{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "2ee1d062", "metadata": {}, "outputs": [], "source": [ "# This code is written by Nooshin Abdollahi\n", "# Information about this code:\n", "# - Motor axons are not included\n", "# - there are not transverse connections between Boundary and Boundary" ] }, { "cell_type": "code", "execution_count": null, "id": "af4c646e", "metadata": {}, "outputs": [], "source": [ "# show the time of execution\n", "from datetime import datetime\n", "start_time = datetime.now()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "493e7e8a", "metadata": {}, "outputs": [], "source": [ "from neuron import h\n", "import netpyne \n", "from netpyne import specs, sim \n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from typing import Tuple, List\n", "import math\n", "import sys\n", "\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "id": "d05a8722", "metadata": {}, "outputs": [], "source": [ "# Import nesseccery files from Matlab\n", "\n", "R = np.loadtxt(\"R.txt\") # All axons with different radius\n", "G = np.loadtxt(\"G.txt\") # Axon's groups\n", "C = np.loadtxt(\"C.txt\") # Coordinates of each axon (x,y)\n", "neighboringAxon = np.loadtxt(\"neighboringAxon.txt\")\n", "dist = np.loadtxt(\"dist.txt\") \n", "dist_edge = np.loadtxt(\"Distance_edge.txt\") \n", "AVE_area_around_axon = np.loadtxt(\"Ave_area_around_axon.txt\")\n", "\n", "unique_radius = np.loadtxt(\"unique_radius.txt\") # including different types\n", "Number_of_nodes = np.loadtxt(\"Number_of_nodes.txt\") # Number of nodes for the specified axon total length\n", "\n", "parameters = np.loadtxt(\"parameters.txt\") \n", "\n", "# importing all the connections\n", "import scipy.io as io\n", "\n", "for i in range(1,2):\n", " for j in range(1,2):\n", " if j>=i:\n", " l = [i, j]\n", " z = ''.join([str(n) for n in l])\n", " Input = io.loadmat('Connect_types_{}.mat'.format(z) , squeeze_me=True) \n", " I = Input['SAVE']; \n", " locals()[\"Connect_types_\"+str(z)]=[]\n", " for v in range(len(I)):\n", " D = I[v].strip() \n", " locals()[\"Connect_types_\"+str(z)].append(D) \n", "\n", "\n", "# Boundary connections\n", "for i in range(1,2):\n", " Input = io.loadmat('Boundary_to_{}.mat'.format(i) , squeeze_me=True) \n", " I = Input['SAVE']; \n", " locals()[\"Boundary_to_\"+str(i)]=[]\n", " for v in range(len(I)):\n", " D = I[v].strip() \n", " locals()[\"Boundary_to_\"+str(i)].append(D) \n", " \n", "\n", "\n", "#\n", "Boundary_coordinates = np.loadtxt(\"Boundary_coordinates.txt\")\n", "Boundary_neighboring = np.loadtxt(\"Boundary_neighboring.txt\")\n", "Boundary_dist = np.loadtxt(\"Boundary_dist.txt\") \n", "\n", "\n", "############## importing files related to transverse resistance (Rg) and Areas\n", "\n", "for i in range(1,2):\n", " for j in range(1,2):\n", " if j>=i:\n", " l = [i, j]\n", " z = ''.join([str(n) for n in l])\n", " Input = np.loadtxt('Rg_{}.txt'.format(z) ) \n", " locals()[\"Rg_\"+str(z)]=Input\n", " \n", "\n", "\n", " \n", "for i in range(1,2):\n", " Input = np.loadtxt('Boundary_Rg_{}.txt'.format(i) ) \n", " locals()[\"Boundary_Rg_\"+str(i)]=Input\n", "\n", " \n", " \n", " \n", " \n", "for i in range(1,2):\n", " for j in range(1,2):\n", " if j>i:\n", " l = [i, j]\n", " z = ''.join([str(n) for n in l])\n", " Input = np.loadtxt('Areas_{}.txt'.format(z) ) \n", " locals()[\"Areas_\"+str(z)]=Input\n", " \n", " \n", " \n", " \n" ] }, { "cell_type": "code", "execution_count": null, "id": "cf1c9f69", "metadata": {}, "outputs": [], "source": [ "# Network parameters\n", "netParams = specs.NetParams()\n", "\n", "netParams.sizeX=3000\n", "netParams.sizeY=3000\n", "netParams.sizeZ=3000\n", "\n", "\n", "################################# Importing Axons(including C fibers and the others) and Boundary ####################################\n", "\n", "netParams.importCellParams(\n", " cellInstance=True,\n", " label='Boundary', \n", " conds={'cellType': 'Boundary', 'cellModel': 'Boundary'},\n", " fileName='Boundarycable.hoc', \n", " cellName='Boundary', \n", " importSynMechs=True) ;\n", "\n", "\n", "\n", "\n", "# Myelinated axons have different types (i.e. diameters)\n", "# How many types... do I have? print(len(unique_radius)-1), -1 because the first eleman is for C fiber\n", "# each type is a specific diameter\n", "\n", "netParams.importCellParams(\n", " cellInstance=True,\n", " label='type1', \n", " conds={'cellType': 'type1', 'cellModel': 'type1'},\n", " fileName='type1.hoc', \n", " cellName='type1', \n", " importSynMechs=True) ;\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "d5ef8f97", "metadata": {}, "outputs": [], "source": [ "###################################### Locating each axon in specific (x,y) #################################################\n", "\n", "\n", "\n", "netParams.popParams[\"Axon0\"] = {\n", " 'cellType': 'type1', \n", " 'numCells':1 , \n", " 'cellModel': 'type1', \n", " 'xRange':[C[0][0], C[0][0]], \n", " 'yRange':[0, 0], \n", " 'zRange':[C[0][1], C[0][1]]} \n", "\n", "netParams.popParams[\"Axon1\"] = {\n", " 'cellType': 'type1', \n", " 'numCells':1 , \n", " 'cellModel': 'type1', \n", " 'xRange':[C[1][0], C[1][0]], \n", " 'yRange':[0, 0], \n", " 'zRange':[C[1][1], C[1][1]]}\n", " \n", " \n", " \n", " \n", " \n", "########################################### Locating Boundary Cables ########################################################\n", "\n", "\n", "\n", " \n", "netParams.popParams[\"Boundary0\"] = {\n", " 'cellType': 'Boundary', \n", " 'numCells':1 , \n", " 'cellModel': 'Boundary', \n", " 'xRange':[Boundary_coordinates[0][0], Boundary_coordinates[0][0]], \n", " 'yRange':[0, 0], \n", " 'zRange':[Boundary_coordinates[0][1], Boundary_coordinates[0][1]]} \n", "\n", "\n", " \n", " \n", "netParams.popParams[\"Boundary1\"] = {\n", " 'cellType': 'Boundary', \n", " 'numCells':1 , \n", " 'cellModel': 'Boundary', \n", " 'xRange':[Boundary_coordinates[1][0], Boundary_coordinates[1][0]], \n", " 'yRange':[0, 0], \n", " 'zRange':[Boundary_coordinates[1][1], Boundary_coordinates[1][1]]} \n", "\n", " \n", " \n", "\n", "# in Total, how many Cells does Netpyne generate? Length(R)+len(Boundary_coordinates)\n", "print(len(R)+len(Boundary_coordinates))\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "4adc83be", "metadata": {}, "outputs": [], "source": [ "################################################### Stimulation ############################################################\n", "# Which group of axons do you want to stimulate?