COMMENT
kd.mod
Potassium channel, Hodgkin-Huxley style kinetics
Kinetic rates based on Sah et al. and Hamill et al. (1991)
Use with na.mod
Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX kd
USEION k READ ek WRITE ik
RANGE n, gk, gbar
GLOBAL ninf, ntau
GLOBAL Ra, Rb, tha, qa
GLOBAL q10, temp, tadj, vmin, vmax
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
PARAMETER {
gbar = 500 (pS/um2) : 0.03 mho/cm2
v (mV)
tha = 1.037727 (mV) : v 1/2 for inf
qa = 13.422609 (mV) : inf slope
Ra = 0.17832937 (/ms) : max act rate
Rb = 0.0052501573 (/ms) : max deact rate
dt (ms)
celsius (degC)
temp = 16 (degC) : original temp
q10 = 2.3 : temperature sensitivity
vmin = -120 (mV)
vmax = 100 (mV)
}
ASSIGNED {
a (/ms)
b (/ms)
ik (mA/cm2)
gk (pS/um2)
ek (mV)
ninf
ntau (ms)
tadj
}
STATE { n }
INITIAL {
rates(v)
n = ninf
}
BREAKPOINT {
SOLVE states METHOD cnexp
gk = gbar*n*n*n*n
ik = (1e-4) * gk * (v - ek)
}
LOCAL nexp
DERIVATIVE states { :Computes state variable n
rates(v) : at the current v and dt.
n' = (ninf - n)/ntau
}
PROCEDURE rates(v) { :Computes rate and other constants at current v.
:Call once from HOC to initialize inf at resting v.
a = trap0(v, tha, Ra, qa)
b = trap0(-v, -tha, Rb, qa)
ntau = 1/(a+b)
ninf = a*ntau
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v-th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}