%% The SCS abstract model for 150 Hz including noise - In this code fast AHP, ADP and slow AHP mechanisms are considered.
clc
clear all
close all
%%
%
% % 6 parameters
% step_size= 0.003; % step size for slow AHP
% sAHP_tau=1000 ; % slow AHP time constant
%
% fAHP_amp=-0.8 ; % fast AHP amplitude
% fAHP_tau=6 ; % fast AHP time constant
%
% ADP_amp=0.5 ; % ADP amplitude
% ADP_tau=40 ; % ADP time constant
%
%
%
%
% T=0:1:100 ;
%
% Fast_AHP= fAHP_amp*exp(-T/fAHP_tau); % fast AHP exponential function
% ADP= ADP_amp* exp(-T/ADP_tau) ; % ADP exponential function
%
% C= Fast_AHP+ADP ;
%
%
%
% plot(T, C , 'LineWidth' , 2)
%%
t=20000 ; % time of stimulation (ms)
sigma=0.05 ; % sigma for Guassian noise
spike=zeros(1,t) ;
threshold= 0 ; % threshold is updated based on slow AHP
for i=1:7:t
r(1,i)=normrnd(threshold,sigma) ; % first step: a random number with guassian distribution is chosen , if the number>threshold => spike , otherwise no spike
if r(1,i) > threshold
spike(1,i) = 1 ;
s=i ;
break
end
end
T=7 ; % time since last spike
% 6 parameters
step_size= 0.002; % step size for slow AHP
sAHP_tau=1200 ; % slow AHP time constant
fAHP_amp=-0.7 ; % fast AHP amplitude
fAHP_tau=2 ; % fast AHP time constant
ADP_amp=0.3 ; % ADP amplitude
ADP_tau=40 ; % ADP time constant
a=step_size ;
for i=s+7:7:t
Fast_AHP= fAHP_amp*exp(-T/fAHP_tau); % fast AHP exponential function
ADP= ADP_amp* exp(-T/ADP_tau) ; % ADP exponential function
slow_AHP= a* exp(-T/sAHP_tau) ; % slow AHP exponential function
threshold=slow_AHP ;
%threshold= normrnd(threshold,sigma) ; % noisy threshold
C= Fast_AHP+ADP ; % Combined fast AHP and ADP
C= normrnd(C,sigma) ; % noisy
%C ;
if C > threshold
spike(1,i)= 1 ;
a= slow_AHP+ step_size ;
T= 7 ;
else
spike(1,i)= 0 ;
T=T+7 ;
end
end
% plotting spike pattern
figure
plot(1:t , spike , 'b')
ylim([0 10])
xlabel('time from SCS onset (ms)')
%% Calculating interspike interval
j=1 ;
for i=1:t
if spike(1,i)==1
v(1,j)=i ;
j=j+1 ;
end
end
j=1 ;
for i=1:(length(v)-1)
ISI(1,j)=v(1,i+1)-v(1,i) ; % ISI: interspike interval
j=j+1 ;
end
%% ISI histogram
x = unique(ISI) ; % temp vector of vals
ISI = sort(ISI) ; % sorted input aligns with temp (lowest to highest)
p = zeros(size(x)); % vector for freqs
% frequency for each value
for i = 1:length(x)
p(i) = (sum(ISI == x(i)))/ (length(ISI)) ;
end
x ;
%p ;
%sum(p)
width=0.2 ;
%subplot(2,1,2) ;
figure
bar(x,p )
xlim([0 150])
xlabel('interspike interval (ms)' , 'FontSize', 10)
ylabel('p(ISI)' , 'FontSize', 10)
%%
N10=ISI ;
N='N10.mat' ;
save(N)
%%
SPIKE(:,1)=spike ;
%%
%xlswrite('Workbook.xlsx',spike)
figure
plot(1:20000,SPIKE)
ylim([0 10])