/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__axnode
#define _nrn_initial _nrn_initial__axnode
#define nrn_cur _nrn_cur__axnode
#define _nrn_current _nrn_current__axnode
#define nrn_jacob _nrn_jacob__axnode
#define nrn_state _nrn_state__axnode
#define _net_receive _net_receive__axnode
#define evaluate_fct evaluate_fct__axnode
#define states states__axnode
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gnapbar _p[0]
#define gnabar _p[1]
#define gkbar _p[2]
#define gl _p[3]
#define ena _p[4]
#define ek _p[5]
#define el _p[6]
#define inap _p[7]
#define ina _p[8]
#define ik _p[9]
#define il _p[10]
#define mp_inf _p[11]
#define m_inf _p[12]
#define h_inf _p[13]
#define s_inf _p[14]
#define tau_mp _p[15]
#define tau_m _p[16]
#define tau_h _p[17]
#define tau_s _p[18]
#define mp _p[19]
#define m _p[20]
#define h _p[21]
#define s _p[22]
#define Dmp _p[23]
#define Dm _p[24]
#define Dh _p[25]
#define Ds _p[26]
#define q10_1 _p[27]
#define q10_2 _p[28]
#define q10_3 _p[29]
#define v _p[30]
#define _g _p[31]
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_Exp(void);
static void _hoc_evaluate_fct(void);
static void _hoc_vtrap(void);
static void _hoc_vtrap8(void);
static void _hoc_vtrap7(void);
static void _hoc_vtrap6(void);
static void _hoc_vtrap2(void);
static void _hoc_vtrap1(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_axnode", _hoc_setdata,
"Exp_axnode", _hoc_Exp,
"evaluate_fct_axnode", _hoc_evaluate_fct,
"vtrap_axnode", _hoc_vtrap,
"vtrap8_axnode", _hoc_vtrap8,
"vtrap7_axnode", _hoc_vtrap7,
"vtrap6_axnode", _hoc_vtrap6,
"vtrap2_axnode", _hoc_vtrap2,
"vtrap1_axnode", _hoc_vtrap1,
0, 0
};
#define Exp Exp_axnode
#define vtrap vtrap_axnode
#define vtrap8 vtrap8_axnode
#define vtrap7 vtrap7_axnode
#define vtrap6 vtrap6_axnode
#define vtrap2 vtrap2_axnode
#define vtrap1 vtrap1_axnode
extern double Exp( _threadargsprotocomma_ double );
extern double vtrap( _threadargsprotocomma_ double );
extern double vtrap8( _threadargsprotocomma_ double );
extern double vtrap7( _threadargsprotocomma_ double );
extern double vtrap6( _threadargsprotocomma_ double );
extern double vtrap2( _threadargsprotocomma_ double );
extern double vtrap1( _threadargsprotocomma_ double );
/* declare global and static user variables */
#define asC asC_axnode
double asC = -5;
#define asB asB_axnode
double asB = -27;
#define asA asA_axnode
double asA = 0.3;
#define ahC ahC_axnode
double ahC = 11;
#define ahB ahB_axnode
double ahB = 114;
#define ahA ahA_axnode
double ahA = 0.062;
#define amC amC_axnode
double amC = 10.3;
#define amB amB_axnode
double amB = 21.4;
#define amA amA_axnode
double amA = 1.86;
#define ampC ampC_axnode
double ampC = 10.2;
#define ampB ampB_axnode
double ampB = 27;
#define ampA ampA_axnode
double ampA = 0.01;
#define bsC bsC_axnode
double bsC = -1;
#define bsB bsB_axnode
double bsB = 10;
#define bsA bsA_axnode
double bsA = 0.03;
#define bhC bhC_axnode
double bhC = 13.4;
#define bhB bhB_axnode
double bhB = 31.8;
#define bhA bhA_axnode
double bhA = 2.3;
#define bmC bmC_axnode
double bmC = 9.16;
#define bmB bmB_axnode
