TITLE PoissonMonauralVM.mod Binaural Inhomogenous Poisson:
: ipsi von Mises, contra uniform, probability distributions
COMMENT
Written by Jonathan Z Simon, jzsimon@isr.umd.edu
A binaual inhomogenous poisson process
Can be tailored to use many different distributions as stimuli.
Stimulus Specific sections highlighted for makers of new stimuli
:------------------STIMULUS SPECIFIC Description --------------------------
Uses a von Mises distribution (see e.g. Fisher, NI, Statistical Analysis
of Circular Data) for ipsi and a uniform distribution for contra.
:--------------------------------------------------------------------------
ENDCOMMENT
NEURON {
:------------------STIMULUS SPECIFIC POINT_PROCESS name -------------------
POINT_PROCESS PoissonMonauralVM
:--------------------------------------------------------------------------
RANGE
:------------------STIMULUS SPECIFIC RANGE variables ----------------------
: PARAMETERs
vs, freq, stimPhaseIpsi, stimPhaseContra, stimRate,
genericParam1, genericParam2,
: ASSIGNEDs
angfreq, stimProb, kappa, norm, stim,
:--------------------------------------------------------------------------
poissDt, tickSize, tickVal, tickOnce : Stimulus independent
POINTER probIpsi, probContra
}
UNITS {
:------------------STIMULUS SPECIFIC UNITS --------------------------------
(kHz) = (kiloHz)
:--------------------------------------------------------------------------
PI = (pi) (1)
(tick) = (1)
(prob) = (1)
(angle) = (1) :should be radians but those are defined as .5 / pi
}
PARAMETER {
:------------------STIMULUS SPECIFIC PARAMETERs ---------------------------
vs = 0.43 (1) <0,0.999> :otherwise too peaked even for exp()
freq = 1000 (Hz)
stimPhaseIpsi = 0 (angle)
stimPhaseContra = 0 (angle)
stimRate = 3.46 (/ms) <1e-9,1e9>
genericParam1 = 0 (1) <0,1e9> :rate scale factor for contra
genericParam2 = 0 : unused
:--------------------------------------------------------------------------
poissDt = 0.025 (ms) <1e-9,1e9>
tickSize = 1 (tick) <1e-9,1e9>
}
ASSIGNED {
:------------------STIMULUS SPECIFIC ASSIGNEDs ----------------------------
angfreq (/ms)
stimProb (prob)
kappa (1)
norm (1)
:--------------------------------------------------------------------------
tickVal (tick)
tickOnce (tick)
stim[2] (prob) : [0] is Ipsi & [1] is contra
probIpsi (prob)
probContra (prob)
}
INITIAL {
:------------------STIMULUS SPECIFIC INITIALizations ----------------------
angfreq = 2*PI*freq*(0.001) : (0.001) from Hz & ms
stimProb = stimRate*poissDt
if (vs < 0) {vs = 0}
if (vs >= 0.999) {vs = 0.999} :otherwise too peaked even for exp()
kappa = A1Inv(vs)
norm = 1/(2*PI*IO(kappa))
:--------------------------------------------------------------------------
tickVal = 0
tickOnce = 0
stim[0] = calcStimIpsi()
stim[1] = calcStimContra()
if (pointersValid()) {
probIpsi = stimProb*stim[0]
probContra = stimProb*stim[1]
}
}
:------------------STIMULUS SPECIFIC Stimulus Functions -------------------
FUNCTION calcStimIpsi() {
:von Mises probablility distribution (phase = 2 pi freq t + phiIpsi)
calcStimIpsi = norm*exp(kappa*sin(angfreq*t+stimPhaseIpsi))
}
FUNCTION calcStimContra() {
:uniform probablility distribution with rate scale factor = genericParam1
calcStimContra = genericParam1
}
:--------------------------------------------------------------------------
:------------------STIMULUS SPECIFIC Misc. Functions & Procedures----------
FUNCTION IO(x) {
: Bessel Function I_O(x)
: approximation from Fisher, NI, Statistical Analysis of Circular Data
LOCAL w, w2, w4, w6, w8 : local vars for computational speed only
w = x/3.75
w2 = w*w
w4 = w2*w2
w6 = w4*w2
w8 = w4*w4
if (w < 1) {
IO = (1 + 3.5156229*w2 + 3.0899424*w4 + 1.2067492*w6 + 0.2659732*w8 +
0.0360768*w8*w2 + 0.0045813*w8*w4)
} else {
IO = (0.39894228 + 0.01328592/w + 0.00225319/w2 - 0.00157565/(w2*w) +
0.00916281/w4 - 0.02057706/(w4*w) + 0.02635537/w6 -
0.01647633/(w6*w) + 0.00392377/w8)*exp(x)/sqrt(x)
}
}
FUNCTION A1Inv(x) {
: Bessel Function Ratio: A_1(x) = I_1(x)/I_O(x), and use Inverse
: approximation from Fisher, NI, Statistical Analysis of Circular Data
if (x < 0.53) {
A1Inv = (2*x + x*x*x + 5/6*x*x*x*x*x)
} else {
if (x < 0.85) {
A1Inv = (-0.4 + 1.39*x + 0.43/(1-x))
} else {
A1Inv = (1/(x*x*x - 4*x*x + 3*x))
}
}
}
:--------------------------------------------------------------------------
: Inelegant but necessary to get poisson "clock" started.
: Must be called once after finitialize() but before run
PROCEDURE prerun() {
tickVal = tickSize
tickOnce = tickSize
}
NET_RECEIVE (weight) {
if(tickVal) {
tickVal = 0
} else {
tickVal = tickSize
stim[0] = calcStimIpsi()
stim[1] = calcStimContra()
probIpsi = stimProb*stim[0]
probContra = stimProb*stim[1]
}
net_send(poissDt,1)
}
FUNCTION pointersValid() {
if ((!nrn_pointing(probIpsi))||(!nrn_pointing(probContra))) {
printf(
"Poisson Process: probIpsi and probContra must be set using setpointer!\n")
pointersValid = 0
} else {
pointersValid = 1
}
}