# -*- coding: utf-8 -*-
"""
Created on Sat Oct 3 19:19:06 2020
@author: rh17872 - Rachel Humphries
Investigates effect of potassium channel inhibition/cholinergic modulation on NMDA-mediated nonlinearity
Stimulates increasing numbers of AMPA/NMDA inputs on each dendritic section in the SR/SLM region
Produces data used in Figures 5 and 6 of paper:
Rachel Humphries, Jack R. Mellor, Cian O'Donnell,
Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model,
Neuroscience, 2021,ISSN 0306-4522
https://doi.org/10.1016/j.neuroscience.2021.11.014
"""
import numpy as np
from neuron import h
from neuron.units import ms, mV
h.load_file('stdrun.hoc')
import ca3_synapse_functions as csf
import pickle
'''Experiment parameters'''
pickle_file = "ach_output.pkl"
experiment = ["Control", "ACh", "Ka" r'$\downarrow$', "Km" r'$\downarrow$',"Kca" r'$\downarrow$',"Kir" r'$\downarrow$']
save_exps = ["Control", "ACh", "Ka", "Km", "Kca", "Kir"]
regions = ["SR", "SLM"]
'''Synapse parameters'''
syn_ISIs = 1
syn_density = 1 #ums between each synapse 0,1,2,5
syn_NAratios = [0.5] #AMPA to NMDA ratio
nmda_times = [5,16]
ampa_times = [0.5,1.5] #rise and decay times 0.4,4.1
total_cond_ac = 0.0035*0.5
total_cond_pp = 0.0035*0.5#0.00064
a_ac_weights, n_ac_weights = csf.calculate_synapse_weights(syn_NAratios,total_cond_ac, "AC")
a_pp_weights, n_pp_weights = csf.calculate_synapse_weights(syn_NAratios,total_cond_pp, "PP")
for i,x in enumerate(a_ac_weights) :
print ("AC AMPA:NMDA ratios :", x/n_ac_weights[i] )
print ("PP AMPA:NMDA ratios :", a_pp_weights[i]/n_pp_weights[i])
'''Stimulation parameters'''
step = 1
total_syns = 20
num_synapses = range(step,total_syns+1,step)
stim_num = 1 #number of stims
stim_start = 810 #start of stim (ms)
stim_noise = 0 #noise of stim
stim_interval = 20 #interval between stims (20ms = 50hz)
'''Optimiser parameters'''
def setup_neuron_model() :
optimiser = [5.557118781038023e-11, 0.0011114634012579765, 0.0011580392555217256, 3.472924393529932e-06, 4.403602806593143e-10, 4.616466181142678e-09, 5.583387888166266e-06, 5.5750027000813285, -29.999999524116564, 30.0, 30.0, -48.167858484536445, 0.5, 0.5, 0.5, 0.20000188521088813]
gka =optimiser[0]#random.uniform(0.01,1) #0.8 #0.02
gkm = optimiser[1]#random.uniform(0.001,0.1)#0.1 #0.017 #0.03
gkca =optimiser[2]#random.uniform(0.001,0.1)#0.01 #0.001
gkir =optimiser[3]#random.uniform(0.0001,0.01)#0.001 #0.00015 #1.44e-4
gpas =optimiser[4]#random.uniform(0.0004,0.04)#0.0004 #4e-8
gkdr = optimiser[5]
gih = optimiser[6]
ka_sh = optimiser[7]
km_sh = optimiser[8]#random.uniform(0,25)
ih_sh = optimiser[9]#random.uniform(0,25)
kir_sh = optimiser[10]#random.uniform(0,25)
epas = optimiser[11] #-60.