double bmB = 25.7;
#define bmA bmA_axnode
double bmA = 0.086;
#define bmpC bmpC_axnode
double bmpC = 10;
#define bmpB bmpB_axnode
double bmpB = 34;
#define bmpA bmpA_axnode
double bmpA = 0.00025;
#define vtraub vtraub_axnode
double vtraub = -80;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gnapbar_axnode", "mho/cm2",
"gnabar_axnode", "mho/cm2",
"gkbar_axnode", "mho/cm2",
"gl_axnode", "mho/cm2",
"ena_axnode", "mV",
"ek_axnode", "mV",
"el_axnode", "mV",
"inap_axnode", "mA/cm2",
"ina_axnode", "mA/cm2",
"ik_axnode", "mA/cm2",
"il_axnode", "mA/cm2",
0,0
};
static double delta_t = 1;
static double h0 = 0;
static double m0 = 0;
static double mp0 = 0;
static double s0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vtraub_axnode", &vtraub_axnode,
"ampA_axnode", &A_axnode,
"ampB_axnode", &B_axnode,
"ampC_axnode", &C_axnode,
"bmpA_axnode", &bmpA_axnode,
"bmpB_axnode", &bmpB_axnode,
"bmpC_axnode", &bmpC_axnode,
"amA_axnode", &amA_axnode,
"amB_axnode", &amB_axnode,
"amC_axnode", &amC_axnode,
"bmA_axnode", &bmA_axnode,
"bmB_axnode", &bmB_axnode,
"bmC_axnode", &bmC_axnode,
"ahA_axnode", &ahA_axnode,
"ahB_axnode", &ahB_axnode,
"ahC_axnode", &ahC_axnode,
"bhA_axnode", &bhA_axnode,
"bhB_axnode", &bhB_axnode,
"bhC_axnode", &bhC_axnode,
"asA_axnode", &asA_axnode,
"asB_axnode", &asB_axnode,
"asC_axnode", &asC_axnode,
"bsA_axnode", &bsA_axnode,
"bsB_axnode", &bsB_axnode,
"bsC_axnode", &bsC_axnode,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[0]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"axnode",
"gnapbar_axnode",
"gnabar_axnode",
"gkbar_axnode",
"gl_axnode",
"ena_axnode",
"ek_axnode",
"el_axnode",
0,
"inap_axnode",
"ina_axnode",
"ik_axnode",
"il_axnode",
"mp_inf_axnode",
"m_inf_axnode",
"h_inf_axnode",
"s_inf_axnode",
"tau_mp_axnode",
"tau_m_axnode",
"tau_h_axnode",
"tau_s_axnode",
0,
"mp_axnode",
"m_axnode",
"h_axnode",
"s_axnode",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 32, _prop);
/*initialize range parameters*/
gnapbar = 0.01;
gnabar = 3;
gkbar = 0.08;
gl = 0.007;
ena = 50;
ek = -90;
el = -90;
_prop->param = _p;
_prop->param_size = 32;
_ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _AXNODE_reg() {
int _vectorized = 1;
_initlists();
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 32, 1);
hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 axnode C:/Users/14168/Desktop/MRG/AXNODE.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Motor Axon Node channels";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[4], _dlist1[4];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v ) ;
Dmp = ( mp_inf - mp ) / tau_mp ;
Dm = ( m_inf - m ) / tau_m ;
Dh = ( h_inf - h ) / tau_h ;
Ds = ( s_inf - s ) / tau_s ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v ) ;
Dmp = Dmp / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_mp )) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_h )) ;
Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_s )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
evaluate_fct ( _threadargscomma_ v ) ;