\n", "# Group1: motor axons Group2: C fibers Group3: Adelta Group4: Abeta\n", "\n", "\n", "#netParams.stimSourceParams['Input1'] = {'type': 'IClamp', 'del': 1, 'dur': 0.1, 'amp': 0.4}\n", "netParams.stimSourceParams['Input1'] = {'type': 'VClamp', 'dur': [1, 0.02, 0], 'amp':[-80, 0, 0]}\n", "\n", " \n", "netParams.stimTargetParams['Input1->Stim_1'] = {'source': 'Input1', 'sec':'node_0', 'loc': 0.5, 'conds': {'pop':\"Axon0\"}} \n", "#netParams.stimTargetParams['Input1->Stim_2'] = {'source': 'Input1', 'sec':'node_0', 'loc': 0.5, 'conds': {'pop':\"Axon1\"}} \n", "\n", "\n", "\n", "\n", "XG1 = 1e-9 # 1e-9: disconnect from ground 1e9: Connect to ground\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "90a2f08b", "metadata": {}, "outputs": [], "source": [ "simConfig = specs.SimConfig()\n", "simConfig.hParams = {'celsius': 37 }\n", "\n", "simConfig.dt = 0.005 # Internal integration timestep to use default is 0.025\n", "simConfig.duration = 6\n", "simConfig.recordStim = True\n", "simConfig.recordStep = 0.005 # Step size in ms to save data (e.g. V traces, LFP, etc) default is 0.1\n", "#simConfig.cache_efficient = True\n", "#simConfig.cvode_active = True\n", "# simConfig.cvode_atol=0.0001\n", "# simConfig.cvode_rtol=0.0001\n", "\n", "\n", "simConfig.recordTraces = {'V_node_0' :{'sec':'node_0','loc':0.5,'var':'v'}}\n", "simConfig.analysis['plotTraces'] = {'include': ['allCells']} # ['Axon0','Axon1']\n", "\n", "simConfig.analysis['plot2Dnet'] = True\n", "simConfig.analysis['plot2Dnet'] = {'include': ['allCells'], 'view': 'xz'}\n", "\n", "\n", "\n", "#simConfig.recordLFP = [[56.39,-4000,51.74]] # Determine the location of the LFP electrode\n", "\n", "\n", "\n", "\n", "\n", "\n", "sim.create(netParams, simConfig)\n", "\n", "\n" ] }, { "cell_type": "markdown", "id": "9045099d", "metadata": {}, "source": [ "### xraxial and transverese conductances" ] }, { "cell_type": "code", "execution_count": null, "id": "41af5705", "metadata": {}, "outputs": [], "source": [ "# Since by default Netpyne does not insert the parameters of the extracellular mechanism, I insert them in this section\n", "# this section includes \"longitudinal\" resistivities (i.e. xraxial)\n", "\n", "#Total_Length=10000\n", "\n", "number_boundary = 4000 #Total_Length/Section_Length \n", "number_boundary = int(number_boundary)\n", "\n", "\n", "\n", "rhoa=0.7e6 \n", "mycm=0.1 \n", "mygm=0.001 \n", "\n", "space_p1=0.002 \n", "space_p2=0.004\n", "space_i=0.004\n", "\n", "\n", "\n", "\n", "############################# For Boundary Cables #################################################\n", "\n", "# soma section is just for LFP recording, LFP in Netpyne does not work if at least one section is not called soma \n", "\n", "\n", "for j in range(len(R),len(R)+len(Boundary_coordinates)):\n", " \n", " S = sim.net.cells[j].secs[\"soma\"][\"hObj\"] \n", " for seg in S:\n", " seg.xraxial[0] = 1e9\n", " seg.xraxial[1] = 1e9\n", " seg.xg[0] = 1e9\n", " seg.xg[1] = 1e9\n", " seg.xc[0] = 0\n", " seg.xc[1] = 0\n", "\n", "\n", " for i in range(number_boundary): \n", " S = sim.net.cells[j].secs[\"section_%s\" %i][\"hObj\"]\n", " for seg in S:\n", " seg.xraxial[0] = 1e9\n", " seg.xraxial[1] = 1e9\n", " seg.xg[0] = 1e9\n", " seg.xg[1] = 1e9\n", " seg.xc[0] = 0\n", " seg.xc[1] = 0\n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", "\n", " \n", "############################## For myelinated sensory axons ##################################### \n", "\n", "\n", "rho2 = 1211 * 1e-6 # Mohm-cm\n", "\n", "\n", "\n", "\n", "for j in range(len(R)):\n", " if G[j]!=2: # if it is not a C fiber \n", " x = np.where(unique_radius == R[j]) \n", " x = int(x[0])\n", " nodes = Number_of_nodes\n", " nodes=int(nodes)\n", " \n", " \n", " nl = parameters[4]\n", " nodeD = parameters[1]\n", " paraD1 = nodeD\n", " axonD = parameters[0]\n", " paraD2 = axonD\n", " \n", " Rpn0 = (rhoa*.01)/((math.pi)*((((nodeD/2)+space_p1)**2)-((nodeD/2)**2)))\n", " Rpn1 = (rhoa*.01)/((math.pi)*((((paraD1/2)+space_p1)**2)-((paraD1/2)**2)))\n", " Rpn2 = (rhoa*.01)/((math.pi)*((((paraD2/2)+space_p2)**2)-((paraD2/2)**2)))\n", " Rpx = (rhoa*.01)/((math.pi)*((((axonD/2)+space_i)**2)-((axonD/2)**2)))\n", " \n", " \n", " ################### xraxial[1]\n", " \n", " radi = R[j]\n", " \n", " AVE = (AVE_area_around_axon[j]+0) /2\n", " \n", " xr = rho2 / ((math.pi)*(((radi+AVE)**2) - (radi**2)) * 1e-8) # Mohm/cm\n", " \n", " xr = xr /1\n", " \n", " print(AVE_area_around_axon[j]+0)\n", " print(xr)\n", " \n", " ##################\n", " \n", " \n", " \n", "\n", " S = sim.net.cells[j].secs[\"soma\"][\"hObj\"]\n", " for seg in S:\n", " seg.xraxial[0] = Rpn1\n", " seg.xraxial[1] = xr \n", " seg.xg[0] = mygm/(nl*2)\n", " seg.xg[1] = XG1 # disconnect from ground\n", " seg.xc[0] = mycm/(nl*2)\n", " seg.xc[1] = 0\n", "\n", " \n", " for i in range(nodes):\n", " S = sim.net.cells[j].secs[\"node_%s\" %i][\"hObj\"]\n", " for seg in S:\n", " seg.xraxial[0] = Rpn0\n", " seg.xraxial[1] = xr\n", " seg.xg[0] = 3.54e+03 #######1e6\n", " seg.xg[1] = XG1\n", " seg.xc[0] = 0\n", " seg.xc[1] = 0\n", "\n", "\n", " for i in range(2*nodes):\n", " S = sim.net.cells[j].secs[\"MYSA_%s\" %i][\"hObj\"]\n", " for