.0, 1.0)}
    comp[24] {pt3dclear() pt3dadd(50.0, 65.0, 0.0, 1.0) pt3dadd(75.0, 65.0, 0.0, 1.0)}
    comp[24] {pt3dadd(100.0, 65.0, 0.0, 1.0)}
    comp[23] {pt3dclear() pt3dadd(0.0, 65.0, 50.0, 1.0) pt3dadd(0.0, 65.0, 75.0, 1.0)}
    comp[23] {pt3dadd(0.0, 65.0, 100.0, 1.0)}
    comp[22] {pt3dclear() pt3dadd(-50.0, 65.0, 0.0, 1.0) pt3dadd(-75.0, 65.0, 0.0, 1.0)}
    comp[22] {pt3dadd(-100.0, 65.0, 0.0, 1.0)}
    comp[33] {pt3dclear() pt3dadd(0.0, -65.0, -60.0, 1.0) pt3dadd(0.0, -85.0, -75.0, 1.0)}
    comp[33] {pt3dadd(0.0, -105.0, -90.0, 1.0)}
    comp[32] {pt3dclear() pt3dadd(60.0, -65.0, 0.0, 1.0) pt3dadd(75.0, -85.0, 0.0, 1.0)}
    comp[32] {pt3dadd(90.0, -105.0, 0.0, 1.0)}
    comp[31] {pt3dclear() pt3dadd(0.0, -65.0, 60.0, 1.0) pt3dadd(0.0, -85.0, 75.0, 1.0)}
    comp[31] {pt3dadd(0.0, -105.0, 90.0, 1.0)}
    comp[30] {pt3dclear() pt3dadd(-60.0, -65.0, 0.0, 1.0) pt3dadd(-75.0, -85.0, 0.0, 1.0)}
    comp[30] {pt3dadd(-90.0, -105.0, 0.0, 1.0)}
    comp[29] {pt3dclear() pt3dadd(69.28174, -5.0, -69.28177, 1.0) pt3dadd(86.602905, -10.0, -86.60286, 1.0)}
    comp[29] {pt3dadd(103.923355, -15.0, -103.92326, 1.0)}
    comp[28] {pt3dclear() pt3dadd(69.28227, -5.0, 69.2822, 1.0) pt3dadd(86.60222, -10.0, 86.60239, 1.0)}
    comp[28] {pt3dadd(103.923, -15.0, 103.92307, 1.0)}
    comp[27] {pt3dclear() pt3dadd(-69.2822, -5.0, -69.282326, 1.0) pt3dadd(-86.602486, -10.0, -86.60253, 1.0)}
    comp[27] {pt3dadd(-103.92276, -15.0, -103.922714, 1.0)}
    comp[26] {pt3dclear() pt3dadd(-69.281975, -5.0, 69.282005, 1.0) pt3dadd(-86.60266, -10.0, 86.6028, 1.0)}
    comp[26] {pt3dadd(-103.92302, -15.0, 103.92299, 1.0)}
    comp[74] {pt3dclear() pt3dadd(-19.470894, -121.05301, 0.0, 1.0) pt3dadd(-29.206394, -144.08, 0.0, 1.0)}
    comp[74] {pt3dadd(-38.94189, -167.106, 0.0, 1.0)}
    comp[72] {pt3dclear() pt3dadd(19.470905, -121.05301, 0.0, 1.0) pt3dadd(29.206406, -144.08, 0.0, 1.0)}
    comp[72] {pt3dadd(38.941807, -167.106, 0.0, 1.0)}
    comp[42] {pt3dclear() pt3dadd(-0.0, 165.0, 0.0, 4.0) pt3dadd(9.734937, 188.02641, 0.0, 4.0)}
    comp[42] {pt3dadd(19.470385, 211.05298, 0.0, 4.0)}
    comp[41] {pt3dclear() pt3dadd(-0.0, 165.0, 0.0, 4.0) pt3dadd(-9.735199, 188.0264, 0.0, 4.0)}
    comp[41] {pt3dadd(-19.471302, 211.05292, 0.0, 4.0)}
    comp[37] {pt3dclear() pt3dadd(-0.0, 65.0, -100.0, 1.0) pt3dadd(-0.0, 65.0, -125.0, 1.0)}
    comp[37] {pt3dadd(-0.0, 65.0, -150.0, 1.0)}
    comp[36] {pt3dclear() pt3dadd(100.0, 65.0, 0.0, 1.0) pt3dadd(125.0, 65.0, 0.0, 1.0)}
    comp[36] {pt3dadd(150.0, 65.0, 0.0, 1.0)}
    comp[35] {pt3dclear() pt3dadd(0.0, 65.0, 100.0, 1.0) pt3dadd(0.0, 65.0, 125.0, 1.0)}
    comp[35] {pt3dadd(0.0, 65.0, 150.0, 1.0)}
    comp[34] {pt3dclear() pt3dadd(-100.0, 65.0, 0.0, 1.0) pt3dadd(-125.0, 65.0, 0.0, 1.0)}
    comp[34] {pt3dadd(-150.0, 65.0, 0.0, 1.0)}
    comp[44] {pt3dclear() pt3dadd(19.470385, 211.05298, 0.0, 4.0) pt3dadd(29.20583, 234.07956, 0.0, 4.0)}
    comp[44] {pt3dadd(38.94128, 257.10614, 0.0, 4.0)}
    comp[43] {pt3dclear() pt3dadd(-19.471302, 211.05292, 0.0, 4.0) pt3dadd(-29.20599, 234.07948, 0.0, 4.0)}
    comp[43] {pt3dadd(-38.942097, 257.106, 0.0, 4.0)}