mp = mp + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_mp)))*(- ( ( ( mp_inf ) ) / tau_mp ) / ( ( ( ( - 1.0 ) ) ) / tau_mp ) - mp) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ;
s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_s)))*(- ( ( ( s_inf ) ) / tau_s ) / ( ( ( ( - 1.0 ) ) ) / tau_s ) - s) ;
}
return 0;
}
static int evaluate_fct ( _threadargsprotocomma_ double _lv ) {
double _la , _lb , _lv2 ;
_la = q10_1 * vtrap1 ( _threadargscomma_ _lv ) ;
_lb = q10_1 * vtrap2 ( _threadargscomma_ _lv ) ;
tau_mp = 1.0 / ( _la + _lb ) ;
mp_inf = _la / ( _la + _lb ) ;
_la = q10_1 * vtrap6 ( _threadargscomma_ _lv ) ;
_lb = q10_1 * vtrap7 ( _threadargscomma_ _lv ) ;
tau_m = 1.0 / ( _la + _lb ) ;
m_inf = _la / ( _la + _lb ) ;
_la = q10_2 * vtrap8 ( _threadargscomma_ _lv ) ;
_lb = q10_2 * bhA / ( 1.0 + Exp ( _threadargscomma_ - ( _lv + bhB ) / bhC ) ) ;
tau_h = 1.0 / ( _la + _lb ) ;
h_inf = _la / ( _la + _lb ) ;
_lv2 = _lv - vtraub ;
_la = q10_3 * asA / ( Exp ( _threadargscomma_ ( _lv2 + asB ) / asC ) + 1.0 ) ;
_lb = q10_3 * bsA / ( Exp ( _threadargscomma_ ( _lv2 + bsB ) / bsC ) + 1.0 ) ;
tau_s = 1.0 / ( _la + _lb ) ;
s_inf = _la / ( _la + _lb ) ;
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap ( _threadargsprotocomma_ double _lx ) {
double _lvtrap;
if ( _lx < - 50.0 ) {
_lvtrap = 0.0 ;
}
else {
_lvtrap = bsA / ( Exp ( _threadargscomma_ ( _lx + bsB ) / bsC ) + 1.0 ) ;
}
return _lvtrap;
}
static void _hoc_vtrap(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap1 ( _threadargsprotocomma_ double _lx ) {
double _lvtrap1;
if ( fabs ( ( _lx + ampB ) / ampC ) < 1e-6 ) {
_lvtrap1 = ampA * ampC ;
}
else {
_lvtrap1 = ( ampA * ( _lx + ampB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + ampB ) / ampC ) ) ;
}
return _lvtrap1;
}
static void _hoc_vtrap1(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap1 ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap2 ( _threadargsprotocomma_ double _lx ) {
double _lvtrap2;
if ( fabs ( ( _lx + bmpB ) / bmpC ) < 1e-6 ) {
_lvtrap2 = bmpA * bmpC ;
}
else {
_lvtrap2 = ( bmpA * ( - ( _lx + bmpB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmpB ) / bmpC ) ) ;
}
return _lvtrap2;
}
static void _hoc_vtrap2(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap2 ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap6 ( _threadargsprotocomma_ double _lx ) {
double _lvtrap6;
if ( fabs ( ( _lx + amB ) / amC ) < 1e-6 ) {
_lvtrap6 = amA * amC ;
}
else {
_lvtrap6 = ( amA * ( _lx + amB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + amB ) / amC ) ) ;
}
return _lvtrap6;
}
static void _hoc_vtrap6(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap6 ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap7 ( _threadargsprotocomma_ double _lx ) {
double _lvtrap7;
if ( fabs ( ( _lx + bmB ) / bmC ) < 1e-6 ) {
_lvtrap7 = bmA * bmC ;
}
else {
_lvtrap7 = ( bmA * ( - ( _lx + bmB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmB ) / bmC ) ) ;
}
return _lvtrap7;
}
static void _hoc_vtrap7(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap7 ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap8 ( _threadargsprotocomma_ double _lx ) {
