TITLE Cerebellum Golgi Cell Model
COMMENT
Author:L. Forti & S. Solinas
Data from: Santoro et al. J Neurosci. 2000
Last revised: April 2006
---
Adapted by Sungho Hong and Claus Lang
Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan
Supervision: Erik De Schutter
Correspondence: Sungho Hong (shhong@oist.jp)
September 16, 2017
ENDCOMMENT
NEURON {
SUFFIX Golgi_hcn1
NONSPECIFIC_CURRENT ih
RANGE Q10_diff,Q10_channel,gbar_Q10, ic, fix_celsius
RANGE o_fast_inf, o_slow_inf, tau_f, tau_s, Erev
RANGE gbar, g, o
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
PARAMETER {
fix_celsius = 37 (degC)
gbar = 5e-5 (S/cm2)
Erev = -20 (mV)
Q10_diff = 1.5
Q10_channel = 3
Ehalf = -72.49 (mV)
c = 0.11305 (/mV)
rA = 0.002096 (/mV)
rB = 0.97596 (1)
tCf = 0.01371 (1)
tDf = -3.368 (mV)
tEf = 2.302585092 (/mV)
tCs = 0.01451 (1)
tDs = -4.056 (mV)
tEs = 2.302585092 (/mV)
}
ASSIGNED {
ih (mA/cm2)
v (mV)
g (S/cm2)
o_fast_inf
o_slow_inf
tau_f (ms)
tau_s (ms)
gbar_Q10 (mho/cm2)
Q10 (1)
ic
o
}
INITIAL {
gbar_Q10 = gbar*(Q10_diff^((fix_celsius-23)/10))
rate(v)
o_fast = o_fast_inf
o_slow = o_slow_inf
}
STATE { o_fast o_slow } : fraction of fast and slow open channels
BREAKPOINT {
SOLVE state METHOD cnexp
g = gbar_Q10 * (o_fast + o_slow)
ih = g * (v - Erev)
ic = ih
o = o_fast + o_slow
}
DERIVATIVE state {
rate(v)
o_fast' = (o_fast_inf - o_fast) / tau_f
o_slow' = (o_slow_inf - o_slow) / tau_s
}
FUNCTION r(potential (mV)) { :fraction of fast component in double exponential
UNITSOFF
r = rA * potential + rB
UNITSON
}
FUNCTION tau(potential (mV),t1,t2,t3, Q10_channel) (ms) {
UNITSOFF
Q10 = Q10_channel^((fix_celsius -23(degC)) / 10(degC))
tau = exp(((t1 * potential) - t2)*t3) :/Q10 : Dividing by Q10 commented to avoid segmentation violation
UNITSON
}
FUNCTION o_inf(potential (mV), Ehalf, c) {
UNITSOFF
o_inf = 1 / (1 + exp((potential - Ehalf) * c))
UNITSON
}
PROCEDURE rate(v (mV)) {
TABLE o_fast_inf, o_slow_inf, tau_f, tau_s
DEPEND fix_celsius FROM -100 TO 30 WITH 13000
: r(v) is the fraction of fast component in double exponential
o_fast_inf = r(v) * o_inf(v,Ehalf,c)
o_slow_inf = (1 - r(v)) * o_inf(v,Ehalf,c)
tau_f = tau(v,tCf,tDf,tEf,Q10)
tau_s = tau(v,tCs,tDs,tEs,Q10)
}