    comp[52] {pt3dclear() pt3dadd(38.94128, 257.10614, 0.0, 1.6) pt3dadd(56.875668, 274.52423, 0.0, 1.6)}
    comp[52] {pt3dadd(74.809364, 291.94165, 0.0, 1.6)}
    comp[51] {pt3dclear() pt3dadd(38.94128, 257.10614, 0.0, 1.6) pt3dadd(38.94128, 274.52423, -17.934387, 1.6)}
    comp[51] {pt3dadd(38.940094, 291.94177, -35.86782, 1.6)}
    comp[50] {pt3dclear() pt3dadd(38.94128, 257.10614, 0.0, 1.6) pt3dadd(38.94128, 274.52423, 17.934387, 1.6)}
    comp[50] {pt3dadd(38.941246, 291.94193, 35.868366, 1.6)}
    comp[49] {pt3dclear() pt3dadd(38.94128, 257.10614, 0.0, 1.6) pt3dadd(38.94185, 282.1057, 0.0, 1.6)}
    comp[49] {pt3dadd(38.9417, 307.10605, 0.0, 1.6)}
    comp[48] {pt3dclear() pt3dadd(-38.942097, 257.106, 0.0, 1.6) pt3dadd(-38.941532, 282.10562, 0.0, 1.6)}
    comp[48] {pt3dadd(-38.941692, 307.10593, 0.0, 1.6)}
    comp[47] {pt3dclear() pt3dadd(-38.942097, 257.106, 0.0, 1.6) pt3dadd(-38.94128, 274.52423, 17.934387, 1.6)}
    comp[47] {pt3dadd(-38.941307, 291.94186, 35.868286, 1.6)}
    comp[46] {pt3dclear() pt3dadd(-38.942097, 257.106, 0.0, 1.6) pt3dadd(-38.94128, 274.52423, -17.934387, 1.6)}
    comp[46] {pt3dadd(-38.94071, 291.94235, -35.868736, 1.6)}
    comp[45] {pt3dclear() pt3dadd(-38.942097, 257.106, 0.0, 1.6) pt3dadd(-56.876, 274.52368, 0.0, 1.6)}
    comp[45] {pt3dadd(-74.809875, 291.94135, 0.0, 1.6)}
    comp[60] {pt3dclear() pt3dadd(74.809364, 291.94165, 0.0, 1.6) pt3dadd(92.743034, 309.35907, 0.0, 1.6)}
    comp[60] {pt3dadd(110.67742, 326.77716, 0.0, 1.6)}
    comp[59] {pt3dclear() pt3dadd(38.940094, 291.94177, -35.86782, 1.6) pt3dadd(38.93914, 309.36, -53.801983, 1.6)}
    comp[59] {pt3dadd(38.937958, 326.7775, -71.7354, 1.6)}
    comp[58] {pt3dclear() pt3dadd(38.941246, 291.94193, 35.868366, 1.6) pt3dadd(38.941235, 309.3596, 53.802303, 1.6)}
    comp[58] {pt3dadd(38.94122, 326.77725, 71.736244, 1.6)}
    comp[57] {pt3dclear() pt3dadd(38.9417, 307.10605, 0.0, 1.6) pt3dadd(38.942265, 332.10565, 0.0, 1.6)}
    comp[57] {pt3dadd(38.94211, 357.10596, 0.0, 1.6)}
    comp[56] {pt3dclear() pt3dadd(-38.941692, 307.10593, 0.0, 1.6) pt3dadd(-38.941853, 332.1062, 0.0, 1.6)}
    comp[56] {pt3dadd(-38.94127, 357.1058, 0.0, 1.6)}
    comp[55] {pt3dclear() pt3dadd(-38.941307, 291.94186, 35.868286, 1.6) pt3dadd(-38.94136, 309.3595, 53.80219, 1.6)}
    comp[55] {pt3dadd(-38.941402, 326.77713, 71.73609, 1.6)}
    comp[54] {pt3dclear() pt3dadd(-38.94071, 291.94235, -35.868736, 1.6) pt3dadd(-38.939907, 309.35983, -53.802338, 1.6)}
    comp[54] {pt3dadd(-38.939095, 326.77734, -71.73598, 1.6)}
    comp[53] {pt3dclear() pt3dadd(-74.809875, 291.94135, 0.0, 1.6) pt3dadd(-92.74378, 309.35907, 0.0, 1.6)}
    comp[53] {pt3dadd(-110.67767, 326.77673, 0.0, 1.6)}
    comp[68] {pt3dclear() pt3dadd(110.67742, 326.77716, 0.0, 1.6) pt3dadd(128.6111, 344.19458, 0.0, 1.6)}
    comp[68] {pt3dadd(146.5448, 361.61197, 0.0, 1.6)}
    comp[67] {pt3dclear() pt3dadd(38.937958, 326.7775, -71.7354, 1.6) pt3dadd(38.936993, 344.1957, -89.66957, 1.6)}
    comp[67] {pt3dadd(38.935814, 361.61322, -107.60299, 1.6)}
    comp[66] {pt3dclear() pt3dadd(38.94122, 326.77725, 71.736244, 1.6) pt3dadd(38.941196, 344.19492, 89.67018, 1.6)}
    comp[66] {pt3dadd(38.941177, 361.6126, 107.604164, 1.6)}
    comp[65] {pt3dclear() pt3dadd(38.94211, 357.10596, 0.0, 1.6) pt3dadd(38.941936, 382.10623, 0.0, 1.6)}
    comp[65] {pt3dadd(38.942516, 407.10583, 0.0, 1.6)}
    comp[64] {pt3dclear() pt3dadd(-38.94127, 357.1058, 0.0, 1.6) pt3dadd(-38.941452, 382.10614, 0.0, 1.6)}
    comp[64] {pt3dadd(-38.941593, 407.1064, 0.0, 1.6)}
    comp[63] {pt3dclear() pt3dadd(-38.941402, 326.77713, 71.73609, 1.6) pt3dadd(-38.940933, 344.19424, 89.66936, 1.6)}
    comp[63] {pt3dadd(-38.94098, 361.61185, 107.60323, 1.6)}
    comp[62] {pt3dclear() pt3dadd(-38.939095, 326.77734, -71.73598, 1.6) pt3dadd(-38.938526, 344.19547, -89.67031, 1.6)}
    comp[62] {pt3dadd(-38.937725, 361.6129, -107.60391, 1.6)}
    comp[61] {pt3dclear() pt3dadd(-110.67767, 326.77673, 0.0, 1.6) pt3dadd(-128.61156, 344.1944, 0.0, 1.6)}
    comp[61] {pt3dadd(-146.54546, 361.6121, 0.0, 1.6)}