seg in S:\n", " seg.xraxial[0] = Rpn1\n", " seg.xraxial[1] = xr\n", " seg.xg[0] = mygm/(nl*2)\n", " seg.xg[1] = XG1\n", " seg.xc[0] = mycm/(nl*2)\n", " seg.xc[1] = 0\n", "\n", "\n", " for i in range(10*nodes):\n", " S = sim.net.cells[j].secs[\"FLUT_%s\" %i][\"hObj\"]\n", " for seg in S:\n", " seg.xraxial[0] = Rpn2\n", " seg.xraxial[1] = xr\n", " seg.xg[0] = mygm/(nl*2)\n", " seg.xg[1] = XG1\n", " seg.xc[0] = mycm/(nl*2)\n", " seg.xc[1] = 0 \n", "\n", "\n", " for i in range(40*nodes):\n", " S = sim.net.cells[j].secs[\"STIN_%s\" %i][\"hObj\"]\n", " for seg in S:\n", " seg.xraxial[0] = Rpx\n", " seg.xraxial[1] = xr\n", " seg.xg[0] = mygm/(nl*2)\n", " seg.xg[1] = XG1\n", " seg.xc[0] = mycm/(nl*2)\n", " seg.xc[1] = 0\n", " \n", " \n", " \n", " \n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "afaf323f", "metadata": {}, "outputs": [], "source": [ "\n", "##############################This section is about transverse connections between axons #####################################\n", "# *** If you do not want to include ephaptic interaction, do not run this section\n", "# To model ephaptic effect, \"LinearMechanism\" in NEURON is used.\n", "\n", "\n", "\n", "rho = 1211 * 10000 # ohm-micron\n", "\n", "count = 0\n", "\n", "for i in range(len(R)): \n", "\n", " \n", " for j in range(len(R)): \n", " \n", " if neighboringAxon[i][j]==1:\n", " \n", "\n", " a1 = np.where(unique_radius == R[i]) # find type of R[i]\n", " a1 = a1[0][0]+1\n", " a2 = np.where(unique_radius == R[j]) # find type of R[j]\n", " a2 = a2[0][0]+1\n", "\n", "\n", " NSEG = 0\n", "\n", "\n", "\n", " if a1==a2:\n", " SEC = locals()[\"Connect_types_\"+str(a1)+str(a1)]\n", " RG = locals()[\"Rg_\"+str(a1)+str(a1)]\n", " area = (math.pi)*(parameters[1])*(np.ones((len(RG),1))) # micron^2\n", " area = area * 1e-8 #cm^2\n", " b1=i\n", " b2=j\n", " if a1==0:\n", " area = (math.pi)*0.8*10*(np.ones((len(RG),1))) # micron^2\n", " area = area * 1e-8 #cm^2\n", " \n", " \n", "\n", " if a1<a2:\n", " SEC = locals()[\"Connect_types_\"+str(a1)+str(a2)]\n", " RG = locals()[\"Rg_\"+str(a1)+str(a2)]\n", " b1=i\n", " b2=j\n", " if a1==0:\n", " area = (math.pi)*(parameters[a2][1])*(np.ones((len(RG),1)))\n", " area = area * 1e-8 #cm^2\n", " b1=j\n", " b2=i\n", " \n", " else:\n", " area = locals()[\"Areas_\"+str(a1)+str(a2)]\n", " area = area[ : , np.newaxis]\n", " area = area * 1e-8\n", " \n", " \n", "\n", " if a1>a2:\n", " SEC = locals()[\"Connect_types_\"+str(a2)+str(a1)]\n", " RG = locals()[\"Rg_\"+str(a2)+str(a1)]\n", " b1=j\n", " b2=i\n", " if a2==0:\n", " area = (math.pi)*(parameters[a1][1])*(np.ones((len(RG),1)))\n", " area = area * 1e-8 #cm^2\n", " b1=i\n", " b2=j\n", " \n", " else:\n", " area = locals()[\"Areas_\"+str(a2)+str(a1)]\n", " area = area[ : , np.newaxis]\n", " area = area * 1e-8\n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", " locals()[\"sl\"+str(count)] = h.SectionList()\n", "\n", " for z1 in range(int(len(SEC)/2)): \n", "\n", " S = sim.net.cells[b1].secs[SEC[z1]][\"hObj\"]\n", " NSEG=NSEG+S.nseg\n", " locals()[\"sl\"+str(count)].append(S)\n", "\n", " for z2 in range(int(len(SEC)/2),int(len(SEC))):\n", "\n", " S = sim.net.cells[b2].secs[SEC[z2]][\"hObj\"]\n", " locals()[\"sl\"+str(count)].append(S) \n", " \n", " \n", "\n", " nsegs=int(NSEG)\n", "\n", " locals()[\"gmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n", " locals()[\"cmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n", " locals()[\"bvec\"+str(count)] =h.Vector(2*nsegs)\n", " locals()[\"xl\"+str(count)] =h.Vector(2*nsegs)\n", " locals()[\"layer\"+str(count)] =h.Vector(2*nsegs)\n", " locals()[\"layer\"+str(count)].fill(2) # connect layer 2\n", " locals()[\"e\"+str(count)] = h.Vector(2*nsegs)\n", "\n", " for z3 in range(2*nsegs):\n", " locals()[\"xl\"+str(count)][z3] = 0.5\n", " \n", " \n", " \n", " \n", " \n", " \n", " d = dist_edge[i][j] + 0 #dist[i][j]\n", " rd = rho*d\n", " s = ((unique_radius*2)+(unique_radius*2))/2\n", " locals()[\"RG\"+str(count)] = np.array(RG)*s\n", " locals()[\"Resistance\"+str(count)] = rd/locals()[\"RG\"+str(count)]\n", " locals()[\"Conductance\"+str(count)]=[]\n", " for z4 in range(len(locals()[\"Resistance\"+str(count)])):\n", " locals()[\"Conductance\"+str(count)].append(1/(locals()[\"Resistance\"+str(count)][z4]*area[z4]))\n", " \n", "\n", " \n", " for z5 in range(0,nsegs,1):\n", "\n", " locals()[\"gmat\"+str(count)].setval(z5, z5, locals()[\"Conductance\"+str(count)][z5][0] )\n", " locals()[\"gmat\"+str(count)].setval(z5, nsegs+z5, -locals()[\"Conductance\"+str(count)][z5][0])\n", " locals()[\"gmat\"+str(count)].setval(nsegs+z5, z5, -locals()[\"Conductance\"+str(count)][z5][0])\n", " locals()[\"gmat\"+str(count)].setval(nsegs+z5, nsegs+z5, locals()[\"Conductance\"+str(count)][z5][0])\n", " \n", " \n", " locals()[\"GMAT\"+str(i)+str(j)] = locals()[\"gmat\"+str(count)]\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "# geA= 1000\n", " \n", "# for z5 in range(0,nsegs,1):\n", "# locals()[\"gmat\"+str(count)].setval(z5, z5, geA)\n", "# locals()[\"gmat\"+str(count)].setval(z5, nsegs+z5, -geA)\n", "# locals()[\"gmat\"+str(count)].setval(nsegs+z5, z5, -geA)\n", "# locals()[\"gmat\"+str(count)].setval(nsegs+z5, nsegs+z5, geA)\n", "\n", "\n", "\n", "\n", " locals()[\"lm\"+str(count)] = h.LinearMechanism(locals()[\"cmat\"+str(count)], locals()[\"gmat\"+str(count)], locals()[\"e\"+str(count)], locals()[\"bvec\"+str(count)], locals()[\"sl\"+str(count)], locals()[\"xl\"+str(count)], locals()[\"layer\"+str(count)])\n", "\n", " count=count+1\n", " \n", " SEC.clear\n", " del RG\n", " del area\n", " \n", " \n", "\n", " \n", "#print(count) \n", " \n", " \n" ] }, { "cell_type": "code", "execution_count": null, "id": "b71ff07f", "metadata": { "scrolled": false }, "outputs": [], "source": [ "GMAT01.printf() " ] }, { "cell_type": "code", "execution_count": null, "id": "9f7204b0", "metadata": {}, "outputs": [], "source": [ " \n", " \n", " \n", "############################### Transverse connections between Boundary cables and Axons ######################################\n", "\n", "\n", "rho = 1.136e5 * 10000 * 4.7e-4 * 10000 # ohm-micron^2\n", "\n", "\n", "\n", "rows = len(Boundary_neighboring)\n", "\n", "for i in range(rows):\n", " \n", " for j in range(len(R)):\n", " \n", " if Boundary_neighboring[i][j]==1:\n", " \n", " NSEG = 0\n", "\n", " a2 = np.where(unique_radius == R[j]) # find type \n", " a2 = a2[0][0]+1\n", " \n", " Boundary_RG = locals()[\"Boundary_Rg_\"+str(a2)]\n", " area = (math.pi)*(parameters[1])*(np.ones((len(Boundary_RG),1)))\n", " area = area * 1e-8 #cm^2\n", " \n", "\n", " SEC = locals()[\"Boundary_to_\"+str(a2)]\n", "\n", "\n", " locals()[\"sl\"+str(count)] = h.SectionList()\n", "\n", " for z1 in range(int(len(SEC)/2)): \n", "\n", " S = sim.net.cells[j].secs[SEC[z1]][\"hObj\"]\n", " NSEG=NSEG+S.nseg\n", " locals()[\"sl\"+str(count)].append(S)\n", "\n", " for z2 in range(int(len(SEC)/2),int(len(SEC))):\n", "\n", " S = sim.net.cells[len(R)+i].secs[SEC[z2]][\"hObj\"]\n", " locals()[\"sl\"+str(count)].append(S) \n", "\n", "\n", "\n", "\n", " nsegs=int(NSEG)\n", "\n", " locals()[\"gmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n", " locals()[\"cmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n", " locals()[\"bvec\"+str(count)] =h.Vector(2*nsegs)\n", " locals()[\"xl\"+str(count)] =h.Vector(2*nsegs)\n", " locals()[\"layer\"+str(count)] =h.Vector(2*nsegs)\n", " locals()[\"layer\"+str(count)].fill(2) # connect layer 2\n", " locals()[\"e\"+str(count)] = h.Vector(2*nsegs)\n", "\n", " for z3 in range(2*nsegs):\n", " locals()[\"xl\"+str(count)][z3] = 0.5\n", "\n", "\n", " \n", " \n", " rd = rho\n", " s = (unique_radius*2)\n", " locals()[\"Boundary_RG\"+str(count)] = np.array(Boundary_RG)*s\n", " locals()[\"Resistance\"+str(count)] = rd/locals()[\"Boundary_RG\"+str(count)]\n", " locals()[\"Conductance\"+str(count)]=[]\n", " for z4 in range(len(locals()[\"Resistance\"+str(count)])):\n", " locals()[\"Conductance\"+str(count)].append(1/(locals()[\"Resistance\"+str(count)][z4]*area[z4]))\n", "\n", " \n", " for z5 in range(0,nsegs,1):\n", "\n", " locals()[\"gmat\"+str(count)].setval(z5, z5, locals()[\"Conductance\"+str(count)][z5][0] * 1)\n", " locals()[\"gmat\"+str(count)].setval(z5, nsegs+z5, - locals()[\"Conductance\"+str(count)][z5][0] * 1)\n", " locals()[\"gmat\"+str(count)].setval(nsegs+z5, z5, - locals()[\"Conductance\"+str(count)][z5][0] * 1)\n", " locals()[\"gmat\"+str(count)].setval(nsegs+z5, nsegs+z5, locals()[\"Conductance\"+str(count)][z5][0] * 1)\n", " \n", " \n", " \n", " locals()[\"GMAT_BOUNDARY\"+str(i)+str(j)] = locals()[\"gmat\"+str(count)]\n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", "# geB= 1\n", " \n", "# for z6 in range(0,nsegs,1):\n", "\n", "# locals()[\"gmat\"+str(count)].setval(z6, z6, geB)\n", "# locals()[\"gmat\"+str(count)].setval(z6, nsegs+z6, -geB)\n", "# locals()[\"gmat\"+str(count)].setval(nsegs+z6, z6, -geB)\n", "# locals()[\"gmat\"+str(count)].setval(nsegs+z6, nsegs+z6, geB)\n", "\n", "\n", "\n", "\n", " locals()[\"lm\"+str(count)] = h.LinearMechanism(locals()[\"cmat\"+str(count)], locals()[\"gmat\"+str(count)], locals()[\"e\"+str(count)], locals()[\"bvec\"+str(count)], locals()[\"sl\"+str(count)], locals()[\"xl\"+str(count)], locals()[\"layer\"+str(count)])\n", "\n", " count=count+1\n", " \n", " \n", " SEC.clear\n", " del Boundary_RG\n", " del area\n", " \n", " \n", " \n", " \n", " \n", "\n", "#print(count) \n", " \n", " \n", " \n", "# from IPython.display import clear_output\n", "\n", "# clear_output(wait=True)\n", "\n", "\n", " \n", "#gmat0.printf() \n", "\n", "# for sec in sl0:\n", "# print(sec)" ] }, { "cell_type": "code", "execution_count": null, "id": "2f2f0781", "metadata": {}, "outputs": [], "source": [ "len(Boundary_neighboring)" ] }, { "cell_type": "code", "execution_count": null, "id": "7808a6c6", "metadata": {}, "outputs": [], "source": [ "GMAT_BOUNDARY11.printf() " ] }, { "cell_type": "markdown", "id": "b2a6c256", "metadata": {}, "source": [ "#### Recordings" ] }, { "cell_type": "code", "execution_count": null, "id": "d1494f97", "metadata": {}, "outputs": [], "source": [ "## Recording vext\n", "\n", "\n", "# v1 = sim.net.cells[45].secs[\"node_0\"][\"hObj\"]\n", "# ap1 = h.Vector()\n", "# t = h.Vector()\n", "# ap1.record(v1(0.5)._ref_v)\n", "\n", "# t.record(h._ref_t)" ] }, { "cell_type": "code", "execution_count": null, "id": "5dbd4f4b", "metadata": {}, "outputs": [], "source": [ "# for i1 in range(36):\n", "\n", "# locals()[\"Abeta0_imembrane\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", "# locals()[\"Abeta0_imembrane_node\"+str(i1)] = h.Vector()\n", "# locals()[\"Abeta0_imembrane_node\"+str(i1)].record(locals()[\"Abeta0_imembrane\"+str(i1)](0.5)._ref_i_membrane)\n", " \n", " \n", " \n", "# for i1 in range(12):\n", "\n", "# locals()[\"Abeta0_icap\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", "# locals()[\"Abeta0_icap_node\"+str(i1)] = h.Vector()\n", "# locals()[\"Abeta0_icap_node\"+str(i1)].record(locals()[\"Abeta0_icap\"+str(i1)](0.5)._ref_i_cap) \n", " \n", "\n", " \n", " \n", "# for i1 in range(12):\n", "\n", "# locals()[\"Abeta0_ik\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", "# locals()[\"Abeta0_ik_node\"+str(i1)] = h.Vector()\n", "# locals()[\"Abeta0_ik_node\"+str(i1)].record(locals()[\"Abeta0_ik\"+str(i1)](0.5)._ref_ik_axnode) \n", " \n", " \n", " \n", "# for i1 in range(12):\n", "\n", "# locals()[\"Abeta0_il\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", "# locals()[\"Abeta0_il_node\"+str(i1)] = h.Vector()\n", "# locals()[\"Abeta0_il_node\"+str(i1)].record(locals()[\"Abeta0_il\"+str(i1)](0.5)._ref_il_axnode) \n", " \n", " \n", "\n", "# for