double _lvtrap8;
if ( fabs ( ( _lx + ahB ) / ahC ) < 1e-6 ) {
_lvtrap8 = ahA * ahC ;
}
else {
_lvtrap8 = ( ahA * ( - ( _lx + ahB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + ahB ) / ahC ) ) ;
}
return _lvtrap8;
}
static void _hoc_vtrap8(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap8 ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double Exp ( _threadargsprotocomma_ double _lx ) {
double _lExp;
if ( _lx < - 100.0 ) {
_lExp = 0.0 ;
}
else {
_lExp = exp ( _lx ) ;
}
return _lExp;
}
static void _hoc_Exp(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = Exp ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 4;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 4; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
h = h0;
m = m0;
mp = mp0;
s = s0;
{
q10_1 = pow( 2.2 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
q10_2 = pow( 2.9 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
q10_3 = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ;
evaluate_fct ( _threadargscomma_ v ) ;
mp = mp_inf ;
m = m_inf ;
h = h_inf ;
s = s_inf ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
inap = gnapbar * mp * mp * mp * ( v - ena ) ;
ina = gnabar * m * m * m * h * ( v - ena ) ;
ik = gkbar * s * ( v - ek ) ;
il = gl * ( v - el ) ;
}
_current += ina;
_current += inap;
_current += ik;
_current += il;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ states(_p, _ppvar, _thread, _nt);
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(mp) - _p; _dlist1[0] = &(Dmp) - _p;
_slist1[1] = &(m) - _p; _dlist1[1] = &(Dm) - _p;
_slist1[2] = &(h) - _p; _dlist1[2] = &(Dh) - _p;
_slist1[3] = &(s) - _p; _dlist1[3] = &(Ds) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "AXNODE.mod";
static const char* nmodl_file_text =
"TITLE Motor Axon Node channels\n"
"\n"
": 2/02\n"
": Cameron C. McIntyre\n"
":\n"
": Fast Na+, Persistant Na+, Slow K+, and Leakage currents \n"
": responsible for nodal action potential\n"
": Iterative equations H-H notation rest = -80 mV\n"
":\n"
": This model is described in detail in:\n"
":\n"
": McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of\n"
": mammalian nerve fibers: influence of afterpotentials on the recovery\n"
": cycle. Journal of Neurophysiology 87:995-1006, 2002.\n"
"\n"
"INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}\n"
"\n"
"NEURON {\n"
" SUFFIX axnode\n"
" NONSPECIFIC_CURRENT ina\n"
" NONSPECIFIC_CURRENT inap\n"
" NONSPECIFIC_CURRENT ik\n"
" NONSPECIFIC_CURRENT il\n"
" RANGE gnapbar, gnabar, gkbar, gl, ena, ek, el\n"
" RANGE mp_inf, m_inf, h_inf, s_inf\n"
" RANGE tau_mp, tau_m, tau_h, tau_s\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"}\n"
"\n"
"PARAMETER {\n"
"\n"
" gnapbar = 0.01 (mho/cm2)\n"
" gnabar = 3.0 (mho/cm2)\n"
" gkbar = 0.08 (mho/cm2)\n"
" gl = 0.007 (mho/cm2)\n"
" ena = 50.0 (mV)\n"
" ek = -90.0 (mV)\n"
" el = -90.0 (mV)\n"
" celsius (degC)\n"
" dt (ms)\n"
" v (mV)\n"
" vtraub=-80\n"
" ampA = 0.01\n"
" ampB = 27\n"
" ampC = 10.2\n"
" bmpA = 0.00025\n"
" bmpB = 34\n"
" bmpC = 10\n"