ka_ach_block = optimiser[12] #random.uniform(0.,0.2)
km_ach_block = optimiser[13] #random.uniform(0.,0.2)
kca_ach_block = optimiser[14] #random.uniform(0.,0.2)
kir_ach_block = optimiser[15]#random.uniform(0.,0.2)
'''Set up neuron model'''
h('{Vrest = -75.}')
h('{vrest_val = -75.}')
h('{tstop=1000}')
h('{epas = -70}')
h('{epas_val = -70}')
#h('{Rm = 50740}')
#h('{rm_val = 50740}')
h('{Cm = 0.7}')
h('{RaAll= 150}')
h('{gpas = 1/25370}')
h('{gpas_val = 1/25370}')
h('AXONM = 5')
h('{gna = 0.0}')
h('{gkdr = 0.005}') #0.00518 #0.125
h('{gkdr_val = 0.005}') #0.00518 #0.125
h('{KMULT = 0.02}') #Ka conductance
h('{gka_val = 0.02}') #Ka conductance
h('{gkm=0.017}')
h('{gkm_val=0.017}')
h('{gkir=1.44e-05}')
h('{gkir_val=1.44e-05}')
h('{gkd=0.0}')
h('{gkd_val=0.0}')
h('{gc=1.e-5}')
h('{gcal=gc}') #1.0659e-5 #0.000507
h('{gcal_val=gc}') #1.0659e-5 #0.000507
h('{gcat=gc}') #5.984e-7 #4.554e-7
h('{gcat_val=gc}') #5.984e-7 #4.554e-7
h('{gcan=gc}') #3.791e-5 #0.000165
h('{gcan_val=gc}') #3.791e-5 #0.000165
h('{gKc=5e-5}') #0.000111 #0.00412
h('{gKc_val=5e-5}')
#h('{gkc_val=5e-5}')
h('{gkcas=0.001}')
h('{gkcas_val=0.001}')
h('{gahp=0.0001}') #0.000511 #0.00179
h('{gahp_val=0.0001}')
h('{ghd=0.00001}') #6.529e-5 #9.578e-5
h('{ghd_val=0.00001}')
h('km_sh = 0')
h('km_sh_val = 0')
h('ka_sh = 0')
h('ka_sh_val = 0')
h('kir_sh = 0')
h('kir_sh_val = 0')
h('ih_sh = 0')
h('ih_sh_val = 0')
h('na_block = 1.')
h('na_block_val = 1.')
h('ka_block = 1.')
h('ka_block_val = 1.')
h.load_file('ca3b-cell1zr-fig9b.hoc')
h.gpas_val = gpas
h.epas_val = epas
#h.rm_val = rm
h.gkdr_val = gkdr
h.ghd_val = gih
h.km_sh_val = km_sh
h.ka_sh_val= ka_sh
h.kir_sh_val= kir_sh
h.ih_sh_val = ih_sh
h.dt = 1.
dt = 1.
return gka, gkm, gkca, gkir, ka_ach_block, km_ach_block, kca_ach_block, kir_ach_block, dt
gka, gkm, gkca, gkir, ka_ach_block, km_ach_block, kca_ach_block, kir_ach_block, dt = setup_neuron_model()
'''Setup potassium channel conductances for each run'''
def setup_potassium_channels(save_exps,pot_channel,pot_conductance,pot_block) :
if pot_channel in save_exps :
pot_cond_list= [pot_conductance]*(len(save_exps)) #0.02 / 0.0068 /0.8 (*40)
pot_cond_list = [0. if i==save_exps.index(pot_channel) else x for i,x in enumerate(pot_cond_list)]
pot_cond_list = [pot_conductance*pot_block if save_exps[i]=="ACh" else x for i,x in enumerate(pot_cond_list)]
else :
pot_cond_list = [pot_conductance]*(len(save_exps))
pot_cond_list = [pot_conductance*pot_block if save_exps[i]=="ACh" else x for i,x in enumerate(pot_cond_list)]
return pot_cond_list
gkas = setup_potassium_channels(save_exps,"Ka",gka,1.) #ka_ach_block has to be set during simulation in the hoc file
gkms = setup_potassium_channels(save_exps,"Km",gkm,km_ach_block)
gkcas = setup_potassium_channels(save_exps,"Kca",gkca,kca_ach_block)
gkirs = setup_potassium_channels(save_exps,"Kir",gkir,kir_ach_block)
print ("Potassium conductances: ", gkas, gkms, gkcas, gkirs)
'''Divide and setup dendrites'''
sl_dends = []
sr_dends = []
slm_dends = []
h.distance(sec=h.soma[0]) #set the origin at the soma
sl_sr_bound = 150
sr_slm_bound = 400
rel = 0.5
sl_dends, sr_dends, slm_dends = csf.divide_dends(rel,sl_sr_bound,sr_slm_bound,sl_dends,sr_dends,slm_dends)
so_dends = range(int(h.numbasal)) #basal dendrites
all_dends = [so_dends, sl_dends, sr_dends, slm_dends]
'''Identify dendrite sections longer than 20um to use in simulation'''
so_dend_200 = []
for d in so_dends :
if h.dendrite[d].L > 20 :
so_dend_200.append([d])
sr_dend_200 = [[d] for d in sr_dends if h.apical_dendrite[d].L > 20]
slm_dend_200 = [[d] for d in slm_dends if h.apical_dendrite[d].L > 20]
all_dends_200 = []
all_dends_region = []
if "SO" in regions :
all_dends_200.append(so_dend_200)
all_dends_region.append(so_dends)
if "SR" in regions :
all_dends_200.append(sr_dend_200)
all_dends_region.append(sr_dends)
if "SLM" in regions :
all_dends_200.append(slm_dend_200)
all_dends_region.append(slm_dends)
'''Calculate dendrite diameters'''
dend_diams = csf.get_dend_diameters(all_dends_200, regions)
'''Set up lists'''
soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
soma_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
dend_distances = [[[] for j in x]for x in all_dends_200]
irs = [[[]for j in x] for x in all_dends_200]
dend_centers = [[[]for j in x]for x in all_dends_200]
nmda_currs = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_soma_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_dend_volts = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_soma_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
ampa_dend_peaks = [[[[] for i in experiment] for j in x]for x in all_dends_200]
'''Run simulation'''
for r,region in enumerate(all_dends_200) : #loops through region
print ("Region: ", regions[r])
for j,dends in enumerate(region) : #loops through dendrite group
print ("Dendrites: ", dends)
#calculate where to position synapses on dendrite section.
if regions[r] == "SO" :
pos_per_dend, mid_dend,mid_syn_pos,ordered_pos = csf.synapse_positioning(h.dendrite,dends,syn_density,num_synapses[-1])
else :
pos_per_dend, mid_dend,mid_syn_pos,ordered_pos = csf.synapse_positioning(h.apical_dendrite,dends,syn_density,num_synapses[-1])
for s,nar in enumerate(experiment) : #loops through different potassium channel blocks.
print ("Experiment: ", experiment[s])
h.gka_val = gkas[s]
h.ka_block_val = 1.
if gkas[s] == 0.:
h.ka_block_val = 0.
if nar == "ACh":
h.ka_block_val = ka_ach_block
h.na_block_val = 1.
if h.gna == 0.:
h.na_block_val = 0.
h.gkm_val = gkms[s]
h.gkcas_val = gkcas[s]
h.gkir_val = gkirs[s]
for n in num_synapses : #loops through number of synapses to add
print ("Combined synapses" , n) # adds both AMPA and NMDA inputs
glu_syns = []
glu_netstim = []
glu_netcon = []
for ns in range(n) : #loops through each synapse to add
d = dends[ordered_pos[ns][0]]
p = pos_per_dend[ordered_pos[ns][0]][ordered_pos[ns][1]]
#print "Synapses: ", d, p
if regions[r] == "SO" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.dendrite[d],p,n_ac_weights[0],nmda_times[0],nmda_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SR" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.apical_dendrite[d],p,n_ac_weights[0],nmda_times[0],nmda_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SLM" :
glu_syns,glu_netstim,glu_netcon = csf.insert_nmda_baker(h.apical_dendrite[d],p,n_pp_weights[0],nmda_times[0],nmda_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_pp_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
soma_v = h.Vector().record(h.soma[0](0.5)._ref_v,dt) #record soma voltage
#record stimulated dendrite voltage
if regions[r] == "SO" :
dend_v = h.Vector().record(h.dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
else:
dend_v = h.Vector().record(h.apical_dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
t = h.Vector().record(h._ref_t,dt) #record time
h.fig9b() #calls the function in the hoc file to run the simulation
soma_v = np.array(soma_v)
dend_v = np.array(dend_v)
soma_volts[r][j][s].append(soma_v)
dend_volts[r][j][s].append(dend_v)
soma_peaks[r][j][s].append(max(soma_v[int(stim_start/dt):]))
dend_peaks[r][j][s].append(max(dend_v[int(stim_start/dt):]))
freq=0
rin= h.Impedance() # does not measure resting Rin here
rin.compute(freq,1)
if regions[r] == "SO" :
input_imp = rin.input(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.dendrite[dends[ordered_pos[0][0]]])
else:
input_imp = rin.input(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.apical_dendrite[dends[ordered_pos[0][0]]])
irs[r][j].append(input_imp)
'''Repeat simulation with AMPA only synapses'''
for n in num_synapses : #loops through number of synapses to add
print ("Only AMPA" , n)
glu_syns = []
glu_netstim = []
glu_netcon = []
for ns in range(n) : #loops through each synapse to add
d = dends[ordered_pos[ns][0]]
p = pos_per_dend[ordered_pos[ns][0]][ordered_pos[ns][1]]
#print "Synapses: ", d, p
if regions[r] == "SO" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SR" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_ac_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
if regions[r] == "SLM" :
glu_syns,glu_netstim,glu_netcon = csf.insert_ampar(h.apical_dendrite[d],p,a_pp_weights[0],ampa_times[0],ampa_times[1],glu_syns,glu_netstim,glu_netcon,stim_num,stim_interval,stim_start,stim_noise)
soma_v = h.Vector().record(h.soma[0](0.5)._ref_v,dt)
if regions[r] == "SO" :
dend_v = h.Vector().record(h.dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
else:
dend_v = h.Vector().record(h.apical_dendrite[dends[ordered_pos[0][0]]](pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])._ref_v,dt)
t = h.Vector().record(h._ref_t,dt)
h.fig9b()
soma_v = np.array(soma_v)
dend_v = np.array(dend_v)
ampa_soma_volts[r][j][s].append(soma_v)
ampa_dend_volts[r][j][s].append(dend_v)
ampa_soma_peaks[r][j][s].append(max(soma_v[int(stim_start/dt):]))
ampa_dend_peaks[r][j][s].append(max(dend_v[int(stim_start/dt):]))
if regions[r] == "SO" :
dend_distances[r][j].append(-h.distance(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.dendrite[dends[ordered_pos[0][0]]]))
else :
dend_distances[r][j].append(h.distance(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]],sec=h.apical_dendrite[dends[ordered_pos[0][0]]]))
dend_centers[r][j].append(dends[ordered_pos[0][0]])
dend_centers[r][j].append(pos_per_dend[ordered_pos[0][0]][ordered_pos[0][1]])
for i,r in enumerate(irs):
for j,d in enumerate(r) :
print (regions[i], "IRs ", all_dends_200[i][j], d )
time = np.array(t)
with open(pickle_file, 'wb') as f: # Python 3: open(..., 'wb')
pickle.dump([all_dends_200,soma_volts, dend_volts, dt, time, irs, soma_peaks, dend_peaks, nmda_currs, ampa_soma_peaks,ampa_dend_peaks,ampa_soma_volts, ampa_dend_volts,dend_distances,sr_dend_200,slm_dend_200,dend_diams,so_dends,sl_dends,sr_dends,slm_dends], f)
f.close()
'''
Pickle file data
all_dends_200 : dendrite sections used in simulation
soma_volts : somatic voltages of each simulation (mv)
dend_volts : dendritic voltages of stimulated dendrite (mv)
dt : simulation timestep (ms)
time : time
irs : input resistance during simulation (Mohm)
soma_peaks : peak of each somatic voltage trace (mv)
dend_peaks : peak of each dendritic voltage trace (mv)
nmda_currs : NMDA current
ampa_soma_peaks : peak of AMPA only simulations recorded at soma (mv)
ampa_dend_peaks : peak of AMPA only simulations recorded in dendrites (mv)
ampa_soma_volts : somatic voltages of each AMPA-only simulation (mv)
ampa_dend_volts : AMPA-only dendritic voltages of stimulated dendrite (mv)
dend_distances : distance of stimulated dendrites from soma (um)
sr_dend_200 : SR dendrite sections used in simulation
slm_dend_200 : SLM dendrite sections used in simulation
dend_diams : dendrite diameters
so_dends : all SO dendrite sections
sl_dends : all SL dendrite sections
sr_dends : all SR dendrite sections
slm_dends : all SLM dendrite sections
'''