 }
         proc biophys() {
 // 
 //       insert the mechanisms and assign max conductances
 // 
 forsec all { insert pas
insert extracellular
	xraxial=1e+09 
	xg=1e+09 
	xc=0 
	e_extracellular  }   // g_pas has two values; soma-dend,axon

 forsec level[ 0] {
       insert naf
       gbar_naf =   0.4
       insert kdr
       gbar_kdr =   0.4
       insert ka
       gbar_ka =   0.002
       insert k2
       gbar_k2 =   0.0001
 }
 forsec level[ 1] {
       insert naf
       gbar_naf =   0.1875
       insert nap
       gbar_nap =   0.00012
       insert kdr
       gbar_kdr =   0.125
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.03
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.01
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   26000.
 }
 forsec level[ 2] {
       insert naf
       gbar_naf =   0.09375
       insert nap
       gbar_nap =   0.00006
       insert kdr
       gbar_kdr =   0.09375
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 3] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8e-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 4] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 5] {
       insert naf
       gbar_naf =   0.125
       insert nap
       gbar_nap =   0.00008
       insert kdr
       gbar_kdr =   0.125
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.03
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 6] {
       insert naf
       gbar_naf =   0.09375
       insert nap
       gbar_nap =   0.00006
       insert kdr
       gbar_kdr =   0.09375
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 7] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 8] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 9] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 10] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 11] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }
 forsec level[ 12] {
       insert naf
       gbar_naf =   0.0125
       insert nap
       gbar_nap =   0.8E-05
       insert kdr
       gbar_kdr =   0.00625
       insert kc
       gbar_kc =   0.012
       insert ka
       gbar_ka =   0.002
       insert km
       gbar_km =   0.0075
       insert k2
       gbar_k2 =   0.0001
       insert kahp
       gbar_kahp =   0.00004
       insert cal
       gbar_cal =   0.001
       insert cat
       gbar_cat =   0.0001
       insert ar
       gbar_ar =   0.00025
       insert cad
       // *** ca diffusion: beta=1/tau
       beta_cad  =   0.05
       // cafor(I) (FORTRAN) converted to phi (NEURON)
       phi_cad =   52000.
 }

 forsec all {
    cm =   0.9  // assign global specific capac.
 }
 // 
 //  passive membrane resistance (leak) and axial resistance
 // 
 forsec Soma_Dendrites {
    g_pas =   2.E-05
    Ra =   250.
 }
 forsec Axon {
    g_pas =   0.001
    Ra =   100.
 }
 ceiling_cad = 1e6 //  nearly unlimited Ca concentration
 // print "made it to end of initialization from SCORTMAJ_FRB()"
 }  // end of biophys
 
 // Compartment Area: Dendritic.spines double area of
 // dend. membrane, which in Traubs method is equivalent to
 // only multiplying all dend. max conductances by two
 // (the area is doubled but the volume is const.)
 proc double_dend_cond() {
   spine_area_multiplier = 2
   forsec Dendrites {
        if (ismembrane("nap")) { gbar_nap *= spine_area_multiplier }
        if (ismembrane("napf")) { gbar_napf *= spine_area_multiplier }
        if (ismembrane("napf_tcr")) { gbar_napf_tcr *= spine_area_multiplier }
        if (ismembrane("naf")) { gbar_naf *= spine_area_multiplier }
        if (ismembrane("naf_tcr")) { gbar_naf_tcr *= spine_area_multiplier }
        if (ismembrane("naf2")) { gbar_naf2 *= spine_area_multiplier }
        if (ismembrane("kc")) { gbar_kc *= spine_area_multiplier }
        if (ismembrane("kc_fast")) { gbar_kc_fast *= spine_area_multiplier }

        if (ismembrane("kahp")) { gbar_kahp *= spine_area_multiplier }
        if (ismembrane("km")) { gbar_km *= spine_area_multiplier }
        if (ismembrane("kdr")) { gbar_kdr *= spine_area_multiplier }
        if (ismembrane("kdr_fs")) { gbar_kdr_fs *= spine_area_multiplier }
        if (ismembrane("ka")) { gbar_ka *= spine_area_multiplier }
        if (ismembrane("ka_ib")) { gbar_ka_ib *= spine_area_multiplier }
        if (ismembrane("k2")) { gbar_k2 *= spine_area_multiplier }
        if (ismembrane("cal")) { gbar_cal *= spine_area_multiplier }
        if (ismembrane("cat")) { gbar_cat *= spine_area_multiplier }
        if (ismembrane("cat_a")) { gbar_cat_a *= spine_area_multiplier }
        if (ismembrane("ar")) { gbar_ar *= spine_area_multiplier }
        if (ismembrane("pas")) { g_pas *= spine_area_multiplier }
        cm = cm * spine_area_multiplier
   }
 }
 // double_dend_cond()  // run for cells w/ spines
        proc position() { local i
 // comp switched to comp[1] since 0 deleted
         forsec all { for i = 0, n3d()-1 {
     pt3dchange(i, $1-x+x3d(i), \
      $2-y+y3d(i), $3-z+z3d(i),diam3d(i))
        }
		}
         x=$1 y=$2 z=$3
        }
         proc connect2target() { 
  // $o1 targ point process, $o2 returned NetCon
           comp[presyn_comp] $o2 = new NetCon(&v(1),$o1)
	$o2.threshold = 0
         }
         objref syn_
         proc synapses() {
         // place for each compartment that has input
         // statements like 
 //comp[3] syn_=new AlphaSynKinT(1) synlist.append(syn_)
 //comp[4] syn_=new NMDA(1) synlist.append(syn_)
         }
 
 // is not an artificial cell:
      func is_art() { return 0 }
 
 
 
         proc more_adjustments() {
 forsec all {
    // global reversal potentials
    ek =  -95.
    e_pas =  -70.
    ena =   50.
    vca =   125.
    forsec all if (ismembrane("ar")) erev_ar =  -35.
    e_gaba_a =  -81.
 }
 forsec all if (ismembrane("naf")) {fastNa_shift_naf=-3.5} // extended initializations from integrate_suppyrFRB()
// forsec all { if (ismembrane("km")) {gbar_km = 2*gbar_km}}
// forsec Soma_Dendrites {
//   gbar_naf = 1.25*gbar_naf
//   gbar_kdr = 1.25*gbar_kdr
// }
// forsec all if (ismembrane("nap")) { gbar_nap *=   0.2 }
// forsec all if (ismembrane("kc")) { gbar_kc *=   1.6 }
// forsec all if (ismembrane("kahp")) { gbar_kahp *=   0.4 }
// forsec all if (ismembrane("km")) { gbar_km *=   1. }
 }
  endtemplate suppyrRS