" amA = 1.86\n"
" amB = 21.4\n"
" amC = 10.3\n"
" bmA = 0.086\n"
" bmB = 25.7\n"
" bmC = 9.16\n"
" ahA = 0.062\n"
" ahB = 114.0\n"
" ahC = 11.0\n"
" bhA = 2.3\n"
" bhB = 31.8\n"
" bhC = 13.4\n"
" asA = 0.3\n"
" asB = -27\n"
" asC = -5\n"
" bsA = 0.03\n"
" bsB = 10\n"
" bsC = -1\n"
"}\n"
"\n"
"STATE {\n"
" mp m h s\n"
"}\n"
"\n"
"ASSIGNED {\n"
" inap (mA/cm2)\n"
" ina (mA/cm2)\n"
" ik (mA/cm2)\n"
" il (mA/cm2)\n"
" mp_inf\n"
" m_inf\n"
" h_inf\n"
" s_inf\n"
" tau_mp\n"
" tau_m\n"
" tau_h\n"
" tau_s\n"
" q10_1\n"
" q10_2\n"
" q10_3\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" inap = gnapbar * mp*mp*mp * (v - ena)\n"
" ina = gnabar * m*m*m*h * (v - ena)\n"
" ik = gkbar * s * (v - ek)\n"
" il = gl * (v - el)\n"
"}\n"
"\n"
"DERIVATIVE states { : exact Hodgkin-Huxley equations\n"
" evaluate_fct(v)\n"
" mp'= (mp_inf - mp) / tau_mp\n"
" m' = (m_inf - m) / tau_m\n"
" h' = (h_inf - h) / tau_h\n"
" s' = (s_inf - s) / tau_s\n"
"}\n"
"\n"
"UNITSOFF\n"
"\n"
"INITIAL {\n"
":\n"
": Q10 adjustment\n"
":\n"
"\n"
" q10_1 = 2.2 ^ ((celsius-20)/ 10 )\n"
" q10_2 = 2.9 ^ ((celsius-20)/ 10 )\n"
" q10_3 = 3.0 ^ ((celsius-36)/ 10 )\n"
"\n"
" evaluate_fct(v)\n"
" mp = mp_inf\n"
" m = m_inf\n"
" h = h_inf\n"
" s = s_inf\n"
"}\n"
"\n"
"PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2\n"
"\n"
" a = q10_1*vtrap1(v)\n"
" b = q10_1*vtrap2(v)\n"
" tau_mp = 1 / (a + b)\n"
" mp_inf = a / (a + b)\n"
"\n"
" a = q10_1*vtrap6(v)\n"
" b = q10_1*vtrap7(v)\n"
" tau_m = 1 / (a + b)\n"
" m_inf = a / (a + b)\n"
"\n"
" a = q10_2*vtrap8(v)\n"
" b = q10_2*bhA / (1 + Exp(-(v+bhB)/bhC))\n"
" tau_h = 1 / (a + b)\n"
" h_inf = a / (a + b)\n"
"\n"
" v2 = v - vtraub : convert to traub convention\n"
"\n"
" a = q10_3*asA / (Exp((v2+asB)/asC) + 1) \n"
" b = q10_3*bsA / (Exp((v2+bsB)/bsC) + 1)\n"
" tau_s = 1 / (a + b)\n"
" s_inf = a / (a + b)\n"
"}\n"
"\n"
"FUNCTION vtrap(x) {\n"
" if (x < -50) {\n"
" vtrap = 0\n"
" }else{\n"
" vtrap = bsA / (Exp((x+bsB)/bsC) + 1)\n"
" }\n"
"}\n"
"\n"
"FUNCTION vtrap1(x) {\n"
" if (fabs((x+ampB)/ampC) < 1e-6) {\n"
" vtrap1 = ampA*ampC\n"
" }else{\n"
" vtrap1 = (ampA*(x+ampB)) / (1 - Exp(-(x+ampB)/ampC))\n"
" }\n"
"}\n"
"\n"
"FUNCTION vtrap2(x) {\n"
" if (fabs((x+bmpB)/bmpC) < 1e-6) {\n"
" vtrap2 = bmpA*bmpC : Ted Carnevale minus sign bug fix\n"
" }else{\n"
" vtrap2 = (bmpA*(-(x+bmpB))) / (1 - Exp((x+bmpB)/bmpC))\n"
" }\n"
"}\n"
"\n"
"FUNCTION vtrap6(x) {\n"
" if (fabs((x+amB)/amC) < 1e-6) {\n"
" vtrap6 = amA*amC\n"
" }else{\n"
" vtrap6 = (amA*(x+amB)) / (1 - Exp(-(x+amB)/amC))\n"
" }\n"
"}\n"
"\n"
"FUNCTION vtrap7(x) {\n"
" if (fabs((x+bmB)/bmC) < 1e-6) {\n"
" vtrap7 = bmA*bmC : Ted Carnevale minus sign bug fix\n"
" }else{\n"
" vtrap7 = (bmA*(-(x+bmB))) / (1 - Exp((x+bmB)/bmC))\n"
" }\n"
"}\n"
"\n"
"FUNCTION vtrap8(x) {\n"
" if (fabs((x+ahB)/ahC) < 1e-6) {\n"
" vtrap8 = ahA*ahC : Ted Carnevale minus sign bug fix\n"
" }else{\n"
" vtrap8 = (ahA*(-(x+ahB))) / (1 - Exp((x+ahB)/ahC)) \n"
" }\n"
"}\n"
"\n"
"FUNCTION Exp(x) {\n"
" if (x < -100) {\n"
" Exp = 0\n"
" }else{\n"
" Exp = exp(x)\n"
" }\n"
"}\n"
"\n"
"UNITSON\n"
;
#endif