i1 in range(36):\n", "\n", "# locals()[\"Abeta0_ina\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", "# locals()[\"Abeta0_ina_node\"+str(i1)] = h.Vector()\n", "# locals()[\"Abeta0_ina_node\"+str(i1)].record(locals()[\"Abeta0_ina\"+str(i1)](0.5)._ref_ina_axnode) \n", " \n", " \n", " \n", " \n", "# for i1 in range(12):\n", "\n", "# locals()[\"Abeta0_inap\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", "# locals()[\"Abeta0_inap_node\"+str(i1)] = h.Vector()\n", "# locals()[\"Abeta0_inap_node\"+str(i1)].record(locals()[\"Abeta0_inap\"+str(i1)](0.5)._ref_inap_axnode) \n", " \n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "ca5603a0", "metadata": { "scrolled": true }, "outputs": [], "source": [ "## Recording v and vext[0], Abeta\n", "\n", "###################################################### Abeta0\n", "\n", "\n", "for i1 in range(36):\n", "\n", " locals()[\"Abeta0_v\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n", " locals()[\"Abeta0_v_node\"+str(i1)] = h.Vector()\n", " locals()[\"Abeta0_v_node\"+str(i1)].record(locals()[\"Abeta0_v\"+str(i1)](0.5)._ref_v)\n", "\n", "\n", "# for i2 in range(36):\n", "\n", "# locals()[\"Abeta0_vex\"+str(i2)] = sim.net.cells[0].secs[\"node_%s\"%i2][\"hObj\"]\n", "# locals()[\"Abeta0_vext0_05_node\"+str(i2)] = h.Vector()\n", "# locals()[\"Abeta0_vext0_05_node\"+str(i2)].record(locals()[\"Abeta0_vex\"+str(i2)](0.5)._ref_vext[0])\n", "\n", " \n", "################################################################################################## \n", " \n", "for i2 in range(36):\n", "\n", " locals()[\"Abeta0_vex\"+str(i2)] = sim.net.cells[0].secs[\"node_%s\"%i2][\"hObj\"]\n", " locals()[\"Abeta0_vext0_node05\"+str(i2)] = h.Vector()\n", " locals()[\"Abeta0_vext0_node05\"+str(i2)].record(locals()[\"Abeta0_vex\"+str(i2)](0.5)._ref_vext[0])\n", "\n", "\n", "for ii2 in range(36):\n", "\n", " locals()[\"Abeta0_vex\"+str(ii2)] = sim.net.cells[0].secs[\"node_%s\"%ii2][\"hObj\"]\n", " locals()[\"Abeta0_vext0_node1\"+str(ii2)] = h.Vector()\n", " locals()[\"Abeta0_vext0_node1\"+str(ii2)].record(locals()[\"Abeta0_vex\"+str(ii2)](1)._ref_vext[0]) \n", " \n", " \n", "for ij2 in range(36):\n", "\n", " locals()[\"Abeta0_vex\"+str(ij2)] = sim.net.cells[0].secs[\"node_%s\"%ij2][\"hObj\"]\n", " locals()[\"Abeta0_vext0_node0\"+str(ij2)] = h.Vector()\n", " locals()[\"Abeta0_vext0_node0\"+str(ij2)].record(locals()[\"Abeta0_vex\"+str(ij2)](0)._ref_vext[0]) \n", " \n", " \n", "for i3 in range(36):\n", "\n", " locals()[\"Abeta0_vex1\"+str(i3)] = sim.net.cells[0].secs[\"node_%s\"%i3][\"hObj\"]\n", " locals()[\"Abeta0_vext1_node05\"+str(i3)] = h.Vector()\n", " locals()[\"Abeta0_vext1_node05\"+str(i3)].record(locals()[\"Abeta0_vex1\"+str(i3)](0.5)._ref_vext[1]) \n", " \n", " \n", " \n", " \n", "for i5 in range(36):\n", "\n", " locals()[\"Abeta0_vexx\"+str(i5)] = sim.net.cells[0].secs[\"node_%s\"%i5][\"hObj\"]\n", " locals()[\"Abeta0_vext1_node0\"+str(i5)] = h.Vector()\n", " locals()[\"Abeta0_vext1_node0\"+str(i5)].record(locals()[\"Abeta0_vexx\"+str(i5)](0)._ref_vext[1])\n", " \n", "\n", " \n", "for i6 in range(36):\n", "\n", " locals()[\"Abeta0_vexg\"+str(i6)] = sim.net.cells[0].secs[\"node_%s\"%i6][\"hObj\"]\n", " locals()[\"Abeta0_vext1_node1\"+str(i6)] = h.Vector()\n", " locals()[\"Abeta0_vext1_node1\"+str(i6)].record(locals()[\"Abeta0_vexg\"+str(i6)](1)._ref_vext[1])\n", " \n", " \n", " \n", " \n", "\n", "for i4 in range(36):\n", "\n", " locals()[\"Abeta1_vex\"+str(i4)] = sim.net.cells[1].secs[\"node_%s\"%i4][\"hObj\"]\n", " locals()[\"Abeta1_vext1_node05\"+str(i4)] = h.Vector()\n", " locals()[\"Abeta1_vext1_node05\"+str(i4)].record(locals()[\"Abeta1_vex\"+str(i4)](0.5)._ref_vext[1])\n", "\n", " \n", "\n", "i8=1663 \n", "locals()[\"v1Mext\"+str(i8)] = sim.net.cells[2].secs[\"section_1663\"][\"hObj\"]\n", "locals()[\"boundary0_vext1_section\"+str(i8)] = h.Vector()\n", "locals()[\"boundary0_vext1_section\"+str(i8)].record(locals()[\"v1Mext\"+str(i8)](0.5)._ref_vext[1]) \n", "\n", " \n", " \n", "for ii3 in range(36*2):\n", "\n", " locals()[\"Abeta0_vexe\"+str(ii3)] = sim.net.cells[0].secs[\"MYSA_%s\"%ii3][\"hObj\"]\n", " locals()[\"Abeta0_vext0_MYSA05\"+str(ii3)] = h.Vector()\n", " locals()[\"Abeta0_vext0_MYSA05\"+str(ii3)].record(locals()[\"Abeta0_vexe\"+str(ii3)](0.5)._ref_vext[0])\n", " \n", " \n", "for ii4 in range(36*2):\n", "\n", " locals()[\"Abeta0_vexxx\"+str(ii4)] = sim.net.cells[0].secs[\"MYSA_%s\"%ii4][\"hObj\"]\n", " locals()[\"Abeta0_vext1_MYSA05\"+str(ii4)] = h.Vector()\n", " locals()[\"Abeta0_vext1_MYSA05\"+str(ii4)].record(locals()[\"Abeta0_vexxx\"+str(ii4)](0.5)._ref_vext[1])\n", " \n", " \n", " \n", "# for i3 in range(0,36*2):\n", " \n", "# locals()[\"Abeta_v0Mext\"+str(i3)] = sim.net.cells[0].secs[\"MYSA_%s\"%i3][\"hObj\"]\n", "# locals()[\"Abeta0_vext0_MYSA\"+str(i3)] = h.Vector()\n", "# locals()[\"Abeta0_vext0_MYSA\"+str(i3)].record(locals()[\"Abeta_v0Mext\"+str(i3)](0.5)._ref_vext[0])\n", " \n", " \n", " \n", "# for i3 in range(0,36*2):\n", " \n", "# locals()[\"Abeta_v1Mext\"+str(i3)] = sim.net.cells[0].secs[\"MYSA_%s\"%i3][\"hObj\"]\n", "# locals()[\"Abeta0_vext1_MYSA\"+str(i3)] = h.Vector()\n", "# locals()[\"Abeta0_vext1_MYSA\"+str(i3)].record(locals()[\"Abeta_v1Mext\"+str(i3)](0.5)._ref_vext[1]) \n", "\n", "\n", "# i3=1663 \n", "# locals()[\"v1Mext\"+str(i3)] = sim.net.cells[2].secs[\"section_1663\"][\"hObj\"]\n", "# locals()[\"boundary0_vext1_section\"+str(i3)] = h.Vector()\n", "# locals()[\"boundary0_vext1_section\"+str(i3)].record(locals()[\"v1Mext\"+str(i3)](0.5)._ref_vext[1]) \n", "\n", "\n", " \n", "# for i4 in