TITLE L-calcium channel
: L-type calcium channel with [Ca]i inactivation
: from Jaffe, D. B., Ross, W. N., Lisman, J. E., Laser-Ross, N., Miyakawa, H., and Johnston, D. A. A model for dendritic Ca2
: accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J. Neurophysiol. 71:1O65-1077 1994.
: conduction density estimate of 50-200 pS/mu2; 0.0025 S/cm2 (5-20 channels of 10 each)
: M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3
: hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995).
: adapted from http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=3263&file=\ca3_db\cal2.mod
: this version from https://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=148094&file=\kv72-R213QW-mutations\cal2.mod
: Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Migliore M, Cilio MR, Taglialatela M (2013) Genotype-phenotype
: correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv7.2 potassium channel subunits. PNAS 110:4386-4391
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degC)
KTOMV = .0853 (mV/degC)
}
PARAMETER {
v (mV)
celsius (degC)
gcalbar=.003 (mho/cm2)
ki=.001 (mM)
cai = 50.e-6 (mM)
cao = 2 (mM)
q10 = 5
mmin=0.2
tfa = 1
a0m =0.1
zetam = 2
vhalfm = 4
gmm=0.1
ggk
}
NEURON {
SUFFIX cal
USEION ca READ cai,cao WRITE ica
RANGE gcalbar,cai, ica, gcal, ggk
GLOBAL minf,tau
}
STATE {
m
}
ASSIGNED {
ica (mA/cm2)
gcal (mho/cm2)
minf
tau (ms)
}
INITIAL {
rate(v)
m = minf
gcal = gcalbar*m*m*h2(cai)
ggk=ghk(v,cai,cao)
ica = gcal*ggk
}
BREAKPOINT {
SOLVE state METHOD cnexp
gcal = gcalbar*m*m*h2(cai)
ggk=ghk(v,cai,cao)
ica = gcal*ggk
}
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (DegC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alp(v(mV)) (1/ms) {
alp = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0)
}
FUNCTION bet(v(mV)) (1/ms) {
bet = 0.29*exp(-v/10.86)
}
FUNCTION alpmt(v(mV)) {
alpmt = exp(0.0378*zetam*(v-vhalfm))
}
FUNCTION betmt(v(mV)) {
betmt = exp(0.0378*zetam*gmm*(v-vhalfm))
}
DERIVATIVE state {
rate(v)
m' = (minf - m)/tau
}
PROCEDURE rate(v (mV)) { :callable from hoc
LOCAL a, b, qt
qt=q10^((celsius-25)/10)
a = alp(v)
b = 1/((a + bet(v)))
minf = a*b
tau = betmt(v)/(qt*a0m*(1+alpmt(v)))
if (tau<mmin/qt) {tau=mmin/qt}
}