range(12):\n", "\n", "# locals()[\"Abeta1_vext1\"+str(i4)] = sim.net.cells[1].secs[\"node_%s\"%i4][\"hObj\"]\n", "# locals()[\"Abeta1_vext1_node\"+str(i4)] = h.Vector()\n", "# locals()[\"Abeta1_vext1_node\"+str(i4)].record(locals()[\"Abeta1_vext1\"+str(i4)](0.5)._ref_vext[1]) \n", " \n", " \n", " \n", "# locals()[\"Abeta_vSext\"+str(220)] = sim.net.cells[0].secs[\"STIN_220\"][\"hObj\"]\n", "# locals()[\"Abeta0_vext1_STIN\"+str(220)] = h.Vector()\n", "# locals()[\"Abeta0_vext1_STIN\"+str(220)].record(locals()[\"Abeta_vSext\"+str(220)](0.5)._ref_vext[1]) \n", " \n", "# locals()[\"Abeta_v\"+str(220)] = sim.net.cells[0].secs[\"STIN_220\"][\"hObj\"]\n", "# locals()[\"Abeta0_v_STIN\"+str(220)] = h.Vector()\n", "# locals()[\"Abeta0_v_STIN\"+str(220)].record(locals()[\"Abeta_v\"+str(220)](0.5)._ref_v) \n", " \n", " \n", " \n", "t = h.Vector()\n", "t.record(h._ref_t)" ] }, { "cell_type": "markdown", "id": "d83f15db", "metadata": {}, "source": [ "#### Simulate and Analyze" ] }, { "cell_type": "code", "execution_count": null, "id": "cd6d9f09", "metadata": { "scrolled": false }, "outputs": [], "source": [ "sim.simulate()\n", "sim.analyze()" ] }, { "cell_type": "code", "execution_count": null, "id": "ceb34061", "metadata": {}, "outputs": [], "source": [ "# plotting\n", "\n", "#sim.analysis.plotLFP( plots = ['timeSeries', 'locations'] , electrodes=[ 'all'], lineWidth=1000 , fontSize=14, saveFig=True)\n", "\n", "# from matplotlib import pyplot\n", "# %matplotlib inline\n", "# pyplot.plot(t, ap1 )\n", "# #pyplot.xlim((0, 10))\n", "# pyplot.show()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "ddb4904a", "metadata": {}, "outputs": [], "source": [ "# show the execution time\n", "\n", "end_time = datetime.now()\n", "print('Duration: {}'.format(end_time - start_time))" ] }, { "cell_type": "code", "execution_count": null, "id": "eb4751f0", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "d18ce34b", "metadata": {}, "outputs": [], "source": [ "# Longitudinal Current: picoamp\n", "\n", "\n", "\n", "# xraxia = xr*1e6 #ohm/cm\n", "# xraxia = xraxia*2*1e-4 # ohm, length between node to MYSA is 2 micron\n", "\n", "\n", "# v_diff_00 = (Abeta0_vext1_node0-Abeta0_vext1_MYSA0)/1000 #volt\n", "# Longi_Current_node0_MYSA0 = v_diff_00/xraxia #amp\n", "# Longi_Current_node0_MYSA0 = Longi_Current_node0_MYSA0*1e12 #picoamp\n", "\n", "# v_diff_12 = (Abeta0_vext1_node1-Abeta0_vext1_MYSA2)/1000 #volt\n", "# Longi_Current_node1_MYSA2 = v_diff_12/xraxia \n", "# Longi_Current_node1_MYSA2 = Longi_Current_node1_MYSA2*1e12 \n", "\n", "# v_diff_24 = (Abeta0_vext1_node2-Abeta0_vext1_MYSA4)/1000 #volt\n", "# Longi_Current_node2_MYSA4 = v_diff_24/xraxia \n", "# Longi_Current_node2_MYSA4 = Longi_Current_node2_MYSA4*1e12 \n", "\n", "# v_diff_36 = (Abeta0_vext1_node3-Abeta0_vext1_MYSA6)/1000 #volt\n", "# Longi_Current_node3_MYSA6 = v_diff_36/xraxia \n", "# Longi_Current_node3_MYSA6 = Longi_Current_node3_MYSA6*1e12 \n", "\n", "# v_diff_48 = (Abeta0_vext1_node4-Abeta0_vext1_MYSA8)/1000 #volt\n", "# Longi_Current_node4_MYSA8 = v_diff_48/xraxia \n", "# Longi_Current_node4_MYSA8 = Longi_Current_node4_MYSA8*1e12 \n", "\n", "# v_diff_510 = (Abeta0_vext1_node5-Abeta0_vext1_MYSA10)/1000 #volt\n", "# Longi_Current_node5_MYSA10 = (v_diff_510/xraxia)*1e12 \n", "\n", "# v_diff_612 = (Abeta0_vext1_node6-Abeta0_vext1_MYSA12)/1000 #volt\n", "# Longi_Current_node6_MYSA12 = (v_diff_612/xraxia)*1e12 \n", "\n", "# v_diff_714 = (Abeta0_vext1_node7-Abeta0_vext1_MYSA14)/1000 #volt\n", "# Longi_Current_node7_MYSA14 = (v_diff_714/xraxia)*1e12 \n", "\n", "# v_diff_816 = (Abeta0_vext1_node8-Abeta0_vext1_MYSA16)/1000 #volt\n", "# Longi_Current_node8_MYSA16 = (v_diff_816/xraxia)*1e12 \n", "\n", "# v_diff_918 = (Abeta0_vext1_node9-Abeta0_vext1_MYSA18)/1000 #volt\n", "# Longi_Current_node9_MYSA18 = (v_diff_918/xraxia)*1e12 \n", "\n", "# v_diff_1020 = (Abeta0_vext1_node10-Abeta0_vext1_MYSA20)/1000 #volt\n", "# Longi_Current_node10_MYSA20 = (v_diff_1020/xraxia)*1e12 \n", "\n", "# v_diff_1122 = (Abeta0_vext1_node11-Abeta0_vext1_MYSA22)/1000 #volt\n", "# Longi_Current_node11_MYSA22 = (v_diff_1122/xraxia)*1e12 \n" ] }, { "cell_type": "code", "execution_count": null, "id": "09bf554d", "metadata": {}, "outputs": [], "source": [ "# print(xraxia)" ] }, { "cell_type": "code", "execution_count": null, "id": "d833f599", "metadata": {}, "outputs": [], "source": [ "# Transverse current: Picoamp/micron^2\n", "\n", "\n", "# TC = 2.3e+03\n", "\n", "\n", "# v_diff00 = (Abeta0_vext1_node0 - Abeta1_vext1_node0)/1000 #volt\n", "# Trans_Current_node0_node0 = (v_diff00 * TC )*1e12/1e8 #volt*S/cm2 = Amp/cm2 = PicoAMP/cm2 = PicoAMP/micron^2\n", "\n", "# v_diff11 = (Abeta0_vext1_node1 - Abeta1_vext1_node1)/1000 #volt\n", "# Trans_Current_node1_node1 = v_diff11 * TC *1e12/1e8 \n", "\n", "# v_diff22 = (Abeta0_vext1_node2 - Abeta1_vext1_node2)/1000 #volt\n", "# Trans_Current_node2_node2 = v_diff22 * TC *1e12/1e8 \n", "\n", "# v_diff33 = (Abeta0_vext1_node3 - Abeta1_vext1_node3)/1000 #volt\n", "# Trans_Current_node3_node3 = v_diff33 * TC *1e12/1e8 \n", "\n", "# v_diff44 = (Abeta0_vext1_node4 - Abeta1_vext1_node4)/1000 #volt\n", "# Trans_Current_node4_node4 = v_diff44 * TC *1e12/1e8 \n", "\n", "# v_diff55 = (Abeta0_vext1_node5 - Abeta1_vext1_node5)/1000 #volt\n", "# Trans_Current_node5_node5 = v_diff55 * TC *1e12/1e8 \n", "\n", "# v_diff66 = (Abeta0_vext1_node6 - Abeta1_vext1_node6)/1000 #volt\n", "# Trans_Current_node6_node6 = v_diff66 * TC *1e12/1e8 \n", "\n", "# v_diff77 = (Abeta0_vext1_node7 - Abeta1_vext1_node7)/1000 #volt\n", "# Trans_Current_node7_node7 = v_diff77 * TC *1e12/1e8 \n", "\n", "# v_diff88 = (Abeta0_vext1_node8 - Abeta1_vext1_node8)/1000 #volt\n", "# Trans_Current_node8_node8 = v_diff88 * TC *1e12/1e8 \n", "\n", "# v_diff99 = (Abeta0_vext1_node9 - Abeta1_vext1_node9)/1000 #volt\n", "# Trans_Current_node9_node9 = v_diff99 * TC *1e12/1e8 \n", "\n", "# v_diff1010 = (Abeta0_vext1_node10 - Abeta1_vext1_node10)/1000 #volt\n", "# Trans_Current_node10_node10 = v_diff1010 * TC *1e12/1e8 \n", "\n", "# v_diff1111 = (Abeta0_vext1_node11 - Abeta1_vext1_node11)/1000 #volt\n", "# Trans_Current_node11_node11 = v_diff1111 * TC *1e12/1e8 \n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "b812647a", "metadata": {}, "outputs": [], "source": [ "# import csv\n", "\n", "# with open('v_diff66_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , v_diff66 ))\n", " \n", " \n", " \n", " \n", "import csv\n", "\n", "# with open('vext1_node15_MYSA30_stimulateonlyAbeta0_edgedist2_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t ,Abeta0_vext1_node15 , Abeta0_vext1_MYSA30 )) \n", "\n", "\n", "\n", "# with open('ALLExtraVoltages_stimulateonlyAbeta0_edgedist2_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_vext0_node0515 , Abeta0_vext1_node0515 , Abeta0_vext1_node015 , Abeta0_vext1_node115 , Abeta1_vext1_node0515 , boundary0_vext1_section1663 , Abeta0_vext0_node115 , Abeta0_vext0_MYSA0530 , Abeta0_vext1_MYSA0530 , Abeta0_vext0_node015))\n" ] }, { "cell_type": "markdown", "id": "8f3b15f1", "metadata": {}, "source": [ "#### saving the data" ] }, { "cell_type": "code", "execution_count": null, "id": "890baeb5", "metadata": {}, "outputs": [], "source": [ "## saving the data\n", "\n", "\n", "import csv\n", "\n", "\n", "\n", "\n", " \n", "# with open('nodexg0changed_v_Abeta0_stimulateonlyAbeta0_edgedist2_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_v_node0 , Abeta0_v_node1 , Abeta0_v_node2 , Abeta0_v_node3 , Abeta0_v_node4 , Abeta0_v_node5 , Abeta0_v_node6 , Abeta0_v_node7 , Abeta0_v_node8 , Abeta0_v_node9 , Abeta0_v_node10 , Abeta0_v_node11 , Abeta0_v_node12 , Abeta0_v_node13 , Abeta0_v_node14 , Abeta0_v_node15 , Abeta0_v_node16 , Abeta0_v_node17 , Abeta0_v_node18 , Abeta0_v_node19 , Abeta0_v_node20 , Abeta0_v_node21 , Abeta0_v_node22 , Abeta0_v_node23 , Abeta0_v_node24 , Abeta0_v_node25 , Abeta0_v_node26 , Abeta0_v_node27 , Abeta0_v_node28 , Abeta0_v_node29 , Abeta0_v_node30 , Abeta0_v_node31 , Abeta0_v_node32 , Abeta0_v_node33 , Abeta0_v_node34 , Abeta0_v_node35 )) \n", "\n", "\n", " \n", " \n", "# with open('imembrane_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_imembrane_node0 , Abeta0_imembrane_node1 , Abeta0_imembrane_node2 , Abeta0_imembrane_node3 , Abeta0_imembrane_node4 , Abeta0_imembrane_node5 , Abeta0_imembrane_node6 , Abeta0_imembrane_node7 , Abeta0_imembrane_node8 , Abeta0_imembrane_node9 , Abeta0_imembrane_node10 , Abeta0_imembrane_node11 , Abeta0_imembrane_node12 , Abeta0_imembrane_node13 , Abeta0_imembrane_node14 , Abeta0_imembrane_node15 , Abeta0_imembrane_node16 , Abeta0_imembrane_node17 , Abeta0_imembrane_node18 , Abeta0_imembrane_node19 , Abeta0_imembrane_node20 , Abeta0_imembrane_node21 , Abeta0_imembrane_node22 , Abeta0_imembrane_node23 , Abeta0_imembrane_node24 , Abeta0_imembrane_node25 , Abeta0_imembrane_node26 , Abeta0_imembrane_node27 , Abeta0_imembrane_node28 , Abeta0_imembrane_node29 , Abeta0_imembrane_node30 , Abeta0_imembrane_node31 , Abeta0_imembrane_node32 , Abeta0_imembrane_node33 , Abeta0_imembrane_node34 , Abeta0_imembrane_node35 )) \n", " \n", " \n", "\n", "# #################################### Connected to ground \n", "\n", "# with open('ConnectGround_v_Abeta0_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_v_node0 , Abeta0_v_node1 , Abeta0_v_node2 , Abeta0_v_node3 , Abeta0_v_node4 , Abeta0_v_node5 , Abeta0_v_node6 , Abeta0_v_node7 , Abeta0_v_node8 , Abeta0_v_node9 , Abeta0_v_node10 , Abeta0_v_node11 )) \n", "\n", "\n", "# with open('NotConnectGround_vext1_Abeta0_stimulateonlyAbeta0_edgedist1_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_vext1_node0 , Abeta0_vext1_node1 , Abeta0_vext1_node2 , Abeta0_vext1_node3 , Abeta0_vext1_node4 , Abeta0_vext1_node5 , Abeta0_vext1_node6 , Abeta0_vext1_node7 , Abeta0_vext1_node8 , Abeta0_vext1_node9 , Abeta0_vext1_node10 , Abeta0_vext1_node11 )) \n", "\n", "\n", "\n", "# with open('ConnectGround_LongiCurrent_Abeta0_NodetoMYSA_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Longi_Current_node0_MYSA0 , Longi_Current_node1_MYSA2 , Longi_Current_node2_MYSA4 , Longi_Current_node3_MYSA6 , Longi_Current_node4_MYSA8 , Longi_Current_node5_MYSA10 , Longi_Current_node6_MYSA12 , Longi_Current_node7_MYSA14 , Longi_Current_node8_MYSA16 , Longi_Current_node9_MYSA18 , Longi_Current_node10_MYSA20 , Longi_Current_node11_MYSA22 ))\n", " \n", " \n", "\n", "# with open('ConnectGround_TransCurrent_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Trans_Current_node0_node0 , Trans_Current_node1_node1 , Trans_Current_node2_node2 , Trans_Current_node3_node3 , Trans_Current_node4_node4 , Trans_Current_node5_node5 , Trans_Current_node6_node6 , Trans_Current_node7_node7 , Trans_Current_node8_node8 , Trans_Current_node9_node9 , Trans_Current_node10_node10 , Trans_Current_node11_node11 ))\n", "\n", "\n", "\n", "\n", "\n", "\n", " \n", "# ##################################### Not connected to ground, Stimulate only one fiber \n", "\n", " \n", "# with open('v_Abeta0_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_v_node0 , Abeta0_v_node1 , Abeta0_v_node2 , Abeta0_v_node3 , Abeta0_v_node4 , Abeta0_v_node5 , Abeta0_v_node6 , Abeta0_v_node7 , Abeta0_v_node8 , Abeta0_v_node9 , Abeta0_v_node10 , Abeta0_v_node11 )) \n", "\n", "\n", " \n", "# with open('current_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_v_node0 , Abeta0_v_node1 , Abeta0_v_node2 , Abeta0_v_node3 , Abeta0_v_node4 , Abeta0_v_node5 , Abeta0_v_node6 , Abeta0_v_node7 , Abeta0_v_node8 , Abeta0_v_node9 , Abeta0_v_node10 , Abeta0_v_node11 )) \n", "\n", "\n", "\n", "# with open('LongiCurrent_Abeta0_NodetoMYSA_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Longi_Current_node0_MYSA0 , Longi_Current_node1_MYSA2 , Longi_Current_node2_MYSA4 , Longi_Current_node3_MYSA6 , Longi_Current_node4_MYSA8 , Longi_Current_node5_MYSA10 , Longi_Current_node6_MYSA12 , Longi_Current_node7_MYSA14 , Longi_Current_node8_MYSA16 , Longi_Current_node9_MYSA18 , Longi_Current_node10_MYSA20 , Longi_Current_node11_MYSA22 ))\n", " \n", " \n", "\n", "# with open('TransCurrent_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Trans_Current_node0_node0 , Trans_Current_node1_node1 , Trans_Current_node2_node2 , Trans_Current_node3_node3 , Trans_Current_node4_node4 , Trans_Current_node5_node5 , Trans_Current_node6_node6 , Trans_Current_node7_node7 , Trans_Current_node8_node8 , Trans_Current_node9_node9 , Trans_Current_node10_node10 , Trans_Current_node11_node11 ))\n", " \n", "\n", " \n", " \n", " \n", " \n", " \n", "# ##################################### Not connected to ground, Stimulate BOTH fibers \n", "\n", "\n", "# with open('v_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_v_node0 , Abeta0_v_node1 , Abeta0_v_node2 , Abeta0_v_node3 , Abeta0_v_node4 , Abeta0_v_node5 , Abeta0_v_node6 , Abeta0_v_node7 , Abeta0_v_node8 , Abeta0_v_node9 , Abeta0_v_node10 , Abeta0_v_node11 )) \n", "\n", "\n", "\n", "# with open('LongiCurrent_Abeta0_NodetoMYSA_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Longi_Current_node0_MYSA0 , Longi_Current_node1_MYSA2 , Longi_Current_node2_MYSA4 , Longi_Current_node3_MYSA6 , Longi_Current_node4_MYSA8 , Longi_Current_node5_MYSA10 , Longi_Current_node6_MYSA12 , Longi_Current_node7_MYSA14 , Longi_Current_node8_MYSA16 , Longi_Current_node9_MYSA18 , Longi_Current_node10_MYSA20 , Longi_Current_node11_MYSA22 ))\n", " \n", " \n", "\n", "# with open('TransCurrent_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Trans_Current_node0_node0 , Trans_Current_node1_node1 , Trans_Current_node2_node2 , Trans_Current_node3_node3 , Trans_Current_node4_node4 , Trans_Current_node5_node5 , Trans_Current_node6_node6 , Trans_Current_node7_node7 , Trans_Current_node8_node8 , Trans_Current_node9_node9 , Trans_Current_node10_node10 , Trans_Current_node11_node11 ))\n", " \n", " \n", " \n", " \n", " \n" ] }, { "cell_type": "code", "execution_count": null, "id": "7a4d2e6a", "metadata": {}, "outputs": [], "source": [ "\n", "# with open('i_vext1_Abeta1_stimulateonlyAbeta0_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta1_vext1_node0 , Abeta1_vext1_node1 , Abeta1_vext1_node2 , Abeta1_vext1_node3 , Abeta1_vext1_node4 , Abeta1_vext1_node5 , Abeta1_vext1_node6 , Abeta1_vext1_node7 , Abeta1_vext1_node8 , Abeta1_vext1_node9 , Abeta1_vext1_node10 , Abeta1_vext1_node11 )) \n" ] }, { "cell_type": "code", "execution_count": null, "id": "a594bc51", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "8e386b67", "metadata": {}, "outputs": [], "source": [ " \n", "# with open('icap_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_icap_node0 , Abeta0_icap_node1 , Abeta0_icap_node2 , Abeta0_icap_node3 , Abeta0_icap_node4 , Abeta0_icap_node5 , Abeta0_icap_node6 , Abeta0_icap_node7 , Abeta0_icap_node8 , Abeta0_icap_node9 , Abeta0_icap_node10 , Abeta0_icap_node11 )) \n", "\n", " \n", " \n", "# with open('ik_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_ik_node0 , Abeta0_ik_node1 , Abeta0_ik_node2 , Abeta0_ik_node3 , Abeta0_ik_node4 , Abeta0_ik_node5 , Abeta0_ik_node6 , Abeta0_ik_node7 , Abeta0_ik_node8 , Abeta0_ik_node9 , Abeta0_ik_node10 , Abeta0_ik_node11 )) \n", "\n", "\n", " \n", "# with open('il_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_il_node0 , Abeta0_il_node1 , Abeta0_il_node2 , Abeta0_il_node3 , Abeta0_il_node4 , Abeta0_il_node5 , Abeta0_il_node6 , Abeta0_il_node7 , Abeta0_il_node8 , Abeta0_il_node9 , Abeta0_il_node10 , Abeta0_il_node11 )) \n", "\n", "\n", "# with open('ina_Abeta0_stimulateonlyAbata0_edgedist2_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_ina_node0 , Abeta0_ina_node1 , Abeta0_ina_node2 , Abeta0_ina_node3 , Abeta0_ina_node4 , Abeta0_ina_node5 , Abeta0_ina_node6 , Abeta0_ina_node7 , Abeta0_ina_node8 , Abeta0_ina_node9 , Abeta0_ina_node10 , Abeta0_ina_node11 , Abeta0_ina_node12 , Abeta0_ina_node13 , Abeta0_ina_node14 , Abeta0_ina_node15 , Abeta0_ina_node16 , Abeta0_ina_node17 , Abeta0_ina_node18 , Abeta0_ina_node19 , Abeta0_ina_node20 )) \n", "\n", "# with open('imembrane_Abeta0_stimulateonlyAbata0_edgedist2_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_imembrane_node0 , Abeta0_imembrane_node1 , Abeta0_imembrane_node2 , Abeta0_imembrane_node3 , Abeta0_imembrane_node4 , Abeta0_imembrane_node5 , Abeta0_imembrane_node6 , Abeta0_imembrane_node7 , Abeta0_imembrane_node8 , Abeta0_imembrane_node9 , Abeta0_imembrane_node10 , Abeta0_imembrane_node11 , Abeta0_imembrane_node12 , Abeta0_imembrane_node13 , Abeta0_imembrane_node14 , Abeta0_imembrane_node15 , Abeta0_imembrane_node16 , Abeta0_imembrane_node17 , Abeta0_imembrane_node18 , Abeta0_imembrane_node19 , Abeta0_imembrane_node20 )) \n", "\n", " \n", "# with open('inap_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_inap_node0 , Abeta0_inap_node1 , Abeta0_inap_node2 , Abeta0_inap_node3 , Abeta0_inap_node4 , Abeta0_inap_node5 , Abeta0_inap_node6 , Abeta0_inap_node7 , Abeta0_inap_node8 , Abeta0_inap_node9 , Abeta0_inap_node10 , Abeta0_inap_node11 )) \n", "\n", " \n", " \n", "# with open('imembrane_Abeta0_stimulateBOTH_edgedist3_.csv', 'w', newline='') as f:\n", "# csv.writer(f).writerows(zip( t , Abeta0_imembrane_node0 , Abeta0_imembrane_node1 , Abeta0_imembrane_node2 , Abeta0_imembrane_node3 , Abeta0_imembrane_node4 , Abeta0_imembrane_node5 , Abeta0_imembrane_node6 , Abeta0_imembrane_node7 , Abeta0_imembrane_node8 , Abeta0_imembrane_node9 , Abeta0_imembrane_node10 , Abeta0_imembrane_node11 )) \n", " \n", " " ] }, { "cell_type": "code", "execution_count": null, "id": "5bcb410c", "metadata": {}, "outputs": [], "source": [ "print(xr)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }