{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2ee1d062",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This code is written by Nooshin Abdollahi\n",
    "# Information about this code:\n",
    "# - Motor axons are not included\n",
    "# - there are not transverse connections between Boundary and Boundary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "af4c646e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# show the time of execution\n",
    "from datetime import datetime\n",
    "start_time = datetime.now()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "493e7e8a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from neuron import h\n",
    "import netpyne \n",
    "from netpyne import specs, sim   \n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from typing import Tuple, List\n",
    "import math\n",
    "import sys\n",
    "\n",
    "\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d05a8722",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import nesseccery files from Matlab\n",
    "\n",
    "R = np.loadtxt(\"R.txt\")    # All axons with different radius\n",
    "G = np.loadtxt(\"G.txt\")    # Axon's groups\n",
    "C = np.loadtxt(\"C.txt\")    # Coordinates of each axon (x,y)\n",
    "neighboringAxon = np.loadtxt(\"neighboringAxon.txt\")\n",
    "dist = np.loadtxt(\"dist.txt\")    \n",
    "dist_edge = np.loadtxt(\"Distance_edge.txt\") \n",
    "AVE_area_around_axon = np.loadtxt(\"Ave_area_around_axon.txt\")\n",
    "\n",
    "unique_radius = np.loadtxt(\"unique_radius.txt\")          # including different types\n",
    "Number_of_nodes = np.loadtxt(\"Number_of_nodes.txt\")      # Number of nodes for the specified axon total length\n",
    "\n",
    "parameters = np.loadtxt(\"parameters.txt\")  \n",
    "\n",
    "# importing all the connections\n",
    "import scipy.io as io\n",
    "\n",
    "for i in range(1,2):\n",
    "    for j in range(1,2):\n",
    "        if j>=i:\n",
    "            l = [i, j]\n",
    "            z = ''.join([str(n) for n in l])\n",
    "            Input = io.loadmat('Connect_types_{}.mat'.format(z) , squeeze_me=True)  \n",
    "            I = Input['SAVE']; \n",
    "            locals()[\"Connect_types_\"+str(z)]=[]\n",
    "            for v in range(len(I)):\n",
    "                D = I[v].strip()  \n",
    "                locals()[\"Connect_types_\"+str(z)].append(D)  \n",
    "\n",
    "\n",
    "# Boundary connections\n",
    "for i in range(1,2):\n",
    "    Input = io.loadmat('Boundary_to_{}.mat'.format(i) , squeeze_me=True)  \n",
    "    I = Input['SAVE']; \n",
    "    locals()[\"Boundary_to_\"+str(i)]=[]\n",
    "    for v in range(len(I)):\n",
    "        D = I[v].strip()  \n",
    "        locals()[\"Boundary_to_\"+str(i)].append(D) \n",
    "    \n",
    "\n",
    "\n",
    "#\n",
    "Boundary_coordinates = np.loadtxt(\"Boundary_coordinates.txt\")\n",
    "Boundary_neighboring = np.loadtxt(\"Boundary_neighboring.txt\")\n",
    "Boundary_dist = np.loadtxt(\"Boundary_dist.txt\") \n",
    "\n",
    "\n",
    "############## importing files related to transverse resistance (Rg) and Areas\n",
    "\n",
    "for i in range(1,2):\n",
    "    for j in range(1,2):\n",
    "        if j>=i:\n",
    "            l = [i, j]\n",
    "            z = ''.join([str(n) for n in l])\n",
    "            Input = np.loadtxt('Rg_{}.txt'.format(z) )  \n",
    "            locals()[\"Rg_\"+str(z)]=Input\n",
    "  \n",
    "\n",
    "\n",
    "                \n",
    "for i in range(1,2):\n",
    "    Input = np.loadtxt('Boundary_Rg_{}.txt'.format(i) )  \n",
    "    locals()[\"Boundary_Rg_\"+str(i)]=Input\n",
    "\n",
    "    \n",
    "    \n",
    "        \n",
    "        \n",
    "for i in range(1,2):\n",
    "    for j in range(1,2):\n",
    "        if j>i:\n",
    "            l = [i, j]\n",
    "            z = ''.join([str(n) for n in l])\n",
    "            Input = np.loadtxt('Areas_{}.txt'.format(z) )  \n",
    "            locals()[\"Areas_\"+str(z)]=Input\n",
    "            \n",
    "            \n",
    "            \n",
    "            \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "cf1c9f69",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\t1 \n",
      "\t1 \n"
     ]
    }
   ],
   "source": [
    "# Network parameters\n",
    "netParams = specs.NetParams()\n",
    "\n",
    "netParams.sizeX=3000\n",
    "netParams.sizeY=3000\n",
    "netParams.sizeZ=3000\n",
    "\n",
    "\n",
    "################################# Importing Axons(including C fibers and the others) and Boundary ####################################\n",
    "\n",
    "netParams.importCellParams(\n",
    "    cellInstance=True,\n",
    "    label='Boundary', \n",
    "    conds={'cellType': 'Boundary', 'cellModel': 'Boundary'},\n",
    "    fileName='Boundarycable.hoc', \n",
    "    cellName='Boundary', \n",
    "    importSynMechs=True) ;\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "# Myelinated axons have different types (i.e. diameters)\n",
    "# How many types... do I have?  print(len(unique_radius)-1),  -1 because the first eleman is for C fiber\n",
    "# each type is a specific diameter\n",
    "\n",
    "netParams.importCellParams(\n",
    "    cellInstance=True,\n",
    "    label='type1', \n",
    "    conds={'cellType': 'type1', 'cellModel': 'type1'},\n",
    "    fileName='type1.hoc', \n",
    "    cellName='type1', \n",
    "    importSynMechs=True) ;\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "d5ef8f97",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "40\n"
     ]
    }
   ],
   "source": [
    "###################################### Locating each axon in specific (x,y) #################################################\n",
    "\n",
    "\n",
    "for i in range(len(R)):\n",
    "    x = np.where(unique_radius == R[i])\n",
    "            \n",
    "    if x[0]==0:\n",
    "        netParams.popParams[\"Axon%s\" %i] = {\n",
    "        'cellType': 'type1', \n",
    "        'numCells':1 ,                                         \n",
    "        'cellModel': 'type1', \n",
    "        'xRange':[C[i][0], C[i][0]], \n",
    "        'yRange':[0, 0], \n",
    "        'zRange':[C[i][1], C[i][1]]} \n",
    "\n",
    "     \n",
    "        \n",
    "        \n",
    "        \n",
    "########################################### Locating Boundary Cables ########################################################\n",
    "\n",
    "\n",
    "for i in range(len(Boundary_coordinates)):\n",
    "    \n",
    "    netParams.popParams[\"Boundary%s\" %i] = {\n",
    "    'cellType': 'Boundary', \n",
    "    'numCells':1 ,                                         \n",
    "    'cellModel': 'Boundary', \n",
    "    'xRange':[Boundary_coordinates[i][0], Boundary_coordinates[i][0]], \n",
    "    'yRange':[0, 0], \n",
    "    'zRange':[Boundary_coordinates[i][1], Boundary_coordinates[i][1]]} \n",
    "\n",
    "\n",
    "\n",
    "# in Total, how many Cells does Netpyne generate?  Length(R)+len(Boundary_coordinates)\n",
    "print(len(R)+len(Boundary_coordinates))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "03c9154d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "4adc83be",
   "metadata": {},
   "outputs": [],
   "source": [
    "################################################### Stimulation ############################################################\n",
    "# Which group of axons do you want to stimulate?\n",
    "# Group1: motor axons   Group2: C fibers    Group3: Adelta     Group4: Abeta\n",
    "\n",
    "\n",
    "# netParams.stimSourceParams['Input1'] = {'type': 'IClamp', 'del': 1, 'dur': 0.1, 'amp': 0.4}\n",
    "netParams.stimSourceParams['Input1'] = {'type': 'VClamp', 'dur': [1, 0.02, 0], 'amp':[-80, 0, 0]}\n",
    "\n",
    "\n",
    "# for i in range(len(R)):      \n",
    "#     if G[i]==4:            # Group 4\n",
    "#         netParams.stimTargetParams['Input1->\"Stim_%s\"' %i] = {'source': 'Input1', 'sec':'node_0', 'loc': 0.5, 'conds': {'pop':\"Axon%s\" %i}}    \n",
    "    \n",
    "\n",
    "    \n",
    "netParams.stimTargetParams['Input1->Stim_1'] = {'source': 'Input1', 'sec':'node_0', 'loc': 0.5, 'conds': {'pop':\"Axon0\"}}    \n",
    "    \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "90a2f08b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Start time:  2022-10-29 09:44:59.747250\n",
      "\n",
      "Creating network of 40 cell populations on 1 hosts...\n",
      "  Number of cells on node 0: 40 \n",
      "  Done; cell creation time = 3.81 s.\n",
      "Making connections...\n",
      "  Number of connections on node 0: 0 \n",
      "  Done; cell connection time = 0.00 s.\n",
      "Adding stims...\n",
      "  Number of stims on node 0: 1 \n",
      "  Done; cell stims creation time = 0.00 s.\n",
      "Recording 60 traces of 2 types on node 0\n"
     ]
    }
   ],
   "source": [
    "simConfig = specs.SimConfig()\n",
    "simConfig.hParams = {'celsius': 37 }\n",
    "\n",
    "simConfig.dt = 0.005            # Internal integration timestep to use default is 0.025\n",
    "simConfig.duration = 6\n",
    "simConfig.recordStim = True\n",
    "simConfig.recordStep = 0.005       # Step size in ms to save data (e.g. V traces, LFP, etc) default is 0.1\n",
    "#simConfig.cache_efficient = True\n",
    "#simConfig.cvode_active = True\n",
    "# simConfig.cvode_atol=0.0001\n",
    "# simConfig.cvode_rtol=0.0001\n",
    "\n",
    "\n",
    "simConfig.recordTraces = {'V_node_0' :{'sec':'node_0','loc':0.5,'var':'v'}}\n",
    "simConfig.analysis['plotTraces'] = {'include':  ['allCells']}                              # ['Axon0','Axon1']\n",
    "\n",
    "simConfig.analysis['plot2Dnet'] = True\n",
    "simConfig.analysis['plot2Dnet'] = {'include': ['allCells'], 'view': 'xz'}\n",
    "\n",
    "\n",
    "\n",
    "#simConfig.recordLFP = [[56.39,-4000,51.74]]     # Determine the location of the LFP electrode\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "sim.create(netParams, simConfig)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9045099d",
   "metadata": {},
   "source": [
    "### xraxial and transverese conductances"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "41af5705",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n",
      "0.1\n",
      "63978.96633503253\n"
     ]
    }
   ],
   "source": [
    "# Since by default Netpyne does not insert the parameters of the extracellular mechanism, I insert them in this section\n",
    "# this section includes \"longitudinal\" resistivities (i.e. xraxial)\n",
    "\n",
    "#Total_Length=10000\n",
    "\n",
    "number_boundary = 4000                                   #Total_Length/Section_Length \n",
    "number_boundary = int(number_boundary)\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "rhoa=0.7e6 \n",
    "mycm=0.1 \n",
    "mygm=0.001 \n",
    "\n",
    "space_p1=0.002  \n",
    "space_p2=0.004\n",
    "space_i=0.004\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "############################# For Boundary Cables #################################################\n",
    "\n",
    "# soma section is just for LFP recording, LFP in Netpyne does not work if at least one section is not called soma \n",
    "\n",
    "\n",
    "for j in range(len(R),len(R)+len(Boundary_coordinates)):\n",
    "        \n",
    "    S = sim.net.cells[j].secs[\"soma\"][\"hObj\"]     \n",
    "    for seg in S:\n",
    "        seg.xraxial[0] = 1e9\n",
    "        seg.xraxial[1] = 1e9\n",
    "        seg.xg[0] = 1e9\n",
    "        seg.xg[1] = 1000                          #1e9\n",
    "        seg.xc[0] = 0\n",
    "        seg.xc[1] = 0\n",
    "\n",
    "\n",
    "    for i in range(number_boundary):        \n",
    "        S = sim.net.cells[j].secs[\"section_%s\" %i][\"hObj\"]\n",
    "        for seg in S:\n",
    "            seg.xraxial[0] = 1e9\n",
    "            seg.xraxial[1] = 1e9\n",
    "            seg.xg[0] = 1e9\n",
    "            seg.xg[1] = 1000                            #1e9\n",
    "            seg.xc[0] = 0\n",
    "            seg.xc[1] = 0\n",
    "            \n",
    "            \n",
    "            \n",
    "            \n",
    "\n",
    "############################# For C fibers #######################################################\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "  \n",
    "        \n",
    "            \n",
    "\n",
    "        \n",
    "############################## For myelinated sensory axons ##################################### \n",
    "\n",
    "\n",
    "rho2 = 1211 * 1e-6   # Mohm-cm\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "for j in range(len(R)):\n",
    "    if G[j]!=2:         # if it is not a C fiber \n",
    "        x = np.where(unique_radius == R[j])        \n",
    "        x = int(x[0])\n",
    "        nodes = Number_of_nodes\n",
    "        nodes=int(nodes)\n",
    "        \n",
    "        \n",
    "        nl = parameters[4]\n",
    "        nodeD = parameters[1]\n",
    "        paraD1 = nodeD\n",
    "        axonD = parameters[0]\n",
    "        paraD2 = axonD\n",
    "        \n",
    "        Rpn0 = (rhoa*.01)/((math.pi)*((((nodeD/2)+space_p1)**2)-((nodeD/2)**2)))\n",
    "        Rpn1 = (rhoa*.01)/((math.pi)*((((paraD1/2)+space_p1)**2)-((paraD1/2)**2)))\n",
    "        Rpn2 = (rhoa*.01)/((math.pi)*((((paraD2/2)+space_p2)**2)-((paraD2/2)**2)))\n",
    "        Rpx  = (rhoa*.01)/((math.pi)*((((axonD/2)+space_i)**2)-((axonD/2)**2)))\n",
    "        \n",
    "        \n",
    "        ################### xraxial[1]\n",
    "        \n",
    "        radi = R[j]\n",
    "        \n",
    "        AVE = (AVE_area_around_axon[j]+0) /2\n",
    "        \n",
    "        xr = rho2 /  ((math.pi)*(((radi+AVE)**2) - (radi**2)) * 1e-8)       # Mohm/cm\n",
    "        \n",
    "        xr = xr /1\n",
    "        \n",
    "        print(AVE_area_around_axon[j]+0)\n",
    "        print(xr)\n",
    "        \n",
    "        ##################\n",
    "        \n",
    "        \n",
    "        \n",
    "\n",
    "        S = sim.net.cells[j].secs[\"soma\"][\"hObj\"]\n",
    "        for seg in S:\n",
    "            seg.xraxial[0] = Rpn1\n",
    "            seg.xraxial[1] = xr \n",
    "            seg.xg[0] = mygm/(nl*2)\n",
    "            seg.xg[1] = 1e-9               # disconnect from ground\n",
    "            seg.xc[0] = mycm/(nl*2)\n",
    "            seg.xc[1] = 0\n",
    "\n",
    "            \n",
    "        for i in range(nodes):\n",
    "            S = sim.net.cells[j].secs[\"node_%s\" %i][\"hObj\"]\n",
    "            for seg in S:\n",
    "                seg.xraxial[0] = Rpn0\n",
    "                seg.xraxial[1] = xr\n",
    "                seg.xg[0] = 1e6\n",
    "                seg.xg[1] = 1e-9\n",
    "                seg.xc[0] = 0\n",
    "                seg.xc[1] = 0\n",
    "\n",
    "\n",
    "        for i in range(2*nodes):\n",
    "            S = sim.net.cells[j].secs[\"MYSA_%s\" %i][\"hObj\"]\n",
    "            for seg in S:\n",
    "                seg.xraxial[0] = Rpn1\n",
    "                seg.xraxial[1] = xr\n",
    "                seg.xg[0] = mygm/(nl*2)\n",
    "                seg.xg[1] = 1e-9\n",
    "                seg.xc[0] = mycm/(nl*2)\n",
    "                seg.xc[1] = 0\n",
    "\n",
    "\n",
    "        for i in range(10*nodes):\n",
    "            S = sim.net.cells[j].secs[\"FLUT_%s\" %i][\"hObj\"]\n",
    "            for seg in S:\n",
    "                seg.xraxial[0] = Rpn2\n",
    "                seg.xraxial[1] = xr\n",
    "                seg.xg[0] = mygm/(nl*2)\n",
    "                seg.xg[1] = 1e-9\n",
    "                seg.xc[0] = mycm/(nl*2)\n",
    "                seg.xc[1] = 0 \n",
    "\n",
    "\n",
    "        for i in range(40*nodes):\n",
    "            S = sim.net.cells[j].secs[\"STIN_%s\" %i][\"hObj\"]\n",
    "            for seg in S:\n",
    "                seg.xraxial[0] = Rpx\n",
    "                seg.xraxial[1] = xr\n",
    "                seg.xg[0] = mygm/(nl*2)\n",
    "                seg.xg[1] = 1e-9\n",
    "                seg.xc[0] = mycm/(nl*2)\n",
    "                seg.xc[1] = 0\n",
    "        \n",
    "        \n",
    "        \n",
    "        \n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "afaf323f",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "##############################This section is about transverse connections between axons #####################################\n",
    "# *** If you do not want to include ephaptic interaction, do not run this section\n",
    "# To model ephaptic effect, \"LinearMechanism\" in NEURON is used.\n",
    "\n",
    "\n",
    "\n",
    "rho = 1211 * 10000  # ohm-micron\n",
    "\n",
    "count = 0\n",
    "\n",
    "for i in range(len(R)):    \n",
    "\n",
    "    \n",
    "    for j in range(len(R)):   \n",
    "        \n",
    "        if neighboringAxon[i][j]==1:\n",
    "            \n",
    "\n",
    "            a1 = np.where(unique_radius == R[i])      # find type of R[i]\n",
    "            a1 = a1[0][0]+1\n",
    "            a2 = np.where(unique_radius == R[j])      # find type of R[j]\n",
    "            a2 = a2[0][0]+1\n",
    "\n",
    "\n",
    "            NSEG = 0\n",
    "\n",
    "\n",
    "\n",
    "            if a1==a2:\n",
    "                SEC = locals()[\"Connect_types_\"+str(a1)+str(a1)]\n",
    "                RG = locals()[\"Rg_\"+str(a1)+str(a1)]\n",
    "                area = (math.pi)*(parameters[1])*(np.ones((len(RG),1)))    # micron^2\n",
    "                area = area * 1e-8   #cm^2\n",
    "                b1=i\n",
    "                b2=j\n",
    "                if a1==0:\n",
    "                    area = (math.pi)*0.8*10*(np.ones((len(RG),1)))    # micron^2\n",
    "                    area = area * 1e-8   #cm^2\n",
    "                    \n",
    "              \n",
    "\n",
    "            if a1<a2:\n",
    "                SEC = locals()[\"Connect_types_\"+str(a1)+str(a2)]\n",
    "                RG = locals()[\"Rg_\"+str(a1)+str(a2)]\n",
    "                b1=i\n",
    "                b2=j\n",
    "                if a1==0:\n",
    "                    area = (math.pi)*(parameters[a2][1])*(np.ones((len(RG),1)))\n",
    "                    area = area * 1e-8   #cm^2\n",
    "                    b1=j\n",
    "                    b2=i\n",
    "              \n",
    "                else:\n",
    "                    area = locals()[\"Areas_\"+str(a1)+str(a2)]\n",
    "                    area = area[ : , np.newaxis]\n",
    "                    area = area * 1e-8\n",
    "                    \n",
    "                    \n",
    "\n",
    "            if a1>a2:\n",
    "                SEC = locals()[\"Connect_types_\"+str(a2)+str(a1)]\n",
    "                RG = locals()[\"Rg_\"+str(a2)+str(a1)]\n",
    "                b1=j\n",
    "                b2=i\n",
    "                if a2==0:\n",
    "                    area = (math.pi)*(parameters[a1][1])*(np.ones((len(RG),1)))\n",
    "                    area = area * 1e-8   #cm^2\n",
    "                    b1=i\n",
    "                    b2=j\n",
    "  \n",
    "                else:\n",
    "                    area = locals()[\"Areas_\"+str(a2)+str(a1)]\n",
    "                    area = area[ : , np.newaxis]\n",
    "                    area = area * 1e-8\n",
    "                \n",
    "                \n",
    "                \n",
    "                \n",
    "                \n",
    "\n",
    "\n",
    "            locals()[\"sl\"+str(count)] = h.SectionList()\n",
    "\n",
    "            for z1 in range(int(len(SEC)/2)):  \n",
    "\n",
    "                S = sim.net.cells[b1].secs[SEC[z1]][\"hObj\"]\n",
    "                NSEG=NSEG+S.nseg\n",
    "                locals()[\"sl\"+str(count)].append(S)\n",
    "\n",
    "            for z2 in range(int(len(SEC)/2),int(len(SEC))):\n",
    "\n",
    "                S = sim.net.cells[b2].secs[SEC[z2]][\"hObj\"]\n",
    "                locals()[\"sl\"+str(count)].append(S)   \n",
    "                \n",
    "                \n",
    "\n",
    "            nsegs=int(NSEG)\n",
    "\n",
    "            locals()[\"gmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n",
    "            locals()[\"cmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n",
    "            locals()[\"bvec\"+str(count)] =h.Vector(2*nsegs)\n",
    "            locals()[\"xl\"+str(count)] =h.Vector(2*nsegs)\n",
    "            locals()[\"layer\"+str(count)] =h.Vector(2*nsegs)\n",
    "            locals()[\"layer\"+str(count)].fill(2)                 # connect layer 2\n",
    "            locals()[\"e\"+str(count)] = h.Vector(2*nsegs)\n",
    "\n",
    "            for z3 in range(2*nsegs):\n",
    "                locals()[\"xl\"+str(count)][z3] = 0.5\n",
    "                \n",
    "            \n",
    "            \n",
    "            \n",
    "            \n",
    "            \n",
    "            d = dist_edge[i][j] + 0.091374            #dist[i][j]\n",
    "            rd = rho*d\n",
    "            s = ((unique_radius*2)+(unique_radius*2))/2\n",
    "            locals()[\"RG\"+str(count)] = np.array(RG)*s\n",
    "            locals()[\"Resistance\"+str(count)] =  rd/locals()[\"RG\"+str(count)]\n",
    "            locals()[\"Conductance\"+str(count)]=[]\n",
    "            for z4 in range(len(locals()[\"Resistance\"+str(count)])):\n",
    "                locals()[\"Conductance\"+str(count)].append(1/(locals()[\"Resistance\"+str(count)][z4]*area[z4]))\n",
    "                \n",
    "\n",
    "          \n",
    "            for z5 in range(0,nsegs,1):\n",
    "\n",
    "                locals()[\"gmat\"+str(count)].setval(z5, z5, locals()[\"Conductance\"+str(count)][z5][0] )\n",
    "                locals()[\"gmat\"+str(count)].setval(z5, nsegs+z5, -locals()[\"Conductance\"+str(count)][z5][0])\n",
    "                locals()[\"gmat\"+str(count)].setval(nsegs+z5, z5, -locals()[\"Conductance\"+str(count)][z5][0])\n",
    "                locals()[\"gmat\"+str(count)].setval(nsegs+z5, nsegs+z5, locals()[\"Conductance\"+str(count)][z5][0])\n",
    "                \n",
    "                \n",
    "            locals()[\"GMAT\"+str(i)+str(j)] = locals()[\"gmat\"+str(count)]\n",
    "                \n",
    "            \n",
    "                  \n",
    "     \n",
    "                \n",
    "            \n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "#             geA= 1000\n",
    "    \n",
    "#             for z5 in range(0,nsegs,1):\n",
    "#                 locals()[\"gmat\"+str(count)].setval(z5, z5,  geA)\n",
    "#                 locals()[\"gmat\"+str(count)].setval(z5, nsegs+z5, -geA)\n",
    "#                 locals()[\"gmat\"+str(count)].setval(nsegs+z5, z5, -geA)\n",
    "#                 locals()[\"gmat\"+str(count)].setval(nsegs+z5, nsegs+z5, geA)\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "            locals()[\"lm\"+str(count)] = h.LinearMechanism(locals()[\"cmat\"+str(count)], locals()[\"gmat\"+str(count)], locals()[\"e\"+str(count)], locals()[\"bvec\"+str(count)], locals()[\"sl\"+str(count)], locals()[\"xl\"+str(count)], locals()[\"layer\"+str(count)])\n",
    "\n",
    "            count=count+1\n",
    "            \n",
    "            SEC.clear\n",
    "            del RG\n",
    "            del area\n",
    "            \n",
    "            \n",
    "\n",
    "            \n",
    "#print(count)            \n",
    "            \n",
    "        \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "b71ff07f",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " 5.72e+04 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -5.72e+04 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        5.72e+04 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -5.72e+04\n",
      " -5.72e+04 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        5.72e+04 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -1.14e+05 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        1.14e+05 0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -5.72e+04 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        5.72e+04\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "0.0"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "GMAT1516.printf()  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "9f7204b0",
   "metadata": {},
   "outputs": [],
   "source": [
    "            \n",
    "            \n",
    "            \n",
    "############################### Transverse connections between Boundary cables and Axons ######################################\n",
    "\n",
    "\n",
    "rho = 1.136e5 * 10000 * 4.7e-4 * 10000  # ohm-micron^2\n",
    "\n",
    "\n",
    "\n",
    "rows = len(Boundary_neighboring)\n",
    "\n",
    "for i in range(rows):\n",
    "    \n",
    "    for j in range(len(R)):\n",
    "        \n",
    "        if Boundary_neighboring[i][j]==1:\n",
    "        \n",
    "            NSEG = 0\n",
    "\n",
    "            a2 = np.where(unique_radius == R[j])    # find type \n",
    "            a2 = a2[0][0]+1\n",
    "            \n",
    "            Boundary_RG = locals()[\"Boundary_Rg_\"+str(1)]\n",
    "            area = (math.pi)*(parameters[1])*(np.ones((len(Boundary_RG),1)))\n",
    "            area = area * 1e-8   #cm^2\n",
    " \n",
    "\n",
    "            SEC = locals()[\"Boundary_to_\"+str(1)]\n",
    "\n",
    "\n",
    "            locals()[\"sl\"+str(count)] = h.SectionList()\n",
    "\n",
    "            for z1 in range(int(len(SEC)/2)):  \n",
    "\n",
    "                S = sim.net.cells[j].secs[SEC[z1]][\"hObj\"]\n",
    "                NSEG=NSEG+S.nseg\n",
    "                locals()[\"sl\"+str(count)].append(S)\n",
    "\n",
    "            for z2 in range(int(len(SEC)/2),int(len(SEC))):\n",
    "\n",
    "                S = sim.net.cells[len(R)+i].secs[SEC[z2]][\"hObj\"]\n",
    "                locals()[\"sl\"+str(count)].append(S)   \n",
    "\n",
    "\n",
    "\n",
    "\n",
    "            nsegs=int(NSEG)\n",
    "\n",
    "            locals()[\"gmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n",
    "            locals()[\"cmat\"+str(count)] =h.Matrix(2*nsegs, 2*nsegs)\n",
    "            locals()[\"bvec\"+str(count)] =h.Vector(2*nsegs)\n",
    "            locals()[\"xl\"+str(count)] =h.Vector(2*nsegs)\n",
    "            locals()[\"layer\"+str(count)] =h.Vector(2*nsegs)\n",
    "            locals()[\"layer\"+str(count)].fill(2)                   # connect layer 2\n",
    "            locals()[\"e\"+str(count)] = h.Vector(2*nsegs)\n",
    "\n",
    "            for z3 in range(2*nsegs):\n",
    "                locals()[\"xl\"+str(count)][z3] = 0.5\n",
    "\n",
    "\n",
    "            \n",
    "            \n",
    "            rd = rho + (1211 * 10000 *  Boundary_dist[i][j] )\n",
    "            s = (unique_radius*2)\n",
    "            locals()[\"Boundary_RG\"+str(count)] = np.array(Boundary_RG)*s\n",
    "            locals()[\"Resistance\"+str(count)] =  rd/locals()[\"Boundary_RG\"+str(count)]\n",
    "            locals()[\"Conductance\"+str(count)]=[]\n",
    "            for z4 in range(len(locals()[\"Resistance\"+str(count)])):\n",
    "                locals()[\"Conductance\"+str(count)].append(1/(locals()[\"Resistance\"+str(count)][z4]*area[z4]))\n",
    "\n",
    "        \n",
    "            for z5 in range(0,nsegs,1):\n",
    "\n",
    "                locals()[\"gmat\"+str(count)].setval(z5, z5,  locals()[\"Conductance\"+str(count)][z5][0] * 1)\n",
    "                locals()[\"gmat\"+str(count)].setval(z5, nsegs+z5, - locals()[\"Conductance\"+str(count)][z5][0] * 1)\n",
    "                locals()[\"gmat\"+str(count)].setval(nsegs+z5, z5, - locals()[\"Conductance\"+str(count)][z5][0] * 1)\n",
    "                locals()[\"gmat\"+str(count)].setval(nsegs+z5, nsegs+z5,  locals()[\"Conductance\"+str(count)][z5][0] * 1)\n",
    "                \n",
    "               \n",
    "            \n",
    "            locals()[\"GMAT_BOUNDARY\"+str(i)+str(j)] = locals()[\"gmat\"+str(count)]\n",
    "                \n",
    "                \n",
    "      \n",
    "           \n",
    "            \n",
    "\n",
    "\n",
    "\n",
    "            \n",
    "#             geB= 1\n",
    "            \n",
    "#             for z6 in range(0,nsegs,1):\n",
    "\n",
    "#                 locals()[\"gmat\"+str(count)].setval(z6, z6,  geB)\n",
    "#                 locals()[\"gmat\"+str(count)].setval(z6, nsegs+z6, -geB)\n",
    "#                 locals()[\"gmat\"+str(count)].setval(nsegs+z6, z6, -geB)\n",
    "#                 locals()[\"gmat\"+str(count)].setval(nsegs+z6, nsegs+z6, geB)\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "            locals()[\"lm\"+str(count)] = h.LinearMechanism(locals()[\"cmat\"+str(count)], locals()[\"gmat\"+str(count)], locals()[\"e\"+str(count)], locals()[\"bvec\"+str(count)], locals()[\"sl\"+str(count)], locals()[\"xl\"+str(count)], locals()[\"layer\"+str(count)])\n",
    "\n",
    "            count=count+1\n",
    "            \n",
    "                        \n",
    "            SEC.clear\n",
    "            del Boundary_RG\n",
    "            del area\n",
    "            \n",
    "            \n",
    "          \n",
    "            \n",
    "            \n",
    "\n",
    "#print(count)             \n",
    "            \n",
    "            \n",
    "            \n",
    "# from IPython.display import clear_output\n",
    "\n",
    "# clear_output(wait=True)\n",
    "\n",
    "\n",
    "        \n",
    "#gmat0.printf()  \n",
    "\n",
    "# for sec in sl0:\n",
    "#     print(sec)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "7808a6c6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " 7.74     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -7.74    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        7.74     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -7.74   \n",
      " -7.74    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        7.74     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0        0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -15.5    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        15.5     0       \n",
      " 0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        -7.74    0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        0        7.74    \n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "0.0"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "GMAT_BOUNDARY55.printf()  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "5eb4dcc1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "24.2\n"
     ]
    }
   ],
   "source": [
    "print(Boundary_dist[0][0])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2a6c256",
   "metadata": {},
   "source": [
    "#### Recordings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "d1494f97",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Recording vext\n",
    "\n",
    "\n",
    "# v1 = sim.net.cells[45].secs[\"node_0\"][\"hObj\"]\n",
    "# ap1 = h.Vector()\n",
    "# t = h.Vector()\n",
    "# ap1.record(v1(0.5)._ref_v)\n",
    "\n",
    "# t.record(h._ref_t)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "ca5603a0",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "1\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "2\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "3\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "4\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "5\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "6\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "7\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "8\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "9\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "10\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "11\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "12\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "13\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "14\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "15\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "16\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "17\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "18\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n",
      "19\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "9\n",
      "10\n",
      "11\n",
      "12\n",
      "13\n",
      "14\n",
      "15\n",
      "16\n",
      "17\n",
      "18\n",
      "19\n",
      "20\n",
      "21\n",
      "22\n",
      "23\n",
      "24\n",
      "25\n",
      "26\n",
      "27\n",
      "28\n",
      "29\n",
      "30\n",
      "31\n",
      "32\n",
      "33\n",
      "34\n",
      "35\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Vector[1583]"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Recording v and vext[0],  Abeta\n",
    "\n",
    "\n",
    "\n",
    "for i1 in range(len(R)):      \n",
    "    if G[i1]==4:  \n",
    "        print(i1)\n",
    "        F = np.where(unique_radius == R[i1])               \n",
    "        #nodes = int (Number_of_nodes[F]-1)\n",
    "        for i3 in range(int(Number_of_nodes)):\n",
    "\n",
    "            locals()[\"Abeta_v\"+str(i1)+str(i3)] = sim.net.cells[i1].secs[\"node_%s\"%i3][\"hObj\"]\n",
    "            locals()[\"Abeta_ap\"+str(i1)+str(i3)] = h.Vector()\n",
    "            locals()[\"Abeta_ap\"+str(i1)+str(i3)].record(locals()[\"Abeta_v\"+str(i1)+str(i3)](0.5)._ref_v)\n",
    "#         locals()[\"Abeta_v_ext\"+str(i1)] = sim.net.cells[i1].secs[\"node_%s\"%nodes][\"hObj\"]\n",
    "#         locals()[\"Abeta_ap_ext\"+str(i1)] = h.Vector()\n",
    "#         locals()[\"Abeta_ap_ext\"+str(i1)].record(locals()[\"Abeta_v_ext\"+str(i1)](0.5)._ref_vext[0])\n",
    "       \n",
    "            print(i3)\n",
    "#         print(nodes)\n",
    "        \n",
    "\n",
    "    \n",
    "        \n",
    "t = h.Vector()\n",
    "t.record(h._ref_t)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "e3f90783",
   "metadata": {},
   "outputs": [],
   "source": [
    "for i1 in range(36):\n",
    "\n",
    "    locals()[\"Abeta0_imembrane\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "    locals()[\"Abeta0_imembrane_node\"+str(i1)] = h.Vector()\n",
    "    locals()[\"Abeta0_imembrane_node\"+str(i1)].record(locals()[\"Abeta0_imembrane\"+str(i1)](0.5)._ref_i_membrane)\n",
    "    \n",
    "    \n",
    "    \n",
    "# for i1 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta0_icap\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "#     locals()[\"Abeta0_icap_node\"+str(i1)] = h.Vector()\n",
    "#     locals()[\"Abeta0_icap_node\"+str(i1)].record(locals()[\"Abeta0_icap\"+str(i1)](0.5)._ref_i_cap)    \n",
    "    \n",
    "\n",
    "    \n",
    "    \n",
    "# for i1 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta0_ik\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "#     locals()[\"Abeta0_ik_node\"+str(i1)] = h.Vector()\n",
    "#     locals()[\"Abeta0_ik_node\"+str(i1)].record(locals()[\"Abeta0_ik\"+str(i1)](0.5)._ref_ik_axnode)        \n",
    "    \n",
    "    \n",
    "    \n",
    "# for i1 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta0_il\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "#     locals()[\"Abeta0_il_node\"+str(i1)] = h.Vector()\n",
    "#     locals()[\"Abeta0_il_node\"+str(i1)].record(locals()[\"Abeta0_il\"+str(i1)](0.5)._ref_il_axnode)        \n",
    "    \n",
    "    \n",
    "\n",
    "# for i1 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta0_ina\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "#     locals()[\"Abeta0_ina_node\"+str(i1)] = h.Vector()\n",
    "#     locals()[\"Abeta0_ina_node\"+str(i1)].record(locals()[\"Abeta0_ina\"+str(i1)](0.5)._ref_ina_axnode)    \n",
    "    \n",
    "    \n",
    "    \n",
    "    \n",
    "# for i1 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta0_inap\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "#     locals()[\"Abeta0_inap_node\"+str(i1)] = h.Vector()\n",
    "#     locals()[\"Abeta0_inap_node\"+str(i1)].record(locals()[\"Abeta0_inap\"+str(i1)](0.5)._ref_inap_axnode)        \n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "23017f07",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "for i1 in range(36):\n",
    "\n",
    "    locals()[\"Abeta0_v\"+str(i1)] = sim.net.cells[0].secs[\"node_%s\"%i1][\"hObj\"]\n",
    "    locals()[\"Abeta0_v_node\"+str(i1)] = h.Vector()\n",
    "    locals()[\"Abeta0_v_node\"+str(i1)].record(locals()[\"Abeta0_v\"+str(i1)](0.5)._ref_v)\n",
    "\n",
    "\n",
    "\n",
    "# for i2 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta0_vex\"+str(i2)] = sim.net.cells[0].secs[\"node_%s\"%i2][\"hObj\"]\n",
    "#     locals()[\"Abeta0_vext1_node\"+str(i2)] = h.Vector()\n",
    "#     locals()[\"Abeta0_vext1_node\"+str(i2)].record(locals()[\"Abeta0_vex\"+str(i2)](0.5)._ref_vext[1])\n",
    "\n",
    "    \n",
    "    \n",
    "# for i3 in range(0,24,2):\n",
    "    \n",
    "#     locals()[\"Abeta_vMext\"+str(i3)] = sim.net.cells[0].secs[\"MYSA_%s\"%i3][\"hObj\"]\n",
    "#     locals()[\"Abeta0_vext1_MYSA\"+str(i3)] = h.Vector()\n",
    "#     locals()[\"Abeta0_vext1_MYSA\"+str(i3)].record(locals()[\"Abeta_vMext\"+str(i3)](0.5)._ref_vext[1])\n",
    "\n",
    "\n",
    "    \n",
    "# for i4 in range(12):\n",
    "\n",
    "#     locals()[\"Abeta1_vext1\"+str(i4)] = sim.net.cells[1].secs[\"node_%s\"%i4][\"hObj\"]\n",
    "#     locals()[\"Abeta1_vext1_node\"+str(i4)] = h.Vector()\n",
    "#     locals()[\"Abeta1_vext1_node\"+str(i4)].record(locals()[\"Abeta1_vext1\"+str(i4)](0.5)._ref_vext[1])   \n",
    "    \n",
    "    \n",
    "    \n",
    "# locals()[\"Abeta_vSext\"+str(220)] = sim.net.cells[0].secs[\"STIN_220\"][\"hObj\"]\n",
    "# locals()[\"Abeta0_vext1_STIN\"+str(220)] = h.Vector()\n",
    "# locals()[\"Abeta0_vext1_STIN\"+str(220)].record(locals()[\"Abeta_vSext\"+str(220)](0.5)._ref_vext[1])    \n",
    "    \n",
    "# locals()[\"Abeta_v\"+str(220)] = sim.net.cells[0].secs[\"STIN_220\"][\"hObj\"]\n",
    "# locals()[\"Abeta0_v_STIN\"+str(220)] = h.Vector()\n",
    "# locals()[\"Abeta0_v_STIN\"+str(220)].record(locals()[\"Abeta_v\"+str(220)](0.5)._ref_v)    \n",
    "    \n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "4b9344bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Recording v and vext[0],  Adelta\n",
    "\n",
    "\n",
    "\n",
    "# for i2 in range(len(R)): \n",
    "#     if G[i2]==3:  \n",
    "#         F = np.where(unique_radius == R[i2])               \n",
    "#         nodes = int (Number_of_nodes[F]-1)\n",
    "#         locals()[\"Adelta_v\"+str(i2)] = sim.net.cells[i2].secs[\"node_%s\"%nodes][\"hObj\"]\n",
    "#         locals()[\"Adelta_ap\"+str(i2)] = h.Vector()\n",
    "#         locals()[\"Adelta_ap\"+str(i2)].record(locals()[\"Adelta_v\"+str(i2)](0.5)._ref_v)\n",
    "#         locals()[\"Adelta_v_ext\"+str(i2)] = sim.net.cells[i2].secs[\"node_%s\"%nodes][\"hObj\"]\n",
    "#         locals()[\"Adelta_ap_ext\"+str(i2)] = h.Vector()\n",
    "#         locals()[\"Adelta_ap_ext\"+str(i2)].record(locals()[\"Adelta_v_ext\"+str(i2)](0.5)._ref_vext[0])\n",
    "#         print(i2)\n",
    "       \n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d83f15db",
   "metadata": {},
   "source": [
    "#### Simulate and Analyze"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "cd6d9f09",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Running simulation for 6.0 ms...\n",
      "  Done; run time = 2991.07 s; real-time ratio: 0.00.\n",
      "\n",
      "Gathering data...\n",
      "  Done; gather time = 7.92 s.\n",
      "\n",
      "Analyzing...\n",
      "  Cells: 40\n",
      "  Connections: 0 (0.00 per cell)\n",
      "  Spikes: 1 (4.17 Hz)\n",
      "  Simulated time: 0.0 s; 1 workers\n",
      "  Run time: 2991.07 s\n",
      "  Done; saving time = 0.00 s.\n",
      "Plotting recorded cell traces ... cell\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAH3CAYAAADUjAlgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5S0lEQVR4nO3debwedX33/9cnCwnZgYQECBBkSwi7KCogWETU1ltv0IL2rtW7LbhXb6tWWy1q1aqt2rrz0yp1qYCCC2pVrKhQUIIsGrawRZZAQoDsC0k+vz/mOs3JyTknZ5m55lpez8djHnPOXHPNfM5FOHnn8535TmQmkiRJai9j6i5AkiRJw2eIkyRJakOGOEmSpDZkiJMkSWpDhjhJkqQ2ZIiTJElqQ4Y4SbWLiKsi4gu9vv9yRFxZZ02S1OoMcZJGLCL2ioiPRMQdEbExIpZHxC8i4pURMa4J5397RCxtnPvGiHjeCI7x5YjIxrKlcbzPRcReVdQ8QA2fioitEfGmZp1zgDoOi4gfRcT6iHi08TlMrrMmSQMzxEkakYiYC/wGOBt4H3A8cBLwReCvgSMrPv+bgfcC7waOA34CfC8ijh7B4X4J7APMA95E8TP9eymF7kJETAL+D/BB4LxmnHOAOqYAPwW2AM8C/hh4PsV/T0ktyBAnaaQ+C0wAjs/Mr2XmrZm5JDMvAp4KLOnZMSLeGBG3NzpmSyLib0fTqYuIAN4GfDwz/z0zb8vMtwO3AP9vBIfcnJkPZ+YDmfkd4BPA8yNi9yj8dUTcExGbI+LuRoDsXc99EfGBiPhCRKxudLE+HBFD+R17DnA38A/AvhHxrD7H/mzj+DN6bftS43Oc2vj+hRFxQ0RsanRDP9O7g9YzPB0R5zU6jasj4jsRMavXqV4BzARekZk3ZeZ/Aa8HzomIg4b+UUpqFkOcpGGLiD2BFwKfysxVfV/PzCczc11j3wsoOnPvBBYAfwWcD/z9KEqYB+wL/Gef7f8JnDyK4/bYQPH7cRzwOuD9wD8CC4GPAv8YEX/e5z1vBB4Cnga8BXgD8OYhnOt84KLM3AR8g527cW8BVgP/H0BEvIIicJ2bmWsancfvAr8AjgX+DPgj4HN9jvM04DnAH1J02I4F/qnX6ycB1/b57/ljYFvjNUktpvJrViR1pEMoQs6tg+3UGCp8O3BWZvYErnsj4u+Af6UYCh2JfRrrh/tsf7jXayMSEUdQdKB+1QhJfwN8MjMvbOyyJCIOB/6WHYcab87M9zS+viMiFlB0BT82yLmOoRiGflFj05eBqyLizZn5BEBmboyIc4BFEfGhRm1/k5k3NN7zNuA3mfmWxve3RcQbgcsj4u8yc2lj+2bgVY2wSER8liJQ99iHPp9nZj4ZEY8xys9UUjXsxEkaiWiscxf7LQR2B74VEWt7FuDzwPQ+w3ll2VVN/TmtUdsG4HfAPcArImIaMJeiy9Xbz4F5jZDa49o++1wD7Nc4xkDOB36QmSsAMvPXwL0U18j9j8y8jaKb+TfA1RTDvT0WDlBfAEf02nZbT4BreBCYPUhtO5QwxP0kNZGdOEkjsYRimG0hcPkg+/X8Q/FlwJ39vP7YCM+/rLGe0+e4s9m5OzcUv6IYhtwCLOvVreoJYH1DTLBrg+7TuGbtT4CpEbGl10tjKIZUP9XnLc8GtgIHABMphnx7DBSyem/f3M9rvWtcBuzfp8bxwJ6M7DOVVDE7cZKGLTMfA34IvCEipvd9PSLGN0LKYmAj8JTMvKufZesIS7iP4vqzM/tsfz5Fp2q4NjTqua93tyozVwMPAKf22f/ZwL2Zub7Xtmf02eeZwEONY/TnXIpQdgzF9Wk9yynAwoj4n+M1rr97SaOOScDHex1ncT/1nUoR0gYd7u7jGuCZfTqHZ1D8PXHNMI4jqUnsxEkaqddR/OV+Q0S8B7iJotvzDIrrtP4sM2+KiA8CHyxuKOUnFL93jgKOy8x3jOTEmZkR8dHGcW8DFgGvoghEfzmaH6ofHwL+OSKWAFcBfwC8luLatN6ObdzE8XXgBIrrzS4Y5LjnA5dn5m/7vhAR11B0465rXH/3L8BbMvOaiHg5cHVE/CQzv0Vxo8VvIuJjwIUUN318EvhaZv5+GD/n1ymuUfx6RPwtRQfu08DFmXnvMI4jqUkMcZJGJDN/HxHHU1yndQHFMN9q4DaKYPG7xn7vj4iHKO7e/CeKYcA7KS7iH835PxERu1HMrza7cd7/lZk39+zTCFV/n5lDGf4cyGeBycC7gM8A91PcWNB3/rRPAgdSBMotjfd9nH5ExLEUd4sOdGPHxcBHIuItFHes/igzPweQmb9qhOYvRMSizLwlIv4XxR20r6f4b/BNimvohiwz10bEcxs/x7UU/52+ycimbJHUBJHp9aqSOlNE/DswJzOH/SSHYZ7nPuALmfkPVZ5HknqzEyepIzUm2j2dYm40Seo4hjhJHSkztwH71V2HJFXF4VRJkqQ25BQjkiRJbcgQJ0mS1IY6/pq4mTNn5rx58+ouQ5IkaZduuOGGRzNzSI8k7PgQN2/ePBYtWlR3GZIkSbsUEUuHuq/DqZIkSW3IECdJktSGDHGSJEltyBAnSZLUhgxxkiRJbcgQJ0mS1IYMcZIkSW3IECdJktSGDHGSJEltyBAnSZLUhgxxkiRJbcgQJ0mS1IYMcZIkSW3IECdJktSGDHGSJEltyBAnSZLUhgxxapqtW+uuQJKkzmGIU1NccQVMnQr/+q91VyJJUmcwxKkp3vlO2LAB/uZvYOXKuquRJKn9GeJUubvugt/9Dl71qiLIXXpp3RVJktT+DHGq3DXXFOu3vQ0OPxy+/e1ay5EkqSMY4lS5666D6dNh/nw4/XS4+mp48sm6q5Ikqb0Z4lS5u+8uAtyYMfCc58C6dXDDDXVXJUlSezPEqXIPPABz5xZfP/vZxfpnP6uvHkmSOoEhTpXrHeL23hsOOwyuv77emiRJaneGOFVq9WpYswb222/7tuOOgxtvrK8mSZI6gSFOlVq+vFjPnr1923HHwX33weOP11KSJEkdwRCnSq1aVaynT9++7bjjivVNNzW9HEmSOoYhTpVavbpY9xfiHFKVJGnkDHGqVH+duFmzihscbr21npokSeoEhjhVqqcTN23ajtvnz4fbb29+PZIkdQpDnCrVXycODHGSJI2WIU6V6glx/XXiVq6ERx9tfk2SJHUCQ5wqtXo1TJwIu+224/b584v1HXc0vyZJkjqBIU6VWr165y4cbA9xDqlKkjQyhjhVav16mDx55+0HHFB06AxxkiSNjCFOlVq3rv8QN3Zs8QxVQ5wkSSNjiFOl1q2DSZP6f23+fLjttubWI0lSpzDEqVIDDacCHHIILF0KW7Y0tyZJkjqBIU6VGmg4FeCgg4oA98ADza1JkqROYIhTpQYbTn3KU4r1Pfc0rx5JkjqFIU6VGmw4tSfE3Xtv8+qRJKlTGOJUqcGGU+fOhXHj7MRJkjQShjhVarDh1HHjivniDHGSJA2fIU6V2boVNm0auBMHxZCqw6mSJA2fIU6VWb++WO8qxNmJkyRp+Axxqsy6dcV6oOFUKKYZWbEC1qxpTk2SJHUKQ5wqM9ROHDikKknScBniVJmeTtxgIe6gg4q1IU6SpOExxKkyQxlOPeCAYn3//dXXI0lSJzHEqTJDGU6dNQt2280QJ0nScBniVJmhDKeOGVNM+muIkyRpeAxxqkxPJ26w4VSA/fc3xEmSNFyGOFVmKJ04MMRJkjQShjhVZjgh7oEHiic8SJKkoTHEqTLDGU7duhUefrj6miRJ6hSGOFVm/XqIgIkTB9/PaUYkSRo+Q5wqs2kTTJhQBLnB7L9/sTbESZI0dIY4VWbzZhg/ftf7GeIkSRo+Q5wqs3lzMZHvrsyYUdz8YIiTJGnoDHGqzFBDXETRjfv976uvSZKkTmGIU2WGGuLAueIkSRouQ5wq8+SThjhJkqrSUiEuIiZExBcjYmlErImIGyPiBb1ePz0ibo+I9RHxs4g4sM56NbjhdOIOOAAeeaR4jyRJ2rWWCnHAOOB+4FRgOvBu4JKImBcRM4HLGtv2BBYBF9dVqHZtqHenQtGJy4QHH6y2JkmSOsW4ugvoLTPXARf02nRFRNwLPBXYC1icmZcCRMQFwKMRMT8zb292rdq14XTi9tuvWD/0EBx0UHU1SZLUKVqtE7eDiJgNHAYsBhYCN/e81gh8dze2933feRGxKCIWrVixolnlqo/hhLh99y3WDz1UXT2SJHWSlg1xETEe+BpwUaPTNgVY1We3VcDUvu/NzAsz84TMPGHWrFnVF6t+GeIkSapOS4a4iBgDfAXYDLyhsXktMK3PrtOANU0sTcMwnBC3557FvoY4SZKGpuVCXEQE8EVgNnB2Zj7ZeGkxcEyv/SYDBze2qwUNJ8RFFN04Q5wkSUPTciEO+CywAHhRZm7otf1y4MiIODsiJgLvAW7xpobWNZwQB4Y4SZKGo6VCXGPet/OBY4GHI2JtY/mTzFwBnA18AHgcOBE4t7ZitUtPPjn0KUbAECdJ0nC02hQjS4EY5PUrgfnNq0ijMZJO3I9/XF09kiR1kpbqxKmzjCTErV4Na9dWV5MkSZ3CEKfKjCTEASxbVk09kiR1EkOcKjPcELfPPsXa6+IkSdo1Q5wqM5xnp4IT/kqSNByGOFVmyxZDnCRJVTHEqTLbtsGYYfwJmz4ddt/dECdJ0lAY4lSJzGIZTojzqQ2SJA2dIU6VyCzWwwlxYIiTJGmoDHGqxLZtxdoQJ0lSNQxxqsRoQtyDD27v5EmSpP4Z4lSJkYa4ffaBDRtgzZrya5IkqZMY4lSJkYa4OXOK9cMPl1uPJEmdxhCnSow2xD3ySLn1SJLUaQxxqsRIQ9zs2cXaTpwkSYMzxKkSduIkSaqWIU6VGGmI22svGDvWTpwkSbtiiFMlRhrixo6FWbMMcZIk7YohTpUYaYiDYkjV4VRJkgZniFMlRhvi7MRJkjQ4Q5wqMZoQN3u2IU6SpF0xxKkSZQyn+ugtSZIGZohTJXpC3Nixw3/vnDnw5JPw+OPl1iRJUicxxKkSox1OBYdUJUkajCFOlRjtcCp4h6okSYMxxKkSW7cW69GEODtxkiQNzBCnSpTRiTPESZI0MEOcKjGaEDdjBuy2m8OpkiQNxhCnSowmxEU4V5wkSbtiiFMlRhPiwKc2SJK0K4Y4VWK0IW72bIdTJUkajCFOlbATJ0lStQxxqkQZIW758u1TlUiSpB0Z4lSJMoZTt22DlSvLq0mSpE5iiFMlyujEgUOqkiQNxBCnShjiJEmqliFOlShjOBW8Q1WSpIEY4lQJO3GSJFXLEKdKjDbETZkCkybZiZMkaSCGOFVitCHOR29JkjQ4Q5wq0RPixo4d+TGc8FeSpIEZ4lSJ0XbiwE6cJEmDMcSpEmWEuDlzvCZOkqSBGOJUibI6cStXwpYt5dQkSVInMcSpEmWFuExYsaKcmiRJ6iSGOFWirBAHDqlKktQfQ5wqYYiTJKlahjhVwhAnSVK1DHGqhCFOkqRqGeJUia1bi/VoQtyUKbD77s4VJ0lSfwxxqkQZnbieR2/ZiZMkaWeGOFWijBAHTvgrSdJADHGqRFkhzk6cJEn9M8SpEoY4SZKqZYhTJcoMcY8+uv1GCUmSVDDEqRJlhrht24ogJ0mStjPEqRJlhjhwSFWSpL4McapET4gbO3Z0x+kJcc4VJ0nSjgxxqoSdOEmSqmWIUyUMcZIkVavtQlxE7BkRl0fEuohYGhGvqLsm7aysEDdtGkycaIiTJKmvcXUXMAKfBjYDs4Fjge9HxM2ZubjWqrSDskKcj96SJKl/bdWJi4jJwNnAuzNzbWZeDXwX+NN6K1NfmzcX69GGODDESZLUn7YKccBhwNbMvLPXtpuBhTXVowH893/D3LnFcOhoGeIkSdpZu4W4KcCqPttWAVN7b4iI8yJiUUQsWrFiRdOK03bXXANnnFEMh46WIU6SpJ21W4hbC/Tt7UwD1vTekJkXZuYJmXnCrFmzmlacCpmwciXss085x5s9G5Yv99FbkiT11m4h7k5gXEQc2mvbMYA3NbSQtWuLwLXHHuUcr+fRWytXlnM8SZI6QVuFuMxcB1wGvC8iJkfEScCLga/UW5l6e/zxYj1jRjnHc644SZJ21lYhruF1wO7AcuA/gNc6vUhr6QlxZXbiwBAnSVJvbTdPXGY+Bryk7jo0sCeeKNZlhbg5c4q1IU6SpO3asROnFmcnTpKk6hniVLpVjUlgypgjDmD6dNhtN0OcJEm9GeJUui1bivX48eUcz0dvSZK0M0OcStczn9vYseUdc/ZsePjh8o4nSVK7M8SpdFWFODtxkiRtZ4hT6QxxkiRVzxCn0lUV4pYvL57cIEmSDHGqQFUhbutWeOyx8o4pSVI7M8SpdFWEOCf8lSRpR4Y4la6qThwY4iRJ6mGIU+l65okzxEmSVB1DnEpXZSfOueIkSSoY4lS6nhA3psQ/XXvsUTwBwk6cJEkFQ5xKt3Vr0YWLKO+YEbD33oY4SZJ6GOJUup4QVzYn/JUkaTtDnEpniJMkqXqGOJXOECdJUvUMcSpdVSFuzpzi0VuZ5R9bkqR2Y4hT6arsxD35JDz+ePnHliSp3RjiVLoqQxw4V5wkSWCIUwWqDnFeFydJkiFOFTDESZJUPUOcSmeIkySpeoY4la6qELfnnsVxDXGSJBniVIGqQtyYMT56S5KkHoY4la6qEAdO+CtJUg9DnEpXZYibM8cQJ0kSGOJUgao7cc4TJ0mSIU4VqDrE+egtSZIMcapA1SFu82Z44olqji9JUrswxKl0VYc48Lo4SZIMcSqdIU6SpOoZ4lQ6Q5wkSdUzxKl0hjhJkqpniFPpqgxxe+1VPLnBECdJ6naGOJWuyhA3dmzx6C3nipMkdTtDnEpXZYgDH70lSRIY4lQBQ5wkSdUzxKl0W7bAuHHVHd8QJ0mSIU4VaFYnzkdvSZK6mSFOpdu2rbiDtCqzZ8OmTbB6dXXnkCSp1RniVLrM6kMcOKQqSepuhjiVruphTkOcJEmGOFUkorpj94Q454qTJHUzQ5xKV3Unbs6cYm0nTpLUzQxxqkSVnbiZM330liRJhjiVrupO3NixRZAzxEmSupkhTpWoshMHTvgrSdKQ5tWPiOcBrwIWAlOBNcBi4EuZ+ZPKqlNbasYkvLNne2ODJKm77bITFxFvAS4C7gLeB5wHvBdYAlwUEX9VaYVqS1V34vbdF5Ytq/YckiS1sqF04t4GPCczb++z/bKI+A/gZ8C/lF6Z2lYzOnE9Ia7qp0NIktSqhvLX32TgoQFeexiYVF456hTN6MRt2QKPPlrteSRJalVDCXHfAr4XEadHxKyI2C0iZkbE6cDlwDerLVHtphmduP32K9YPDfTPC0mSOtxQQtxrgP+muC7uEWBDY30RcB3w2sqqU9tqRicODHGSpO61y2viMnMz8E7gnRExA5gCrM3MJ/ruGxEnZeY1ZRep9tKsa+LAECdJ6l5DmmKkRyO4PTHILj8Epo2iHnWIqjtxPY/eMsRJkrpV2ff1VfxXt9pBMzpxu+0Gs2YZ4iRJ3avsENeEv77VDqruxEExpGqIkyR1K2fYUuma0YkDQ5wkqbu1RIiLiAkR8cWIWBoRayLixoh4QZ99To+I2yNifUT8LCIOrKte7ZqdOEmSqtUq18SNA+4HTgWmA+8GLomIeQARMRO4rLF9T2ARcPFoi1U1mtmJe+SRYtJfSZK6zbBCXETsFRF/GhFvb3y/b0TM7Xk9M6eOpIjMXJeZF2TmfZm5LTOvAO4FntrY5SxgcWZempkbgQuAYyJi/kjOp+o1qxO3bRssX179uSRJajVDDnERcSpwB/AnFB0xgEOBz5ZdVETMBg4DFjc2LQRu7nk9M9cBdze2q8VkNi/EgUOqkqTuNJxO3CeAczLz+UDPANavgKeXWVBEjAe+BlyUmbc3Nk8BVvXZdRXQb+cvIs6LiEURsWjFihVllqchaOZwKhjiJEndaTghbl5m/rTxdc9f05sZwoTBEXFVROQAy9W99hsDfKVx3Df0OsRadp5EeBqwpr/zZeaFmXlCZp4wa9asof10KlUzOnE+P1WS1M2GE+JujYgz+2x7LvDbXb0xM0/LzBhgORkgIgL4IjAbODszn+x1iMXAMT3fRMRk4GC2D7eqhTSrE7f33jBmjCFOktSdhhPi3gp8LSIuAnaPiM8DXwbeVlItnwUWAC/KzA19XrscODIizo6IicB7gFt6DbeqxTSjEzd2bPH4LUOcJKkbDTnEZeZ1FN2wxcC/Udw9+vTMvH60RTTmfDsfOBZ4OCLWNpY/aZx7BXA28AHgceBE4NzRnlfVaFYnDpwrTpLUvXZ5PVtvmfkg8JGyi8jMpexijrnMvBJwSpE20YxOHBQhbunS5pxLkqRWMmiIi4ivMITnoWbmK0urSG2v2Z24a69t3vkkSWoVuxpOvYtiPra7Kab0eAkwFnig8d4XA09UV57aVTM7cStWwObNzTmfJEmtYtBOXGa+t+friPgR8IeZ+cte205m+8S/EtD8ThwU18XNm9e880qSVLfh3J36DOC6Ptt+BTyzvHLUKZrVidt//2J9//3NOZ8kSa1iOCHuRuCDEbE7QGP9AeCmCupSG2tmJ84QJ0nqVsMJca8CTgJWRcQjFNfInQx4U4N2YidOkqRqDXmKkcy8D3hWROwP7Assy8zfV1WY2lczO3FTpsCMGYY4SVL3GU4njojYA3gO8AfAaY3vpZ00qxMHRTfOECdJ6jZDDnER8UyKqUZeAxxN8YSFuxvbpf/RzE4cGOIkSd1pOE9s+ATwusz8Rs+GiDgH+FfgaSXXpTbX7E7cr3/dvPNJktQKhjOcehhwSZ9t3wQOKa8cdYI6OnGPPgobNjT3vJIk1Wk4IW4JOz90/mUUQ6zSDprZiTvggGL9wAPNO6ckSXUbznDqm4ErIuJNwFJgHnAo8Efll6V2VkcnDorr4g49tLnnliSpLsOZYuS/I+Jg4A8pphj5HvCDzHysquLUvpp9TRzA753wRpLURYbTiSMzHwe+WlEt6hDN7sTNnVusvUNVktRNhhziIuIgisdsHQtM6f1aZh5Qbllqd83sxE2YAHvvbYiTJHWX4XTivk5xE8NbgfXVlKNO0OxOHDhXnCSp+wwnxC0ETsrMbVUVo87RzE4cFCFuyZLmnlOSpDoNZ4qRXwDHVVWIOoedOEmSqjecTtx9wI8i4jLg4d4vZOZ7yixK7a+OTtzq1cUybVpzzy1JUh2G04mbTDGtyHhg/17L3ArqUhurqxMHduMkSd1jOPPEvXpX+0TEyzPzP0ZXkjpBHZ04KELcwoXNPbckSXUYTiduKD5f8vHUhjLrC3FO+CtJ6hZlh7gm/9UtFfbdF8aNg6VL665EkqTmKDvE1XA1lFpNHZ24ceOKbty99zb3vJIk1aXsECfV5qCDDHGSpO6xyxAXEQY9DUsdnTgoQtx99zX/vJIk1WEoAe3BiPhIRBw5hH29rFy1mTcPHn4YNmyouxJJkqo3lBD3GuAg4PqI+E1E/FVEzOpvx8wcStBTh6uzEwd24yRJ3WGXIS4zv5OZLwP2oZhC5GXA/RHx3Yg4OyLGV12kNBSGOElSNxny9W6Z+URmfj4zTwYWAIuAjwPLqipO7anuTpw3N0iSusGwb1qIiAnA04ATgdnAb8suSu2tjsduAcyeDRMmGOIkSd1hyCEuIk6OiAuBR4B/AK4DDsvM51RVnNpXHZ24MWOKmxscTpUkdYNdPjs1Ii4A/hTYE7gU+MPMvKbiutTG6urEgXPFSZK6xy5DHPAM4G+Bb2fmxorrUYeooxMHRSfu17+u59ySJDXTLkNcZj6/GYWoc9TdiXvsMVi9GqZNq68OSZKq5tMYVIm6OnFOMyJJ6haGOJWu7k4cwD331FeDJEnNYIhTJerqxB1ySLG+6656zi9JUrMY4lS6OjtxM2bAzJmwZEl9NUiS1AyGOFWirk4cFN04O3GSpE5niFPp6uzEARx6qJ04SVLnM8SpEnV34u6/HzZsqK8GSZKqZohT6VqhEwfeoSpJ6myGOFWi7k4ceF2cJKmzGeJUuro7cT0hzuviJEmdzBCnStTZidtjD9hrLztxkqTOZohT6eruxEHRjbMTJ0nqZIY4VaLOThw4zYgkqfMZ4lS6VunEOc2IJKmTGeJUibo7cYcdVqzvvrveOiRJqoohTh1p/vxifdtt9dYhSVJVDHGqRN2duMMPL2owxEmSOpUhTqXquR6u7hA3aRIceKAhTpLUuQxx6lgLFsCtt9ZdhSRJ1TDEqVSt0okDOOIIuOMO2Lq17kokSSqfIU4da8EC2LQJ7ruv7kokSSqfIU6laqVO3IIFxdrr4iRJncgQp45liJMkdTJDnErVSp24PfaA2bO9uUGS1JlaLsRFxKERsTEivtpn++kRcXtErI+In0XEgXXVqPaxYIGdOElSZ2q5EAd8Gri+94aImAlcBrwb2BNYBFzc/NK0K63UiYPiDtXbbmuN57lKklSmlgpxEXEu8ATw0z4vnQUszsxLM3MjcAFwTETMb26FajcLF8Lq1fDAA3VXIklSuVomxEXENOB9wFv7eXkhcHPPN5m5Dri7sb2/Y50XEYsiYtGKFSuqKFcDaLVO3DHHFOubbx58P0mS2k3LhDjg/cAXM/P+fl6bAqzqs20VMLW/A2XmhZl5QmaeMGvWrJLLVDs56qhibYiTJHWapoS4iLgqInKA5eqIOBZ4LvDxAQ6xFpjWZ9s0YE2FZWsEWq0TN20aHHQQ3HJL3ZVIklSucc04SWaeNtjrEfFmYB7w+yj+9p8CjI2IIzLzeGAx8Ge99p8MHNzYrhbSijcQHH20nThJUudpleHUCylC2bGN5XPA94EzG69fDhwZEWdHxETgPcAtmXl780vVULRKJw6K6+KWLIH16+uuRJKk8rREiMvM9Zn5cM9CMXy6MTNXNF5fAZwNfAB4HDgROLe2gjWgVuzEHXMMbNsGi+3bSpI6SFOGU4crMy/oZ9uVgFOKtIlW6sQdfXSxvuUWeNrT6q1FkqSytEQnTp2jFTtxT3kKTJ7sdXGSpM5iiFMlWqkTN2ZMMdWId6hKkjqJIU6lasVOHMBxx8GNNxbXxkmS1AkMcapEK3XiAE44oXj81pIldVciSVI5DHEqVat24npuaLj++nrrkCSpLIY4VaLVOnELFsCkSYY4SVLnMMSpVK3aiRs3rrgubtGiuiuRJKkchjhVotU6cVAMqd54I2zZUnclkiSNniFOpWrVThwUIW7DBp/cIEnqDIY4VaJVO3HgdXGSpM5giFOpWrkTd8ghMGOGIU6S1BkMcapEK3biIopu3LXX1l2JJEmjZ4hTqXo6ca0Y4gBOPhl+9zt44om6K5EkaXQMceoqJ59cBE27cZKkdmeIU6lavRN34okwdixcfXXdlUiSNDqGOHWVyZPh+OMNcZKk9meIU6lavRMHxZDqr38NmzbVXYkkSSNniFPXOeUU2LgRfvObuiuRJGnkDHEqVTt04k46qVj/8pf11iFJ0mgY4tR19t4bDj8crrqq7kokSRo5Q5xK1Q6dOIDnPhd+/nPYvLnuSiRJGhlDnLrSGWfA+vXOFydJal+GOJWqXTpxp50GY8bAlVfWXYkkSSNjiFNXmj4dnv50Q5wkqX0Z4lSqdunEQXFd3K9/DatW1V2JJEnDZ4hT1zrjDNi2DX72s7orkSRp+AxxKlU7deKe8QyYMgV++MO6K5EkafgMcepau+0GZ54JV1yxPXxKktQuDHEqVTt14gBe9CJ46CEfwSVJaj+GOHW1F76wCJzf+17dlUiSNDyGOJWq3Tpxs2bBM59piJMktR9DnLrei15UDKc++GDdlUiSNHSGOJWq3TpxAC9+cbG+/PJ665AkaTgMcSpVO97luWABLFwIl1xSdyWSJA2dIU6VaKdOHMAf/zFcfbVDqpKk9mGIU6nasRMHRYjLhG9+s+5KJEkaGkOcKtFunbj58+Hoo+Hii+uuRJKkoTHEqVTt2okDOOccuPZaWLq07kokSdo1Q5wq0W6dOIBXvKJY//u/11uHJElDYYhTqdq5EzdvHjznOfDlL8O2bXVXI0nS4AxxqkQ7duIAXv1quOee4k5VSZJamSFOpWrnThzAWWfB1KnwpS/VXYkkSYMzxKkS7dqJmzy5mG7k0kth1aq6q5EkaWCGOJWqHR+71df558O6dXDRRXVXIknSwAxxUh9PexqceCJ8+tPe4CBJal2GOJWqEzpxAG98I9x5J/zkJ3VXIklS/wxxUj9e+lLYe2/41KfqrkSSpP4Z4lSqTunETZhQXBv3/e/D3XfXXY0kSTszxEkDeM1rYNw4+Od/rrsSSZJ2ZohTqTqlEwew777wqlfBv/0bLFtWdzWSJO3IECcN4h3vgCefhI99rO5KJEnakSFOpeqkThzAwQfDuefCZz8LK1fWXY0kSdsZ4qRdeOc7i8l//+Vf6q5EkqTtDHEqVad14gCOPBLOPhs+/nFYvrzuaiRJKhjipCH4wAdgw4ZiLUlSKzDEqVSd2IkDOPxw+L//t7g27p576q5GkiRDnDRkf//3xbxx73533ZVIkmSIU8k6tRMHsN9+8OY3w9e/DtddV3c1kqRuZ4iThuGd7yzC3OtfD1u31l2NJKmbtVSIi4hzI+K2iFgXEXdHxCm9Xjs9Im6PiPUR8bOIOLDOWtW/Tu7EAUydWkz8+5vfwIUX1l2NJKmbtUyIi4gzgA8DrwamAs8G7mm8NhO4DHg3sCewCLi4nkrV7V72MviDP4B3vcspRyRJ9WmZEAe8F3hfZl6Xmdsy88HMfLDx2lnA4sy8NDM3AhcAx0TE/LqKVf86vRMHxc/2qU8VEwC/8Y11VyNJ6lYtEeIiYixwAjArIu6KiAci4lMRsXtjl4XAzT37Z+Y64O7GdqnpFiwo7la95BL45jfrrkaS1I1aIsQBs4HxwEuBU4BjgeOAv2u8PgVY1ec9qyiGXXcSEedFxKKIWLRixYpKClb/uqET1+Md74CnPhVe9zrwj5kkqdmaEuIi4qqIyAGWq4ENjV0/mZnLMvNR4GPACxvb1wLT+hx2GrCmv/Nl5oWZeUJmnjBr1qwqfiSJcePgS1+CJ56A88/fHmAlSWqGpoS4zDwtM2OA5eTMfBx4ABjor8HFwDE930TEZODgxna1kG7qxAEcdRR88INw+eXF0xwkSWqWVhlOBfgS8MaI2Dsi9gDeDFzReO1y4MiIODsiJgLvAW7JzNvrKVXa7v/9P3jBC4r1TTfVXY0kqVu0Uoh7P3A9cCdwG3Aj8AGAzFwBnN34/nHgRODcesrUYLqtEwcwZgxcdBHstRecc04xvCpJUtVaJsRl5pOZ+brMnJGZczLzTY3pRHpevzIz52fm7o3h2ftqLFfawaxZ8I1vwD33wMtf7tMcJEnVa5kQp87QjZ24HqecAp/+NPznf8Lb3153NZKkTjeu7gLUWbr9Ds3zzoPf/rZ4NNeRR8KrX113RZKkTmWIUyW6sRPX4+MfhzvugL/8S5g5E170ororkiR1IodTVapu78RBMX/ct74Fxx8Pf/zH8POf112RJKkTGeJUiW7uxAFMnQo/+AEcdFDRibvhhrorkiR1GkOcStXNNzb0NXMm/PjHsOeecPrpcO21dVckSeokhjipQnPnwi9+UUxBcsYZcNVVdVckSeoUhjiVyk7czg44oAhyBx5YPNnhO9+puyJJUicwxElNsM8+RRfuqKPgf//vYgoSbwKRJI2GIU6lshM3sFmziiB31lnw1rfCa18LmzfXXZUkqV0Z4qQmmjQJLrkE3vEO+Pzn4dnPhqVL665KktSODHEqlZ24XRszBv7xH+HSS+G22+C44+CKK+quSpLUbgxxUk1e+tJi/rgDDyzmknvjG2HdurqrkiS1C0OcSmUnbngOOaSYP+6v/go+/Wk4+mif8CBJGhpDnFSziRPhE58owlsEnHYavOY1sHJl3ZVJklqZIU6lshM3cqecArfcAm95C3zhC3DoofCZz8CWLXVXJklqRYY4qYVMmlTMIXfTTXDssfD61xc3Pnz3u84rJ0nakSFOpbITV44jj4Sf/rS4g3XTJnjxi+EZz4ArrzTMSZIKhjipRUUUd7DeemsxvLpsWfH81ZNPhm9/G7Ztq7tCSVKdDHEqlZ248o0bB3/+57BkCXzyk/DQQ8Wju+bPLyYM3rCh7golSXUwxEltYsIEeMMbijD3jW/AtGnFXaxz5xY3Q9x6a90VSpKayRCnUtmJq964cXDOOXD99cWzWJ/73GKOuYULi6HWL38ZVq+uu0pJUtUMcVKbioBTT4WLL4YHHoCPfhSWL4dXvxpmz4aXvQwuvxw2bqy7UklSFQxxKpWduHrsvTf89V/DHXfANdfAX/xFMXnwWWfBnDnwylfCN78Ja9bUXakkqSyGOKmDRMCznrX9Bogf/Qhe8hL4/veLztzMmXDmmcXw6+9/X3e1kqTRMMSpVHbiWse4cfC85xXXyD3yCPziF/CmN8G99xY3SBx4YHGH6xveUExZ8sQTNRcsSRoWQ5zUBcaNKx7r9dGPwp13wu23wz/9EzzlKfClLxVTluy1F5x4IrzrXfDDHxrqJKnVjau7AHUWO3Ht4fDDi+Wtb4XNm+FXvyqeBvHTn8JHPgIf+lDx33DhwmJ49qSTivXBB/vfVpJahSFO6nK77VZ06U45Bd77Xli7tpi+5JpriuXii+HCC4t9Z82CE06Apz51+zJ3rsFOkupgiFOp7MS1vylT4DnPKRYoHu91661FoLv2WrjhhuKGiZ7Hfs2aBccfXwS644+Ho44qOnZjx9b3M0hSNzDESRrUmDFw5JHFcv75xbb16+Hmm+E3vylC3Q03wIc/DFu3Fq9PnAgLFmx/35FHFkOzBxxgwJekshjiVCo7cd1h0iR45jOLpcfGjfDb38LixfC73xXLf/0XfOUr2/eZOhWOOAIOO2zH5dBDYfLk5v8cktTODHGSSjFxIjztacXS2xNP7Bjsbr21eFxY73AHsN9+RZjrHeye8hSYN68Y4pUk7cgQp1LZiVNfM2YUd7eedNKO29evh7vuKqY86VmWLIHLLoNHH91x35kz4aCDikB30EE7fn3ggUWAlKRuY4hTJQxx2pVJk+Doo4ulr8ceKwLevfcWy333FeubboLvfKeYFqW3ffYpQt3cuduX/fff/vU++xRz5UlSJ/HXmkrV04mTRmPPPeHpTy+WvrZtg2XLdgx3995bPEbslluKR4ytX7/je8aMKZ4h2zvYzZ1bDOHOmVOEvDlzYPp0/wEiqX0Y4lQqh1NVtTFjivC1335w8sk7v55ZXIf3wAPbl/vv3/71rbcWU6SsXbvzeydOLMJc76Un4PX+fvbsYn49SaqTIU5SR4mAPfYolqOOGni/VavgwQeL58ouWwYPP1wsPV/fdRf88pewcmX/758xo5gjb6iL1+1JKpshTqWyE6d2MX16sRxxxOD7bd4My5fvHPSWL4cVK4rl7rvhuuuKGzJ65srra8qU/sPdnnvuuOy11/avJ03y/yVJAzPESdIgdttt+zV0u7JtWzGU2xPuBloefLC4SePRR2HTpsHP3Tfk9Q16fZfp02HaNJ+YIXUDQ5xKZSdO3WzMmO1h6vDDh/aeDRuKu3FXrizWgy1Ll8KNNxb79r15o6+pU4sh3xkzimA33K8nTBjppyCpWQxxklSj3XfffqPGcGzcCI8/vnPQW7Wq6Ab2rHu+fvDBYtLlnu09z74dyMSJOwe76dOLcDht2q7XPV9PmOA/6qSqGOJUKjtxUnNMnFjcKbvPPsN/byasW7djyBvs61WrisB4//2wenWxrF07tCmFxo8fevDru54yZcdl0iSHiaXeDHGS1GUitgejoVzr159t24oguGZNEeoGWve3beXKYm6/nu/7m+5lILvvvmOwmzx58O+Hss/uu/sPT7UnQ5xKZSdO6g5jxhQds6lTYd99R3esbduKINc3/K1bV2zvWfp+33vbI4/s+P2urhnsLWLg8Dd5ctEB7Fn3LIN93/e1iRP9nahqGOIkSbUaM2b7dXRl2bq1CHL9hb/BwmDv5bHHigmi168vXu9ZD/fJNBFDD3zD+X733XdcHGruPoY4lcpOnKRWMHbs9k5hmTKLuQN7Ql3PMtj3g7326KP9vz6SRxiOH79zsBvJMnHi0PbzppX6GeIkSRqiiCK8TJhQTCVThcxi/sDBAuG6dcX0NIMtGzdu/3rduiIw9rffQBNU70rE0ANf74DYd5kwYfjbx483QIIhTiWzEydJo9MTjiZOrC4o9vbkk7sOhIMFxIGWlSv7f9/GjSPrNPbW+zMaTRgczfZWGL42xEmS1MXGjy+WMq9JHExmERw3bdoe6novZW1/7LGB9x3sSSlDNXbs9q5sz9IT9gZahvL6cBjiVCo7cZKkwUQUj5Tbbbfyr1kcqm3bimsbRxoQe17ru/TdvmFDMdfiYPuMpitpiJMkSV1lzJjtw6J1yoQtW3YMdcN5eoshTqWyEydJ0tBEbB/OnjJl+O8fU35JkiRJqpohTqWyEydJUnMY4iRJktqQIU6lshMnSVJzGOIkSZLakCFOpbITJ0lSc7RMiIuIeRHxg4h4PCIejohPRcS4Xq+fHhG3R8T6iPhZRBxYZ72SJEl1apkQB3wGWA7sAxwLnAq8DiAiZgKXAe8G9gQWARfXUqUGZSdOkqTmaKUQdxBwSWZuzMyHgf8EFjZeOwtYnJmXZuZG4ALgmIiYX0+pkiRJ9WqlJzb8C3BuRFwF7AG8gKLzBkWYu7lnx8xcFxF3N7bfPthBlyyBM8+spF71Y/nyYm0nTpKkarVSiPs58JfAamAscBHw7cZrU4AVffZfBfT76NyIOA84D2C33Y5m9eoKqlW/Jk6E5z8fDj207kokSepsTQlxje7aqQO8fA3wbOBHwOeBZ1GEtn8DPgy8HVgLTOvzvmnAmv4OmJkXAhcCnHDCCXnttaOrX5IkqdU05Zq4zDwtM2OA5WSKmxX2Bz6VmZsycyXwJeCFjUMsBo7pOV5ETAYObmyXJEnqOi1xY0NmPgrcC7w2IsZFxAzgz9h+HdzlwJERcXZETATeA9ySmYNeDydJktSpWiLENZwFPJ/i2re7gC3AWwAycwVwNvAB4HHgRODcesqUJEmqX8vc2JCZNwGnDfL6lYBTikiSJNFanThJkiQNkSFOkiSpDRniJEmS2pAhTpIkqQ0Z4iRJktqQIU6SJKkNGeIkSZLakCFOkiSpDRniJEmS2pAhTpIkqQ0Z4iRJktqQIU6SJKkNGeIkSZLakCFOkiSpDUVm1l1DpSJiDXBH3XV0mZnAo3UX0WX8zJvPz7z5/Mybz8+8+Q7PzKlD2XFc1ZW0gDsy84S6i+gmEbHIz7y5/Mybz8+8+fzMm8/PvPkiYtFQ93U4VZIkqQ0Z4iRJktpQN4S4C+suoAv5mTefn3nz+Zk3n5958/mZN9+QP/OOv7FBkiSpE3VDJ06SJKnjGOIkSZLaUMeGuIjYMyIuj4h1EbE0Il5Rd02dLiLeEBGLImJTRHy57nq6QURMiIgvNv6Mr4mIGyPiBXXX1cki4qsRsSwiVkfEnRHxF3XX1C0i4tCI2BgRX627lm4QEVc1Pu+1jcU5V5sgIs6NiNsa+eXuiDhloH07eZ64TwObgdnAscD3I+LmzFxca1Wd7SHgH4Azgd1rrqVbjAPuB04Ffg+8ELgkIo7KzPvqLKyDfQj488zcFBHzgasi4sbMvKHuwrrAp4Hr6y6iy7whM79QdxHdIiLOAD4MnAP8GthnsP07shMXEZOBs4F3Z+bazLwa+C7wp/VW1tky87LM/Dawsu5aukVmrsvMCzLzvszclplXAPcCT627tk6VmYszc1PPt43l4BpL6goRcS7wBPDTmkuRqvRe4H2ZeV3jd/qDmfngQDt3ZIgDDgO2ZuadvbbdDCysqR6pKSJiNsWffzvOFYqIz0TEeuB2YBnwg5pL6mgRMQ14H/DWumvpQh+KiEcj4pqIOK3uYjpZRIwFTgBmRcRdEfFARHwqIgYc2erUEDcFWNVn2ypgSM8ik9pRRIwHvgZclJm3111PJ8vM11H8PjkFuAzYNPg7NErvB76YmffXXUiXeQfwFGA/irnLvhcRdp2rMxsYD7yU4nfLscBxwN8N9IZODXFrgWl9tk0D1tRQi1S5iBgDfIXiOtA31FxOV8jMrY1LNeYCr627nk4VEccCzwU+XnMpXSczf5WZazJzU2ZeBFxDcd2tqrGhsf5kZi7LzEeBjzHIZ96pNzbcCYyLiEMzc0lj2zE4xKQOFBEBfJHiX3EvzMwnay6p24zDa+KqdBowD/h98UedKcDYiDgiM4+vsa5ulEDUXUSnyszHI+IBis95SDqyE5eZ6yiGON4XEZMj4iTgxRSdClUkIsZFxERgLMUv2YkR0an/UGglnwUWAC/KzA272lkjFxF7N27/nxIRYyPiTODlwH/VXVsHu5AiJB/bWD4HfJ/iLnhVJCJmRMSZPb/HI+JPgGcDP6q7tg73JeCNjd81ewBvBq4YaOdO/gv2dcC/Acsp7pZ8rdOLVO7vgL/v9f3/objT5oJaqukCEXEgcD7FNVkPNzoVAOdn5tdqK6xzJcXQ6eco/hG8FHhzZn6n1qo6WGauB9b3fB8Ra4GNmbmivqq6wniKKaPmA1spbuJ5SWY6V1y13g/MpBhR3AhcAnxgoJ19dqokSVIb6sjhVEmSpE5niJMkSWpDhjhJkqQ2ZIiTJElqQ4Y4SZKkNmSIkyRJakOGOEkdLSIWN+vB3RFxREQsquC4l0XE88s+rqT25jxxktpaY/LXHpMoJj7e2vi+qZMeR8S3gEsz8xslH/fpwGcz86llHldSezPESeoYEXEf8BeZeWUN596H4vnM+2bmxgqOvwR4eWaW3umT1J4cTpXU0SLivoh4buPrCyLi0oj4akSsiYjfRsRhEfHOiFgeEfdHxPN6vXd6RHwxIpZFxIMR8Q8RMXaAU50B/KZ3gGuc+20RcUtErGsca3ZE/LBx/isbz0ek8YzKr0bEyoh4IiKuj4jZvY5/FfCHpX9AktqWIU5St3kR8BVgD+BGigd6jwH2A94HfL7XvhcBW4BDgOOA5wF/McBxjwL6e67k2RQB77DGuX8IvIvi+YhjgDc19vszYDqwP7AX8BpgQ6/j3AYcM+SfUlLHM8RJ6ja/zMwfZeYW4FJgFvCPmfkk8A1gXkTMaHTBXkDxgPt1mbkc+Dhw7gDHnQGs6Wf7JzPzkcx8EPgl8KvMvDEzNwGXU4RDgCcpwtshmbk1M2/IzNW9jrOmcQ5JAmBc3QVIUpM90uvrDcCjmbm11/cAU4B9gfHAsojo2X8McP8Ax30cmDqE8/X9fkrj669QdOG+EREzgK8Cf9sIlzSO/cRAP5Sk7mMnTpL6dz/Fna4zM3NGY5mWmQsH2P8WiiHTEcnMJzPzvZl5BPAs4I+AV/baZQFw80iPL6nzGOIkqR+ZuQz4MfDPETEtIsZExMERceoAb/kJcHxETBzJ+SLiORFxVOPGidUUw6tbe+1yKsX1dJIEGOIkaTCvBHYDbqUYLv0msE9/O2bmI8B/AS8e4bnmNI6/muImhp9TDKkSEU8D1mXmr0d4bEkdyHniJKkkEXEExR2tT88Sf7k2JhH+Ymb+oKxjSmp/hjhJkqQ25HCqJElSGzLESZIktSFDnCRJUhsyxEmSJLUhQ5wkSVIbMsRJkiS1IUOcJElSGzLESZIktaH/H8TmlC6pXkPCAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBTUlEQVR4nO3debgcZZ33//c3nEA2whpZIhBBEAwCSlwGGYI7ogyMuIAKYeZBEMYNFR83EGVEcYZRFER5dFgEUSIgioA/UXEAHTGoIFFEFFCQJQiEhCUb398fVS2dzuk+5yRdveX9uq66urvqrrvubvHw4V6qIjORJEmSmhnX7QZIkiSptxkYJUmS1JKBUZIkSS0ZGCVJktSSgVGSJEktGRglSZLUkoFR0lolIq6OiK/UfT47Iq7qZpskqdcZGCX1hYjYJCI+ExG/j4gnIuL+iPifiDg0IoYqvvYREfHDiHgwIjIi9lzNes4uz8+IWB4Rd0bElyJik3a3uUUbTouIFRHxrk5dc5g2bBER50fE/PJ3MLBLPc7AKKnnRcTTgV8CBwKfAJ4HvBj4KvB+YOeKmzAJ+BFwbBvqugbYApgBvIviO53bhnpHFBGTgLcCJwFHdOKaTawHPAj8F2BYlPqAgVFSPziDImQ8LzPPz8zfZuYfMvMcYHfgD7WCEfHOiLil7IX8Q0R8ZE17IDPzc5n5SeCHa/QtCksz897MvCszLwU+B+wTEROj8P6I+FNELI2IP0bEe+pPjog7IuKTEfGViHgkIh6IiJMjYjR/z98E/BH4d2DLiNijoe4zyvo3rNt3Vvk7rl9+3jciboiIJWUv7xcjYnJd+bMj4qqyV/bOso2XRsS0WpnMvCMz35mZXwXuHesPKKnzDIySelpEbAzsC5yWmQsbj2fmssx8tCx7AkWP44eAnYB3A0cCH+tYg8fucYq/xUPA0cCJwKeBmcB/AJ+OiP/TcM47gb8CzweOAd4BvGcU1zoSOCczlwDfYNVexmOAR4D/BxARbwbeDByUmYsiYhfgO8D/ALsBc4DXAl9qqOf5wEuA1wD7lGX/cxTtk9SjKp33I0lt8EyKQPXbVoXK4dYPAK/LzCvL3bdHxEeBzwPHVdrK1RARzwb+Dfh5Gcg+CHwhM88si/whIp4FfIRi+L3mxsw8vnz/+4jYCXgvxRBvs2vtSjGUv1+562zg6oh4T2Y+DJCZT0TEm4B5EfGpsm0fzMwbynOOBX6ZmceUn38XEe8ELomIj2bmneX+pcBhZTAlIs6gCO+S+pQ9jJJ6XZSvOUK5mcBE4KKIWFzbgC8DG9QPiXbZ3mXbHgduBv4EvDkipgJPp+i9q/cTYEYZiGt+1lDmOmB6WUczRwKXZ+YCgMy8HridYk7j32Xm7yh6aT8IXEsxZF4zs0n7Anh23b7f1cJi6W5gsxZtk9Tj7GGU1Ov+ADxJEVYuaVGu9h/AbwBuHeb4g21u1+r6OcVQ7nLgnrpeuFrYawzGwchalinnGL4FWD8iltcdGkcxLH1awyl7ASuArYEJFMPmNc2Ce/3+pcMcG833kNSj7GGU1NMy80HgCuAdEbFB4/GIGF8GovnAE8C2mXnbMNuKDje9mcfL9txR3wuXmY8AdwGzG8rvBdyemY/V7XtRQ5l/AP5a1jGcgygC4K4U8wlr2z8CMyPi7/WV8yUPKNsxCfhsXT3zh2nfbIpA2HLKgKT+Zg+jpH5wNMWw6w0RcTzwa4perBdRzKubk5m/joiTgJMiAuAHFH/jngM8NzP/7+pePCI2BzYHtix3PbMc7r43M9u5yvdTwCkR8QfgauClwFEUcwnr7VYu8Pk6MItifuAJLeo9ErgkM3/TeCAirqPoZfzfcr7kqcAxmXldRBwMXBsRP8jMiygW4fwyIv4LOJPi1kBfAM7PzD+P5YtGxG7l242BKbXPmfnrsdQjqTMMjJJ6Xmb+OSKeRzGv7gSKodJHgN9RhJiby3InRsRfKVYR/yfFUOqtFAs81sTbWXml9Vnl68fL9tRWaH8sM9dk6PUMYDLwYeCLwF8oFp18taHcF4BtgHkUQ9tnsHJP4N+VQez5NF/0803gMxFxDMXK6e9n5pcAMvPnZUD/SkTMy8ybIuKfKFZy/xvF/wbfopjzOFa/avLZoWupB0XmSPPIJUkjiYhzgc0z85UVX+cO4CuZ+e9VXkeS6tnDKElrqLxp9sso7j0oSQPHwChJaygznwSmd7sdklQVh6QlSZLUkrfVkSRJUksGRkmSJLXkHMY22nTTTXPGjBndboYkSdKIbrjhhgcyc1SPTTUwttGMGTOYN29et5shSZI0ooi4c7RlHZKWJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkb1vac9DWbP7nYrJEkaXEPdboC0phYsKDZJklSNnulhjIjFDduKiPhC3fHDI+K28tiVEbFli7pmRMTlEfFQRNwbEadFxFDdsWy41nF150ZEnBwRfyu3z0REVPvtJUmSelfPBMbMnFLbgM2Ax4G5ABExGzgJ2B/YGLgduKBFdV8E7ge2AHYDZgNHN5TZsO6aJ9btPwI4ANgV2AV4LXDkGn05SZKkPtYzgbHB6ykC3zXl5/2AuZk5PzOXAicCe0XEdk3OfwZwYWY+kZn3AlcCM0d57TnAKZl5V2beDZwCHLaa30OSJKnv9WpgnAOcm5lZfo5yo+4zwM5Nzj8VOCgiJkXEdODVFKGx3p0RcVdEnBURm9btnwncWPf5RkYfNiVJkgZOzwXGiNiaYgj5nLrdlwNvjIhdImIicDyQwKQm1fyEIuQ9AtwFzAO+XR57AHg+sA2wO7A+cH7duVOAhXWfFwJTms1jjIgjImJeRMxb4MoLSZI0gDoSGCPi6nKhyXDbtQ3FDwWuzczbazsy84fAx4CLgDuBO4BFFGGw8VrjgO8DFwOTgU2BjYCTy7oWZ+a8zFyemfcB7wBeGRFTyyoWA1PrqpwKLK7r7VxJZp6ZmbMyc9a0adPG9LtIkiT1g44ExszcOzOjybZnQ/FDWbl3sVbH6Zm5fWY+jSI4DgE3D3O5jYGtgNMyc0lm/g04C9i3WfPK11oP4nyKBS81u5b7JEmS1ko9NSQdEXsA0ylXR9ftnxARO5e3vNkaOBM4NTMfaqwjMx+gWEV9VEQMRcSGFHMibyzremFEPCsixkXEJsDngaszszYMfS7w3oiYXt66533A2VV8X0mSpH7QU4GRIthdnJmLGvZPAL5OMVx8PfAzoP7eiR+OiCvqyr8O2AdYANwGLAeOKY9tS7EAZhFFD+US4OC6c78MfBf4TXn8e+U+SZKktVI0mZqn1TBr1qycN29et5ux1qktR/IfZUmSRi8ibsjMWaMp22s9jJIkSeoxBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGDQyf9CJJUjUMjBoYK1Z0uwWSJA0mA6MGxvLl3W6BJEmDycCogWFglCSpGgZGDQwDoyRJ1TAwamAYGCVJqoaBUQPDwChJUjUMjBoYBkZJkqphYNTAMDBKklQNA6MGxrJl3W6BJEmDycCogWEPoyRJ1TAwamAsXdrtFkiSNJgMjBoYS5Z0uwWSJA0mA6MGhj2MkiRVw8CogWFglCSpGgZGDQyHpCVJqoaBUQPDHkZJkqphYNTAMDBKklQNA6MGhkPSkiRVw8CogWEPoyRJ1TAwamAYGCVJqoaBUQPDIWlJkqphYFTfG1f+U2wPoyRJ1TAwqu+tu27xamCUJKkaBkb1vaGh4tUhaUmSqmFgVN/LLF7tYZQkqRoGRvU9A6MkSdUyMGpgOCQtSVI1DIzqe7UeRgOjJEnVMDCq79UC44oV3W2HJEmDqmcCY0QsbthWRMQX6o4fHhG3lceujIgtW9Q1IyIuj4iHIuLeiDgtIobKY29puM5jEZERsXt5/ISIWNZQZtvqfwGtrlpgXL68u+2QJGlQ9UxgzMwptQ3YDHgcmAsQEbOBk4D9gY2B24ELWlT3ReB+YAtgN2A2cHR5nfMbrnU08Cfgl3Xnf7O+TGb+qY1fVRWxh1GSpGr0TGBs8HqKwHdN+Xk/YG5mzs/MpcCJwF4RsV2T858BXJiZT2TmvcCVwMwmZecA52bW+qnUb+xhlCSpWr0aGBtDXJQbdZ8Bdm5y/qnAQRExKSKmA6+mCI0riYhtgL2AcxsO7RcRD0bE/Ig4anW/hDrDwChJUrV6LjBGxNYUQ8jn1O2+HHhjROwSEROB44EEJjWp5icUPYqPAHcB84BvD1PuUOCazLy9bt+FwE7ANOBtwPERcXCL9h4REfMiYt6CBQtG8Q3Vbi56kSSpWh0JjBFxdbmwZLjt2obihwLX1oe4zPwh8DHgIuBO4A5gEUUYbLzWOOD7wMXAZGBTYCPg5GGadigrB1My87eZ+dfMXJGZP6XorXx9s++WmWdm5qzMnDVt2rQRfglVyR5GSZKq0ZHAmJl7Z2Y02fZsKL5KiCvrOD0zt8/Mp1EExyHg5mEutzGwFXBaZi7JzL8BZwH71heKiBcDWwLfGqn5rDwcrh5jD6MkSdXqqSHpiNgDmE65Orpu/4SI2DkKWwNnAqdm5kONdWTmAxSrqI+KiKGI2JBiTuSNDUXnABdl5qKGa+0fERuV13oB8C7g0jZ9RVXAOYySJFWrpwIjRYi7uDHEAROArwOLgeuBnwHH1Q5GxIcj4oq68q8D9gEWALcBy4Fj6spPAN7IMD2ZwEHlOYsoFsOcnJnDlVOPsIdRkqRqDXW7AfUy88gm+x8Gdmlx3kkNn38N7N2i/BPAhk2ONV3got5mD6MkSdXotR5GaczsYZQkqVoGRg0MexglSaqGgVF9rf75PPYwSpJUDQOjBoY9jJIkVcPAqL5W38NoYJQkqRoGRvU1h6QlSaqegVF9zR5GSZKqZ2DUwLCHUZKkahgY1dfsYZQkqXoGRvU15zBKklQ9A6P6mj2MkiRVz8CogWEPoyRJ1TAwqq/ZwyhJUvUMjOprzmGUJKl6BkYNDHsYJUmqhoFRfa3Ww7jOOvYwSpJUFQOj+lotMI4fX/Qw1g9RS5Kk9jAwqq/VAuLQUPH65JPda4skSYPKwKiBMH588eqwtCRJ7WdgVF9r7GF04YskSe1nYFRfawyM9jBKktR+Bkb1tfpFL2APoyRJVTAwaiCss07xag+jJEntZ2BUX3NIWpKk6hkY1dcMjJIkVc/AqL5mYJQkqXoGRg0E5zBKklQdA6P6mj2MkiRVz8CovmZglCSpegZG9TUDoyRJ1TMwaiDU5jA++WR32yFJ0iAyMKqv1XoYXfQiSVJ1DIzqaw5JS5JUPQOj+pqBUZKk6hkYNRAckpYkqToGRvU1exglSaqegVF9zcAoSVL1DIzqawZGSZKq1zOBMSIWN2wrIuILdccPj4jbymNXRsSWLeraKSJ+FBELy3P+ueH4yyLiloh4LCJ+HBHb1B2LiDg5Iv5Wbp+JiKjmW6tdnMMoSVJ1eiYwZuaU2gZsBjwOzAWIiNnAScD+wMbA7cAFw9UTEUPApcBlZdkjgPMiYofy+KbAxcBx5fF5wDfrqjgCOADYFdgFeC1wZBu/qtqo8T6M3rhbkqT265nA2OD1wP3ANeXn/YC5mTk/M5cCJwJ7RcR2w5y7I7Al8NnMXJGZPwKuAw4pj78OmJ+ZczPzCeAEYNeI2LE8Pgc4JTPvysy7gVOAw9r+DdUWDklLklS9Xg2Mc4BzM2txgCg36j4D7DzMucMNH0dd2ZnAjbUDmfko8Mdy/yrHy/czUU8yMEqSVL2eC4wRsTUwGzinbvflwBsjYpeImAgcDyQwaZgqbqHonTw2IsZHxCvL+mplpwALG85ZCKzf5PhCYEqzeYwRcUREzIuIeQsWLBjt11SbOYdRkqTqdCQwRsTVEZFNtmsbih8KXJuZt9d2ZOYPgY8BFwF3AncAi4C7Gq+Vmcso5iC+BrgXeB9wYV3ZxcDUhtOmlvUNd3wqsLiut7Pxemdm5qzMnDVt2rRWP4MqYA+jJEnV60hgzMy9MzOabHs2FD+UlXsXa3WcnpnbZ+bTKILjEHBzk+vdlJmzM3OTzHwVsC1wfXl4PsWCFgAiYjKwXbl/lePl+/moJxkYJUmqXk8NSUfEHsB0ytXRdfsnRMTO5S1vtgbOBE7NzIea1LNLec6kiHg/sAVwdnn4EmDniDgwIiZQDG/flJm3lMfPBd4bEdPLW/e8r+5c9RgDoyRJ1eupwEix2OXizFzUsH8C8HWK4eLrgZ9R3BYHgIj4cERcUVf+EOAeirmMLwNekZlLADJzAXAg8EngIeCFwEF1534Z+C7wG4oezO+V+9TDnMMoSVJ1hrrdgHqZOez9DjPzYYp7IjY776SGz8cCx7YofxXF7XeGO5bAB8pNPa7xPowGRkmS2q/XehilMWkckvbG3ZIktZ+BUQPBHkZJkqpjYFRfc9GLJEnVMzCqrxkYJUmqnoFRfc3AKElS9QyMGgjOYZQkqToGRvU1exglSaqegVF9zcAoSVL1DIzqa964W5Kk6hkYNRBqgdEbd0uS1H4GRvU1h6QlSaqegVF9zcAoSVL1DIzqa7XAOK78J9nAKElS+xkYNRAiinmMBkZJktrPwKi+VuthBAOjJElVMTCqr9UCoz2MkiRVx8CovmZglCSpegZGDYRaYPQ+jJIktZ+BUX2tfg7juHH2MEqSVAUDo/qaQ9KSJFXPwKi+ZmCUJKl6BkYNBAOjJEnVMTCqr3kfRkmSqmdgVF9zSFqSpOoZGNXXDIySJFXPwKiBYGCUJKk6Bkb1tcY5jN64W5Kk9jMwqq/VD0l7425JkqphYFRfcw6jJEnVMzBqIBgYJUmqjoFRfc37MEqSVD0Do/qaQ9KSJFXPwKi+ZmCUJKl6BkYNBAOjJEnVMTCqrzmHUZKk6hkY1dcah6S9cbckSe1nYFRf88bdkiRVz8CogeAcRkmSqmNgVF9zDqMkSdXrmcAYEYsbthUR8YW644dHxG3lsSsjYssWde0UET+KiIXlOf9cd+xFEfGDiHgwIhZExNyI2KLu+AkRsayhLdtW9821JrytjiRJ1euZwJiZU2obsBnwODAXICJmAycB+wMbA7cDFwxXT0QMAZcCl5VljwDOi4gdyiIbAWcCM4BtgEXAWQ3VfLO+PZn5p7Z9UVXCwChJUnV6JjA2eD1wP3BN+Xk/YG5mzs/MpcCJwF4Rsd0w5+4IbAl8NjNXZOaPgOuAQwAy84rMnJuZj2TmY8BpwIsr/j6qiEPSkiRVr1cD4xzg3My/x4EoN+o+A+w8zLnRZN9wZQH2AuY37NuvHLKeHxFHjbLN6gKHpCVJql7PBcaI2BqYDZxTt/ty4I0RsUtETASOBxKYNEwVt1D0Th4bEeMj4pVlfauUjYhdyrqOrdt9IbATMA14G3B8RBzcor1HRMS8iJi3YMGCMXxTtYOBUZKk6nUkMEbE1RGRTbZrG4ofClybmbfXdmTmD4GPARcBdwJ3UMw9vKvxWpm5DDgAeA1wL/A+ihC4UtmIeCZwBfDuzLym7vzfZuZfy+HsnwKnUgyRDyszz8zMWZk5a9q0aaP9SdRmtfsweuNuSZLaryOBMTP3zsxosu3ZUPxQVu5drNVxemZun5lPowiOQ8DNTa53U2bOzsxNMvNVwLbA9bXjEbENcBVwYmZ+baTmM/wwt3qAcxglSapeTw1JR8QewHTK1dF1+ydExM5R2JpilfOpmflQk3p2Kc+ZFBHvB7YAzi6PTQd+BJyemV8a5tz9I2Kj8lovAN5FsepaPcghaUmSqtdTgZFiscvFmbmoYf8E4OvAYoqewp8Bx9UORsSHI+KKuvKHAPdQzGV8GfCKzFxSHjucosfxY/X3Wqw79yDgNooh73OBkzNzlR5P9QYDoyRJ1RvqdgPqZeaRTfY/DOzS4ryTGj4fy8oLWeqPfRz4eIu6mi5wUe8yMEqSVJ1e62GUxsQ5jJIkVc/AqL7mkLQkSdUzMKqvGRglSaqegVEDwcAoSVJ1DIzqa/VzGL1xtyRJ1TAwqq85JC1JUvUMjOprBkZJkqpnYNRAqAXGzJWHqSVJ0pozMKqv1YfDofI29MuXd6ctkiQNKgOj+lr9kPT48cX7Zcu61x5JkgaRgVF9zcAoSVL1DIwaCAZGSZKqY2BUX6ufw2hglCSpGgZG9bX6Iel11y3eL13avfZIkjSIDIzqa85hlCSpekOjKRQRrwQOA2YC6wOLgPnAWZn5g8paJ42SgVGSpOqMGBgj4hjgA8D/Ay4CFgJTgV2BcyLi5Mw8tdJWSk04h1GSpOqNpofxWOAlmXlLw/6LI+IC4MeAgVFd4ZC0JEnVG80cxsnAX5scuxeY1L7mSGNjYJQkqXqjCYwXAd+NiJdFxLSIWDciNo2IlwGXAN+qtonSyAyMkiRVZzSB8e3AT4FzgPuAx8vXc4D/BY6qrHXSCOrnMHpbHUmSqjHiHMbMXAp8CPhQRGwITAEWZ+bDjWUj4sWZeV27Gyk145C0JEnVG9VtdWrKkPhwiyJXUKygljrCwChJUvXafePuaHN90qgYGCVJqk67A2OOXERqH+/DKElS9Xw0oPqaQ9KSJFXPwKi+ZmCUJKl6zmHUwPC2OpIkVWNMgTEiNomIQyLiA+XnLSPi6bXjmbl+uxsotWIPoyRJ1Rt1YIyI2cDvgbcAx5W7twfOqKBd0qgYGCVJqt5Yehg/B7wpM/cBlpf7fg68oN2NksbKwChJUnXGEhhnZOYPy/e1m5ksZYw3/5bayUcDSpJUvbEExt9GxKsa9r0c+E0b2yONSeOQ9DrrwOOPd7dNkiQNmrH0Dr4PuCwivgdMjIgvA/sB+1fSMmkU6gMjwMSJBkZJktpt1D2Mmfm/wK7AfOC/gduBF2TmLypqmzRqBkZJkqozpvmHmXk38JmK2iKNWTY8jNLAKElS+7UMjBHxNUbxfOjMPLRtLZLGwCFpSZKqN9KQ9G3AH8ttIXAAsA5wV3nu/sDD1TVPas3AKElS9VoGxsz8eG0DdgBek5lvycwPZ+ZbgdcAz2pHQyJiccO2IiK+UHf88Ii4rTx2ZURs2aKunSLiRxGxsDznn+uOzYiIbLjWcXXHIyJOjoi/ldtnIsJHHvY4A6MkSdUZy211XgT8b8O+nwP/0I6GZOaU2gZsBjwOzIW/P2XmJIoezY0pFtxcMFw9ETEEXApcVpY9AjgvInZoKLph3TVPrNt/BEVP6q7ALsBrgSPb8R3Vfs5hlCSpemMJjL8CToqIiQDl6yeBX1fQrtcD9wPXlJ/3A+Zm5vzMXAqcCOwVEdsNc+6OwJbAZzNzRWb+CLgOOGSU154DnJKZd5WLfE4BDlv9r6IqOSQtSVL1xhIYDwNeDCyMiPso5jTuCVSx4GUOcG7m3/uPotyo+wyw8zDnDjd8HMOUvTMi7oqIsyJi07r9M4Eb6z7fWO5TDzIwSpJUvbHch/GOzNwD2A74J+CZmblHZt7RzgZFxNbAbOCcut2XA2+MiF3Kns3jKVZvTxqmilsoeiePjYjxEfHKsr5a2QeA5wPbALsD6wPn150/hSIM1ywEpjSbxxgRR0TEvIiYt2DBgrF9WbWNgVGSpOqMpYeRiNgIeAnwUmDv8vNozru6XGgy3HZtQ/FDgWsz8/bajvIZ1h8DLgLuBO4AFlGs1l5JZi6jmIP4GuBeiifUXFgrm5mLM3NeZi7PzPuAdwCvjIipZRWLgal1VU4FFtf1djZe78zMnJWZs6ZNmzaan0Nt5BxGSZKqN+rAGBH/QHF7nbdTLAY5Evhjub+lzNw7M6PJtmdD8UNZuXexVsfpmbl9Zj6NIjgOATc3ud5NmTk7MzfJzFcB2wLXN2te7SuWr/MpFrzU1J5uox7UOCQ9aRI89lj32iNJ0iAay5NePgccnZnfqO2IiDcBn6cY4l1jEbEHMJ1ydXTd/gnAMymC21bAmcCpmflQk3p2AW6lCMRHA1sAZ5fHXkhx78g/ABuV7b86M2vD0OcC742IyynC5PuAL6Ce1BgYp06FxYvhySdh3Jj6zyVJUjNj+VfqDhRDu/W+RRHk2mUOcHFmLmrYPwH4OsVw8fXAz4D6eyd+OCKuqCt/CHAPxVzGlwGvyMwl5bFtgSsphrRvBpYAB9ed+2Xgu8BvyuPfK/eph9UC4wYbFCFy8eLutkeSpEEylh7GPwAHUQS3mjdQDFO3RWYOe7/DzHyYYhi82XknNXw+Fji2SdkLaHIPx/J4Ah8oN/W4xjmMU8vZpwsXPvVekiStmbEExvcAl0XEuygWnswAtqe4sbXUFY1D0htsULwuXAhbbdWdNkmSNGhGHRgz86fljbJfQ3Fj7O8Cl2fmg1U1ThrJcHMYAR55pDvtkSRpEI2lh5Fykcl5FbVFWm3D9TBKkqT2GHVgjIhnUDwKcDeKm1v/XWZu3d5mSaPTbA6jPYySJLXPWHoYv06xwOV9gHe6U09oNYdRkiS1x1gC40zgxZn5ZFWNkcbKwChJUvXGch/G/wGeW1VDpDVRC4yTJxc37HZIWpKk9hlLD+MdwPcj4mKKZzT/XWYe385GSaPVOIcxopjHaA+jJEntM5bAOJniVjrjKR7PV5PDF5eq1zgkDUVgtIdRkqT2Gct9GP9lpDIRcXD5JBWpI4YLjBtsYA+jJEntNJY5jKPhM5fVFY09jAZGSZLap92BMUYuIrVP4xxGKHoYHZKWJKl92h0Ync+ojnJIWpKk6rU7MEodNVxg3HRTWLCgO+2RJGkQjRgYI8JQqZ5XHxg337zoYXziie61R5KkQTKaMHh3RHwmInYeRdk/r2mDpLEYbg7jZpsVr/fd19m2SJI0qEYTGN8OPAP4RUT8MiLeHRHThiuYmaMJlVLbDDckbWCUJKm9RgyMmXlpZr4B2ILitjlvAP4SEd+JiAMjYnzVjZRG0jgkDXDPPd1piyRJg2bU8xMz8+HM/HJm7gnsBMwDPgv4r2V1zXBD0s94RvH6pz91ti2SJA2qsTwaEICIWA94PvBCYDPgp+1ulDRaww1Jb7JJsVL6d7/rTpskSVpdy5bB44+vuj322PD71+TYWIw6MEbEnsChwBuB+4GvAUdn5p1ju6TUPsMFRoAdd4T58zvfHknS4MmEpUuL8FXbamGs3Z+XL1+9No4bB5MmwcSJw28bbbTqvlNPHX39IwbGiDgBOATYGJgLvCYzr1u9ryNVozEw7rEH/Nd/FU98mTq1O22SJFXrySeLW6iNJpStaaAbbgrUSMaPL0JcLcjV3k+aVIyE1X+uHa+FuVbhb7ht/PhV/104krYGRuBFwEeAb2emd7ZTT2n2f+B994XPfAauugpe97rOtkmSVFi2rAhbjz761La6n4cLcat7v9311mse5DbccNV9Y/1c2zc05ol/vWvEr5KZ+3SiIdLqaDYkvccexSMCL7vMwChJzaxYsXJAGym8jTXwLVs2tvassw5Mnlxskyat/H7atObBbCyfJ0worqOxGaDsq7VRs8A4fjzstx9ccgl88YvFHwhJ6keZRc/a4sUrb48+uuq+2v7RhrslS8bWlojhA93kycUcufrPjcdH83nddcc+rKrOMDBqIAz3B+Zf/xXOOw8+/3n4wAc63yZJa5+lS0cOc8PtH+mcscyfmzhx5SBWC2Obb948rI020E2YYKBbWxkY1dda/RHde2844AD44Adhyy3hrW/tVKsk9brMondt0aKVt9UJc/WfxzIEu+66MGXKqttWW626b/Lk4cs27p80qVgtK7WbgVF9rdmQdG3f178Or30tzJkDDz8MRx/tH1OpXy1fvmrAW5NttLcvGTdu+LA2bVrxoIDVCXaTJxdTZ6R+YWBUX2sVGKEYmvnOd+ANb4B3vhMuugi+8hXYbrvOtVFaW2UWPXCPPNKegDfaFbFDQ7D++qtuW245/P7GrTHsrbeew7CSgVEDodUf88mT4Xvfg7POgve+F57zHDjppCJAulJOWlVmsTjikUdg4cLidXXeP/LI6OfeTZmyanDbeuuRw93UqavuM+BJ7WdgVF8b7b+MIopFMK96FRx5JBxzDHzjG/ClL8Fuu1XaRKljMoteuNGGulZBb8WKka83cWJx+6qpU4ttgw1gs82eel8Lc8OFuvpt8mSniki9zsCovjbWO+9Pnw7f/S6cf37R27j77vCud8EnPlH8i0vqpuXLi+D28MNPbY2fG/c1hr3RLLpYb71Vg962264c9EZ6v/76zsGT1iYGRvW1zLEPPUUUK6Zf8xr40IeKRyPNnQuf+xwceKBDWVp9S5aMLvA12//ooyNfY4MNiidRbLhh8X6rrWDmzJVD3UhBb731qvj2kgaZgVF9b3UD3kYbFUPShx0GRx1VLIx59avhtNOK3hatfZ58suile+ghePDBlV8femjkwDfSoox11nkq6NVC37OetfLn+jDY+Hn99Z13K6k7DIzqa6vzMPhGL3oR/OIXRVA87riit+YjH4Fjj7Unph/VnorRGPjqg1+zYw8/XITGZtZdd9UQt9VWIwe92vvJk+3BltSfDIzqa6szJD2coSF4z3uKXsZjjimC43nnwRlnwEtesub1a+yWLRt74Ku9X7q0eb3rrFP0Lm+0EWy8MWyyCTzzmcX72r761/r3PuVC0trKwKi+1q7AWDN9Olx4IVx5Jfzbv8FLXwpvehN89KOw887tu87aojbE2yzgtQqBixe3rnvq1JXD3MyZIwe+jTcuhnUNfZI0NgZG9b0q/uW/zz5w883wqU/BKafAN78J++1X9D7Onr123QJkpCHeViFwpCHeCRNWDnPbbAPPfe7wQa/+dcMNi15hSVJn+CdXfa0dcxibmTixuN3Ou98Np58On/98cUuerbeGN78Z9t23mP/Yy7cWqT0vt/G+e6N5He0Q77hxK4e5TTeF7bcf3RDvxImd+y0kSauvZwJjRDQOQE0EvpiZ7yyPHw58ENgcuBb418z8a5O6dgJOB3YHFgDHZuYl5bG3AF+uKz6uvNaszLwhIk4APgIsqSuzS2b+ac2+oarQ7iHp4WyyCRx/PLz//XDppXDuufAf/wGf/nTxdIrnPhd23bUYsp4+HbbYoghNEyYUW23hzLJlq25LlhS9d48/Xqywrb1vtq1OmVY9fDUTJqx6C5ZnP7t1L1/tdf31164eV0laG/VMYMzMKbX3ETEZuA+YW36eDZwEvAT4A3AqcAEwu7GeiBgCLgW+BLyiLPPdiHhuZt6amecD59eVPww4DvhlXTXfzMy3tvP7qRqdCIw1kybBwQcX28MPw49/DFddBb/+NZx99shz7tbUeusVPXKNWy3sbbbZ8McnTSqCYOM9+urD4brrVtt2SVJ/65nA2OD1wP3ANeXn/YC5mTkfICJOBO6OiO0y848N5+4IbAl8NjMT+FFEXAccQhEMG80Bzi3Lqg91YwHDhhvCP/9zsUHRi3f33fDXv8I998ADDxS9h7UNiqHrxm299YrAN1zQqw+EEybYiydJ6p5eDYyNIS7KjbrPADsDjYFxuPgQZdmVd0ZsA+wF/GvDof0i4kHgHuC0zDxjbM1Xp/RKzB83rrgf31ZbdbslkiS1X8/1WUTE1hTDyOfU7b4ceGNE7BIRE4HjgQQmDVPFLRS9k8dGxPiIeGVZ33BlDwWuyczb6/ZdCOwETAPeBhwfEQe3aO8RETEvIuYtWLBg1N9T7dHJIWlJktZWHQmMEXF1RGST7dqG4ocC19aHuMz8IfAx4CLgTuAOYBFwV+O1MnMZcADwGuBe4H0UIXCVsuW16oMpmfnbzPxrZq7IzJ9SzJd8fbPvlplnZuaszJw1bdq01j+E2s7AKElS9ToSGDNz78yMJtueDcVXCXFlHadn5vaZ+TSK4DgE3Nzkejdl5uzM3CQzXwVsC1xfXyYiXkwx1/FbIzWf4Ye51SMMjJIkVaunhqQjYg9gOuXq6Lr9EyJi5yhsDZwJnJqZDzWpZ5fynEkR8X5gC+DshmJzgIsyc1HDuftHxEbltV4AvIti1bV6UK/MYZQkaZD12qKXOcDFjSEOmAB8HdiOYij6LOpWPEfEh4F/zMxXl7sOAQ4HxlOstH5FZi6pKz8BeCNw4DBtOAj4b2A9imHskzNzlR5PddbSpfDnP8MddxTb7bcXrxdf7BM/JEmqWng3mfaZNWtWzps3r9vN6EuZsGAB3HYb/PGPxfanPz0VDO++e+XexHXWKbalS4sbRz/ySNeaLklSX4qIGzJz1mjK2jejjlmxAu6666lAWAuHtdf6G19HwNOfDs94Brz0pTBjRvF+xoxie/rT4aCD4KKLnMMoSVLVDIxqq8ziptW33FJsv/998XrbbUVvYf0zicePh223he22g732gmc+s3i/3XZFOKw9Uk+SJHWXgVGrZdmyYsi4PhTW3j/44FPlJkyA7bcvnrO8//5FGKwFw6c/vRhWXl21nkV7GCVJqpaBUS09+STceSf85jcrb7feCsuXP1Vu881hxx3hDW8oXmvb1ltX90g7A6MkSZ1hYNTfLVwIv/51EQhvuql4vfnmlecWzpgBz3kO/NM/wU47FaHwWc+CDTbofHsNipIkdYaBcS318MPwy1/CDTc8td1221PHN964CIaHHVa8Puc5MHMmTJ3arRavyh5GSZI6w8C4Fli2DG68Ea67Dn72s1XD4dZbw+67w7/8CzzvebDLLrDFFr0fxAyMkiR1hoFxAD38MPz0p8V23XVw/fXw2GPFsac/HZ7//CIc7r57ERD7/RHYBkZJkqplYBwAS5YUPYdXXVVsv/hFsVhlnXVgt93g8MNhjz2Kbautut3a9jEoSpLUGQbGPvWXv8Cll8Jll8H//A88/ngREF/4QvjoR2HvveEFL4DJk7vd0uo4JC1JUmcYGPvIb39bPDv5298u5iEC7LBD0YP48pcXIbGXFqVUzcAoSVJnGBh73IIFcMEFcM45xapmgBe9CD796eJG2Dvu2N32dZOBUZKkzjAw9qDMYrHK5z5XDDsvX14sTvnc54obY2+5Zbdb2BsMipIkdYaBsYesWAFz58Ipp8C8ebDRRvDudxf3Qtx55263rncZHCVJqpaBsQdkwne+UyxWufnm4skpZ5wBhxwy2ItW1pRD0pIkdYaBscvmz4e3vx2uvRa23x6+8Y1i2Lmq5y8PEgOjJEmdYSzpkqVL4SMfKe6T+LvfwZlnFqug3/Qmw+JoGRQlSeoMexi74I47imB4/fUwZw7853/Cppt2u1X9xx5GSZI6w8DYYT/4QREWV6yAb30LDjyw2y3qXwZGSZI6w8HPDjr/fNh33+LxfL/8pWGxXQyMkiRVy8DYIf/93/DWt8KeexaP8ttuu263qP8ZFCVJ6gwDYwdccgm87W3wqlfBFVfABht0u0WDwSFpSZI6w8BYsZ//HA46CF7wArjoIpgwodstGhwGRkmSOsPAWKEHHnjqUX6XXeZNuNvNwChJUme4SrpCRx4J999fPBd6k0263ZrBY1CUJKkzDIwVueQSuPhi+PSnYffdu92awWZwlCSpWg5JV+Cxx+Cd7yye4vLe93a7NYPLIWlJkjrDHsYKnHEG3H03fP3rMH58t1szuAyMkiR1hj2MbbZsGfzHf8DLXw577dXt1gw2g6IkSZ1hD2ObXXYZ3HcffOUr3W7J4LOHUZKkzrCHsc3OOgu22AL22afbLRl8BkZJkjrDwNhGmfDDHxbPiB6y77ZyBkZJkjrDwNhGjz1WbLNnd7slkiRJ7WNgbKNFi4pXF7t0hj2MkiR1hoGxjRYvhmc9C572tG63ZO1gYJQkqTMMjG30+OPwvOd1uxVrDwOjJEmdYWBso6VLix5GdYZBUZKkzjAwtpmBsXPsYZQkqTN6JjBGxIyIuDwiHoqIeyPitIgYqjv+soi4JSIei4gfR8Q2LeraOCIuiYhHI+LOiHhzw/GmdUXh5Ij4W7l9JmL0kWTGjDF+ca0xA6MkSdXqmcAIfBG4H9gC2A2YDRwNEBGbAhcDxwEbA/OAb7ao63RgKbAZ8BbgjIiYOcq6jgAOAHYFdgFeCxw52i8xffpoS2pN2cMoSVJn9FJgfAZwYWY+kZn3AlcCM8tjrwPmZ+bczHwCOAHYNSJ2bKwkIiYDBwLHZebizLwW+A5wyCjrmgOckpl3ZebdwCnAYaP9EptvPpavrDVhUJQkqTN6KTCeChwUEZMiYjrwaorQCEVwvLFWMDMfBf7IU4Gy3g7Aisy8tW7fjXVlR6prpeMN57Y0NATjx4+mpNrBHkZJkjqjlwLjTyiC2SPAXRRDxd8uj00BFjaUXwisP0w9I5Ud6/GFwJRm8xgj4oiImBcR88aNWzZcEVXEwChJUmd0JDBGxNURkU22ayNiHPB9irmFk4FNgY2Ak8sqFgNTG6qdCiwa5nIjlR3r8anA4szM4b5bZp6ZmbMyc9ZznmP3YicZFCVJ6oyOBMbM3Dszo8m2J8Xik62A0zJzSWb+DTgL2LesYj7FIhTg7/MUtyv3N7oVGIqI7ev27VpXdqS6VjrecK56kMFRkqRq9cSQdGY+ANwOHBURQxGxIcXik9pcwkuAnSPiwIiYABwP3JSZtwxT16MUPZWfiIjJEfFiYH/ga6Os61zgvRExPSK2BN4HnN3+b6015ZC0JEmd0ROBsfQ6YB9gAXAbsBw4BiAzF1CsfP4k8BDwQuCg2okR8eGIuKKurqOBiRS36bkAOCoz54+mLuDLwHeB3wA3A98r96nHGBglSeqMoZGLdEZm/hrYu8Xxq4BVbqNTHjup4fODFPdSXJ26EvhAuamHGRQlSeqMXuphlMbEHkZJkjrDwKi+ZWCUJKkzDIzqewZGSZKqZWBU3zIoSpLUGQZG9S2HpCVJ6gwDo/qWgVGSpM4wMKpvGRQlSeoMA6P6loFRkqTOMDBKkiSpJQOj+pY9jJIkdYaBUX2rFhgzu9sOSZIGnYFRfcseRkmSOsPAqL5lYJQkqTMMjOpb3odRkqTOMDCq7zmHUZKkahkY1bfsWZQkqTMMjOpbBkZJkjrDwKi+5W11JEnqDAOj+paLXiRJ6gwDo/qWgVGSpM4wMKrvGRglSaqWgVF9y6AoSVJnGBjVtxySliSpMwyM6lsGRkmSOsPAqL5lYJQkqTMMjOpbBkZJkjrDwChJkqSWDIzqW/YwSpLUGQZG9S0DoyRJnWFgVN8yKEqS1BkGRvUtexglSeoMA6P6loFRkqTOMDCq7xkYJUmqloFRfcugKElSZxgY1bcckpYkqTMMjOpbBkZJkjrDwKi+ZVCUJKkzDIzqW/YwSpLUGQZG9T0DoyRJ1eqZwBgRMyLi8oh4KCLujYjTImKo7vjLIuKWiHgsIn4cEdu0qGvjiLgkIh6NiDsj4s11x14UET+IiAcjYkFEzI2ILeqOnxARyyJicd22bXXfXKvLHkZJkjqjZwIj8EXgfmALYDdgNnA0QERsClwMHAdsDMwDvtmirtOBpcBmwFuAMyJiZnlsI+BMYAawDbAIOKvh/G9m5pS67U9r+uXUfgZGSZI6Y2jkIh3zDOC0zHwCuDcirgRqIe91wPzMnAtFLyDwQETsmJm31FcSEZOBA4GdM3MxcG1EfAc4BPhgZl7RUP404CcVfi9VxKAoSVJn9FIP46nAQRExKSKmA68GriyPzQRurBXMzEeBP/JUoKy3A7AiM2+t23djk7IAewHzG/btVw5Zz4+Io8b+VdQJ9jBKktQZvRQYf0IR6h4B7qIYdv52eWwKsLCh/EJg/WHqGXXZiNgFOB44tm73hcBOwDTgbcDxEXFws0ZHxBERMS8i5i1YsKBZMVXAwChJUmd0JDBGxNURkU22ayNiHPB9inmKk4FNKeYanlxWsRiY2lDtVIr5h41GVTYinglcAbw7M6+p7c/M32bmXzNzRWb+lKLn8/XNvltmnpmZszJz1rRp01r/EGorA6MkSZ3RkcCYmXtnZjTZ9qRYyLIVxRzGJZn5N4qFKPuWVcwHdq3VV85T3I5Vh5IBbgWGImL7un271pctV1hfBZyYmV8bqfmAkUSSJK21emJIOjMfAG4HjoqIoYjYEJjDU/MWLwF2jogDI2ICxTDyTY0LXsq6HqXoqfxEREyOiBcD+wNfAyjnR/4IOD0zv9R4fkTsHxEbReEFwLuAS9v8ldUG9jBKktQZPREYS68D9gEWALcBy4FjADJzAcXK508CDwEvBA6qnRgRH46I+tXPRwMTKW7TcwFwVGbWehgPB7YFPlZ/r8W6cw8qr78IOBc4OTPPafN3VRsYGCVJ6oyeua1OZv4a2LvF8auAHZscO6nh84PAAU3Kfhz4eIvrNF3got5iUJQkqTN6qYdRGhN7GCVJ6gwDo/qWgVGSpM4wMKrvGRglSaqWgVF9yx5GSZI6w8CovmVQlCSpMwyM6lv2MEqS1BkGRvUtA6MkSZ1hYFTfMjBKktQZBkZJkiS1ZGBU37KHUZKkzjAwqu8ZGCVJqpaBUX0rs9stkCRp7WBgVN+zh1GSpGoZGNW3aj2MBkZJkqplYFTfevLJ4tXAKElStQyM6nsGRkmSqmVgVN9y0YskSZ1hYFTfs4dRkqRqGRjVt+xhlCSpMwyM6luukpYkqTMMjOpbBkZJkjrDwKi+ZWCUJKkzDIzqewZGSZKqZWBU33LRiyRJnWFgVN+zh1GSpGoZGNW3nMMoSVJnGBjVt3yWtCRJnWFgVN8zMEqSVC0Do/qWi14kSeoMA6P6nj2MkiRVy8CovmUPoyRJnWFgVN9ylbQkSZ1hYFTfMjBKktQZBkb1LQOjJEmdYWBU3zMwSpJULQOj+paLXiRJ6gwDo/qePYySJFXLwKi+5RxGSZI6w8CovuWzpCVJ6oyeCYwRMSMiLo+IhyLi3og4LSKG6o6/LCJuiYjHIuLHEbFNi7o2johLIuLRiLgzIt7ccJ2MiMV123F1xyMiTo6Iv5XbZyKMJL3M/3UkSapWzwRG4IvA/cAWwG7AbOBogIjYFLgYOA7YGJgHfLNFXacDS4HNgLcAZ0TEzIYyG2bmlHI7sW7/EcABwK7ALsBrgSPX5IupGi56kSSpM3opMD4DuDAzn8jMe4ErgVrIex0wPzPnZuYTwAnArhGxY2MlETEZOBA4LjMXZ+a1wHeAQ0bZjjnAKZl5V2beDZwCHLYG30sVs4dRkqRq9VJgPBU4KCImRcR04NUUoRGK4HhjrWBmPgr8kacCZb0dgBWZeWvdvhuHKXtnRNwVEWeVPZg1K12rybl/FxFHRMS8iJi3YMGC1t9QbWUPoyRJndFLgfEnFMHsEeAuimHnb5fHpgALG8ovBNYfpp6Ryj4APB/YBti93H9+i/MXAlOazWPMzDMzc1Zmzpo2bVqz76YKuEpakqTO6EhgjIiry4Umw23XRsQ44PsU8xQnA5sCGwEnl1UsBqY2VDsVWDTM5VqWLYep52Xm8sy8D3gH8MqImNrk/KnA4kz7s3rNnDlwwAHw0Y92uyWSJA22jgTGzNw7M6PJtifFQpatgNMyc0lm/g04C9i3rGI+xSIU4O/zFLcr9ze6FRiKiO3r9u3apCxALQjW+qlWutYI56qLpk6FSy6BzTfvdkskSRpsPTEknZkPALcDR0XEUERsSLH4pDaX8BJg54g4MCImAMcDN2XmLcPU9ShFT+UnImJyRLwY2B/4GkBEvDAinhUR4yJiE+DzwNWZWRuGPhd4b0RMj4gtgfcBZ1fzzSVJknpfTwTG0uuAfYAFwG3AcuAYgMxcQLHy+ZPAQ8ALgYNqJ0bEhyPiirq6jgYmUtym5wLgqMys9RJuS7GYZhFwM7AEOLju3C8D3wV+Ux7/XrlPkiRprRROzWufWbNm5bx587rdDEmSpBFFxA2ZOWs0ZXuph1GSJEk9yMAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJaikys9ttGBgRsQj4fbfbsZbZFHig241Yy/ibd56/eef5m3eev3nnPSsz1x9NwaGqW7KW+X1mzup2I9YmETHP37yz/M07z9+88/zNO8/fvPMiYt5oyzokLUmSpJYMjJIkSWrJwNheZ3a7AWshf/PO8zfvPH/zzvM37zx/884b9W/uohdJkiS1ZA+jJEmSWjIwSpIkqSUDYxtExMYRcUlEPBoRd0bEm7vdpkEXEe+IiHkRsSQizu52ewZdRKwXEV8t//leFBG/iohXd7tdgy4izouIeyLikYi4NSIO73ab1hYRsX1EPBER53W7LYMuIq4uf+vF5eb9jDsgIg6KiN+V2eWPEfGPrcp7H8b2OB1YCmwG7AZ8LyJuzMz5XW3VYPsr8O/Aq4CJXW7L2mAI+AswG/gzsC9wYUQ8JzPv6GbDBtyngP+TmUsiYkfg6oj4VWbe0O2GrQVOB37R7UasRd6RmV/pdiPWFhHxCuBk4E3A9cAWI51jD+MaiojJwIHAcZm5ODOvBb4DHNLdlg22zLw4M78N/K3bbVkbZOajmXlCZt6RmU9m5mXA7cDu3W7bIMvM+Zm5pPax3LbrYpPWChFxEPAw8MMuN0WqyseBT2Tm/5Z/0+/OzLtbnWBgXHM7ACsy89a6fTcCM7vUHqlyEbEZxT/79qJXLCK+GBGPAbcA9wCXd7lJAy0ipgKfAN7X7basZT4VEQ9ExHURsXe3GzPIImIdYBYwLSJui4i7IuK0iGg5WmdgXHNTgIUN+xYCo3o2o9RvImI8cD5wTmbe0u32DLrMPJri78k/AhcDS1qfoTV0IvDVzPxLtxuyFvm/wLbAdIr7An43IuxJr85mwHjg9RR/V3YDngt8tNVJBsY1txiY2rBvKrCoC22RKhUR44CvUczZfUeXm7PWyMwV5XSXpwNHdbs9gyoidgNeDny2y01Zq2TmzzNzUWYuycxzgOso5kmrGo+Xr1/IzHsy8wHgvxjhN3fRy5q7FRiKiO0z8w/lvl1xqE4DJiIC+CrFf53um5nLutyktdEQzmGs0t7ADODPxT/uTAHWiYhnZ+bzutiutU0C0e1GDKrMfCgi7qL4nUfNHsY1lJmPUgwTfSIiJkfEi4H9KXphVJGIGIqICcA6FH/QJ0SE/wFUrTOAnYD9MvPxkQprzUTE08rbXkyJiHUi4lXAwcCPut22AXYmRSDfrdy+BHyP4m4MqkBEbBgRr6r9DY+ItwB7Ad/vdtsG3FnAO8u/MxsB7wEua3WC/4Jtj6OB/wbup1i1e5S31KncR4GP1X1+K8WqrxO60poBFxHbAEdSzJ+7t+x9ATgyM8/vWsMGW1IMP3+J4j/u7wTek5mXdrVVAywzHwMeq32OiMXAE5m5oHutGnjjKW6RtiOwgmJx1wGZ6b0Yq3UisCnFKOkTwIXAJ1ud4LOkJUmS1JJD0pIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJLUJhExPyL27tC1nh0R8yqo9+KI2Kfd9Urqb96HUZJGqbyRc80kihuZryg/d/Qm5hFxETA3M7/R5npfAJyRmbu3s15J/c3AKEmrISLuAA7PzKu6cO0tKJ5Xv2VmPlFB/X8ADs7MtvdgSupPDklLUptExB0R8fLy/QkRMTcizouIRRHxm4jYISI+FBH3R8RfIuKVdeduEBFfjYh7IuLuiPj3iFinyaVeAfyyPiyW1z42Im6KiEfLujaLiCvK619VPjOW8rm950XE3yLi4Yj4RURsVlf/1cBr2v4DSepbBkZJqs5+wNeAjYBfAd+n+Ls7HfgE8OW6sucAy4FnAs8FXgkc3qTe5wDDPWv3QIowuUN57SuAD1M8M3Yc8K6y3BxgA2ArYBPg7cDjdfX8Dth11N9S0sAzMEpSda7JzO9n5nJgLjAN+HRmLgO+AcyIiA3L3r1XA+/JzEcz837gs8BBTerdEFg0zP4vZOZ9mXk3cA3w88z8VWYuAS6hCKIAyyiC4jMzc0Vm3pCZj9TVs6i8hiQBMNTtBkjSALuv7v3jwAOZuaLuM8AUYEtgPHBPRNTKjwP+0qTeh4D1R3G9xs9Tyvdfo+hd/EZEbAicB3ykDLKUdT/c7EtJWvvYwyhJ3fcXihXXm2bmhuU2NTNnNil/E8Ww82rJzGWZ+fHMfDawB/Ba4NC6IjsBN65u/ZIGj4FRkrosM+8B/j/glIiYGhHjImK7iJjd5JQfAM+LiAmrc72IeElEPKdcVPMIxRD1iroisynmP0oSYGCUpF5xKLAu8FuKIedvAVsMVzAz7wN+BOy/mtfavKz/EYoFLj+hGJYmIp4PPJqZ169m3ZIGkPdhlKQ+FBHPplhZ/YJs4x/y8obgX83My9tVp6T+Z2CUJElSSw5JS5IkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWjIwSpIkqSUDoyRJklr6/wHTHzfCnXm7zAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABB2ElEQVR4nO3deZhcZZ33//c3dCAbISyRJSwBBMEgoER0kCE4bggyMOACKuDMgyCMGyo+jgqijCjOMIqCKI8OiyBKBEQQ8CcqDuCCwREliogsCrIEISGBkI3v749zSiqV7urupE5teb+u61zddc597nNXic2He6vITCRJkqShjOl0AyRJktTdDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChprRIRN0TEV+penx8R13eyTZLU7QyMknpCRGwcEZ+JiN9HxNMR8UhE/E9EHBkRAxU+d0pEfC4i5kbEkxHxUERcFhE7rUZd50dElsfyiLgvIr4UERtX0fYh2nBWRKyIiHe365mDtOGgiLim/CyfKj/b90REdKpNkpozMErqehGxJfBL4FDgE8CLgJcBXwU+AOxS4eM3B7YFTi6f+zpgEvDDiNhwNeq7saxzOvBuivd0YUtaOoyImAC8FTgNOKYdzxzCvsBPgUMo/rc7A/g08MEOtklSEwZGSb3gHGA94EWZeXFm/jYz/5CZFwB7AH+oFYyId0XEHWUv5B8i4iNr0gOZmb/LzIMy87LM/H1mzgHeTBH69l6NKpdm5kOZeX9mXgl8DtgvIsZH4QMRcXdELI2IP0bEe+tvjoh7I+KTEfGViHgiIh6NiNMjYiR/z98E/BH4d2CLiNiroe5zyvqn1J07r/wc1y9f7x8Rt0bEkrKX94sRMbGu/PkRcX1EHFP2oD4REVdGxNRamcw8ITNPzcyfZObdmfnfwFeAN47ys5TUJgZGSV0tIjYC9gfOyswFjdczc1lmPlmWPYWix/HfgJ2B9wDHAh9rcbM2KH8+2oK6FlP8LR4AjgdOpehtmwH8B/DpiPg/Dfe8C/gL8GLgBOCdwHtH8KxjgQsycwnwDVbtZTwBeAL4fwAR8WaKcHxYZi6MiF2B7wD/A+wOHEXR4/qlhnpeDLwcOADYryz7n8O0bQNa83lKqkJmenh4eHTtAewJJHDIMOUmAE8B+zWcPxKYX/f6BuArda/PB64fRXvWAa4DbgHGjPK9rPQs4PkUPX4/K1//GfhMwz2fBe6ue30vcGNDmdOA+4d59m7AUmBq3ef6FDClodzOwJPApyjC4wl1174G3NJQ/iDgGWCbuvc4D1ivrsyHgAebtG1fYBlwYKf/efPw8Bj8sIdRUrerLYTIYcrNAMYDl0XEotoBfBnYoH5IdLUbErEOxXzDHSkC7DOrUc2+ZdsWA7cDdwNvjojJwJYUvXf1fgxML+cf1vy0oczNwLSyjqEcC1yTmfMAMvMW4B6KOY1/k5m/o+il/RBwE8WQec2MIdoXFOG35ndZ9GLWPABsOlijIuKlwLeBUzLzqibtl9RBla0slKQW+QNFD9YM4Iom5Wr/AfwG4M5Brj+2Jo2IiHWBSyh66vbNzPtXs6qfUwzlLqfodVtS1l8Le43BeCQrh5uWKecYvgVYPyKW110aQzEsfVbDLfsAK4CtgXEUw+Y1QwX3+vNLB7m2ShsjYl/gKuBTmXlas/cgqbPsYZTU1TLzMeBa4J0RsUHj9YgYWwaiucDTwHaZedcgx4rVbUPZu/cdil60fTLzT6tbF7C4bM+99b1wmfkEcD8wq6H8PsA9mflU3bmXNpT5O+AvZR2DOYwiAO5GMZ+wdvw9MKPs5QOgnC95cNmOCRRD4jVzB2nfLIpA+Nshnj2oiDgAuIaiZ9GwKHU5exgl9YLjKYZdb42Ik4FfUfRivRQ4ETgqM38VEacBp5Xb+X2f4m/cC4AXZub/XZ0Hl6uDr6EYLj4IeCYiNisvL8jMxUPePHqfAs6IiD9QzLX8B+A44F8byu1eLvD5OjCTYnHPKU3qPRa4IjN/03ghIm6m6GX8WUQ8DziTYt7izRFxOHBTRHw/My+jWITzy4j4L+Bciq2BvgBcPJoQHRFvAC6mWNxzcd3nuaI2ZC6pu9jDKKnrlWHkRcCVFMHol8BPgLdThJjby3KnUqz0PRq4jWIO3gkUC0VW1x4U2+dML+t8sO54U61QRJwSEcPNsxzOORT7PX6Yosfu/wIfysyvNpT7ArANMIdiOPkcVu4J/JuI2J1i1fKlQzzzm8Cbyt7bbwDfy8wvAWTmz8v2fCUitsnMXwP/SNGreBvFIpjvAu8Y5fv8V2AscBIrf56/GGU9ktokMtf075skKSIuBDbLzFdX/Jx7KVZ5/3uVz5Gkeg5JS9IaKjfNfgXF3oOS1HcMjJK0hsrtdaZ1uh2SVBWHpCVJktSUi14kSZLUlIFRkiRJTTmHsYU22WSTnD59eqebIUmSNKxbb7310cwc0demGhhbaPr06cyZM6fTzZAkSRpWRNw30rIOSUuSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDo3rec54Ds2Z1uhWSJPWvgU43QFpT8+YVhyRJqkbX9DBGxKKGY0VEfKHu+tERcVd57bqI2KJJXdMj4pqIeDwiHoqIsyJioO5aNjzrpLp7IyJOj4i/lsdnIiKqffeSJEndq2sCY2ZOqh3ApsBiYDZARMwCTgMOAjYC7gEuaVLdF4FHgM2B3YFZwPENZabUPfPUuvPHAAcDuwG7Aq8Djl2jNydJktTDuiYwNng9ReC7sXx9IDA7M+dm5lLgVGCfiNh+iPu3BS7NzKcz8yHgOmDGCJ99FHBGZt6fmQ8AZwBvW833IUmS1PO6NTAeBVyYmVm+jvKg7jXALkPcfyZwWERMiIhpwGspQmO9+yLi/og4LyI2qTs/A7it7vVtjDxsSpIk9Z2uC4wRsTXFEPIFdaevAd4YEbtGxHjgZCCBCUNU82OKkPcEcD8wB/h2ee1R4MXANsAewPrAxXX3TgIW1L1eAEwaah5jRBwTEXMiYs48V15IkqQ+1JbAGBE3lAtNBjtuaih+JHBTZt5TO5GZPwA+BlwG3AfcCyykCIONzxoDfA+4HJgIbAJsCJxe1rUoM+dk5vLMfBh4J/DqiJhcVrEImFxX5WRgUV1v50oy89zMnJmZM6dOnTqqz0WSJKkXtCUwZua+mRlDHHs3FD+SlXsXa3WcnZk7ZOZzKILjAHD7II/bCNgKOCszl2TmX4HzgP2Hal75s9aDOJdiwUvNbuU5SZKktVJXDUlHxF7ANMrV0XXnx0XELuWWN1sD5wJnZubjjXVk5qMUq6iPi4iBiJhCMSfytrKul0TE8yJiTERsDHweuCEza8PQFwLvi4hp5dY97wfOr+L9SpIk9YKuCowUwe7yzFzYcH4c8HWK4eJbgJ8C9Xsnfjgirq0rfwiwHzAPuAtYDpxQXtuOYgHMQooeyiXA4XX3fhm4CvhNef275TlJkqS1UgwxNU+rYebMmTlnzpxON2OtU1uO5D/KkiSNXETcmpkzR1K223oYJUmS1GUMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIzqG37TiyRJ1TAwqm+sWNHpFkiS1J8MjOoby5d3ugWSJPUnA6P6hoFRkqRqGBjVNwyMkiRVw8CovmFglCSpGgZG9Q0DoyRJ1TAwqm8YGCVJqoaBUX3DwChJUjUMjOoby5Z1ugWSJPUnA6P6hj2MkiRVw8CovrF0aadbIElSfzIwqm8sWdLpFkiS1J8MjOob9jBKklQNA6P6hoFRkqRqGBjVNxySliSpGgZG9Q17GCVJqoaBUX3DwChJUjUMjOobDklLklQNA6P6hj2MkiRVw8CovmFglCSpGgZG9Q2HpCVJqoaBUT1vTPlPsT2MkiRVw8ConrfuusVPA6MkSdUwMKrnDQwUPx2SliSpGgZG9bzM4qc9jJIkVcPAqJ5nYJQkqVoGRvUNh6QlSaqGgVE9r9bDaGCUJKkaBkb1vFpgXLGis+2QJKlfdU1gjIhFDceKiPhC3fWjI+Ku8tp1EbFFk7qmR8Q1EfF4RDwUEWdFxEB57S0Nz3kqIjIi9iivnxIRyxrKbFf9J6DVVQuMy5d3th2SJPWrrgmMmTmpdgCbAouB2QARMQs4DTgI2Ai4B7ikSXVfBB4BNgd2B2YBx5fPubjhWccDdwO/rLv/m/VlMvPuFr5VVcQeRkmSqtE1gbHB6ykC343l6wOB2Zk5NzOXAqcC+0TE9kPcvy1waWY+nZkPAdcBM4YoexRwYWatn0q9xh5GSZKq1a2BsTHERXlQ9xpglyHuPxM4LCImRMQ04LUUoXElEbENsA9wYcOlAyPisYiYGxHHre6bUHsYGCVJqlbXBcaI2JpiCPmCutPXAG+MiF0jYjxwMpDAhCGq+TFFj+ITwP3AHODbg5Q7ErgxM++pO3cpsDMwFXg7cHJEHN6kvcdExJyImDNv3rwRvEO1moteJEmqVlsCY0TcUC4sGey4qaH4kcBN9SEuM38AfAy4DLgPuBdYSBEGG581BvgecDkwEdgE2BA4fZCmHcnKwZTM/G1m/iUzV2TmTyh6K18/1HvLzHMzc2Zmzpw6deown4SqZA+jJEnVaEtgzMx9MzOGOPZuKL5KiCvrODszd8jM51AExwHg9kEetxGwFXBWZi7JzL8C5wH71xeKiJcBWwDfGq75rDwcri5jD6MkSdXqqiHpiNgLmEa5Orru/LiI2CUKWwPnAmdm5uONdWTmoxSrqI+LiIGImEIxJ/K2hqJHAZdl5sKGZx0UERuWz9oTeDdwZYveoirgHEZJkqrVVYGRIsRd3hjigHHA14FFwC3AT4GTahcj4sMRcW1d+UOA/YB5wF3AcuCEuvLjgDcySE8mcFh5z0KKxTCnZ+Zg5dQl7GGUJKlaA51uQL3MPHaI8/OBXZvcd1rD618B+zYp/zQwZYhrQy5wUXezh1GSpGp0Ww+jNGr2MEqSVC0Do/qGPYySJFXDwKieVv/9PPYwSpJUDQOj+oY9jJIkVcPAqJ5W38NoYJQkqRoGRvU0h6QlSaqegVE9zR5GSZKqZ2BU37CHUZKkahgY1dPsYZQkqXoGRvU05zBKklQ9A6N6mj2MkiRVz8CovmEPoyRJ1TAwqqfZwyhJUvUMjOppzmGUJKl6Bkb1DXsYJUmqhoFRPa3Ww7jOOvYwSpJUFQOjelotMI4dW/Qw1g9RS5Kk1jAwqqfVAuLAQPHzmWc61xZJkvqVgVF9YezY4qfD0pIktZ6BUT2tsYfRhS+SJLWegVE9rTEw2sMoSVLrGRjV0+oXvYA9jJIkVcHAqL6wzjrFT3sYJUlqPQOjeppD0pIkVc/AqJ5mYJQkqXoGRvU0A6MkSdUzMKovOIdRkqTqGBjV0+xhlCSpegZG9TQDoyRJ1TMwqqcZGCVJqp6BUX2hNofxmWc62w5JkvqRgVE9rdbD6KIXSZKqY2BUT3NIWpKk6hkY1dMMjJIkVc/AqL7gkLQkSdUxMKqn2cMoSVL1DIzqaQZGSZKqZ2BUTzMwSpJUva4JjBGxqOFYERFfqLt+dETcVV67LiK2aFLXzhHxw4hYUN7zTw3XXxERd0TEUxHxo4jYpu5aRMTpEfHX8vhMREQ171qt4hxGSZKq0zWBMTMn1Q5gU2AxMBsgImYBpwEHARsB9wCXDFZPRAwAVwJXl2WPAS6KiB3L65sAlwMnldfnAN+sq+IY4GBgN2BX4HXAsS18q2qhxn0Y3bhbkqTW65rA2OD1wCPAjeXrA4HZmTk3M5cCpwL7RMT2g9y7E7AF8NnMXJGZPwRuBo4orx8CzM3M2Zn5NHAKsFtE7FRePwo4IzPvz8wHgDOAt7X8HaolHJKWJKl63RoYjwIuzKzFAaI8qHsNsMsg9w42fBx1ZWcAt9UuZOaTwB/L86tcL3+fgbqSgVGSpOp1XWCMiK2BWcAFdaevAd4YEbtGxHjgZCCBCYNUcQdF7+SJETE2Il5d1lcrOwlY0HDPAmD9Ia4vACYNNY8xIo6JiDkRMWfevHkjfZtqMecwSpJUnbYExoi4ISJyiOOmhuJHAjdl5j21E5n5A+BjwGXAfcC9wELg/sZnZeYyijmIBwAPAe8HLq0ruwiY3HDb5LK+wa5PBhbV9XY2Pu/czJyZmTOnTp3a7GNQBexhlCSpem0JjJm5b2bGEMfeDcWPZOXexVodZ2fmDpn5HIrgOADcPsTzfp2ZszJz48x8DbAdcEt5eS7FghYAImIisH15fpXr5e9zUVcyMEqSVL2uGpKOiL2AaZSro+vOj4uIXcotb7YGzgXOzMzHh6hn1/KeCRHxAWBz4Pzy8hXALhFxaESMoxje/nVm3lFevxB4X0RMK7fueX/dveoyBkZJkqrXVYGRYrHL5Zm5sOH8OODrFMPFtwA/pdgWB4CI+HBEXFtX/gjgQYq5jK8AXpWZSwAycx5wKPBJ4HHgJcBhdfd+GbgK+A1FD+Z3y3PqYs5hlCSpOgOdbkC9zBx0v8PMnE+xJ+JQ953W8PpE4MQm5a+n2H5nsGsJfLA81OUa92E0MEqS1Hrd1sMojUrjkLQbd0uS1HoGRvUFexglSaqOgVE9zUUvkiRVz8ConmZglCSpegZG9TQDoyRJ1TMwqi84h1GSpOoYGNXT7GGUJKl6Bkb1NAOjJEnVMzCqp7lxtyRJ1TMwqi/UAqMbd0uS1HoGRvU0h6QlSaqegVE9zcAoSVL1DIzqabXAOKb8J9nAKElS6xkY1RciinmMBkZJklrPwKieVuthBAOjJElVMTCqp9UCoz2MkiRVx8ConmZglCSpegZG9YVaYHQfRkmSWs/AqJ5WP4dxzBh7GCVJqoKBUT3NIWlJkqpnYFRPMzBKklQ9A6P6goFRkqTqGBjV09yHUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9rXEOoxt3S5LUegZG9bT6IWk37pYkqRoGRvU05zBKklQ9A6P6goFRkqTqGBjV09yHUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zTmMkiRVz8ContY4JO3G3ZIktZ6BUT3NjbslSaqegVF9wTmMkiRVx8ConuYcRkmSqtc1gTEiFjUcKyLiC3XXj46Iu8pr10XEFk3q2jkifhgRC8p7/qnu2ksj4vsR8VhEzIuI2RGxed31UyJiWUNbtqvunWtNuK2OJEnV65rAmJmTagewKbAYmA0QEbOA04CDgI2Ae4BLBqsnIgaAK4Gry7LHABdFxI5lkQ2Bc4HpwDbAQuC8hmq+Wd+ezLy7ZW9UlTAwSpJUna4JjA1eDzwC3Fi+PhCYnZlzM3MpcCqwT0RsP8i9OwFbAJ/NzBWZ+UPgZuAIgMy8NjNnZ+YTmfkUcBbwsorfjyrikLQkSdXr1sB4FHBh5t/iQJQHda8Bdhnk3hji3GBlAfYB5jacO7Acsp4bEceNsM3qAIekJUmqXtcFxojYGpgFXFB3+hrgjRGxa0SMB04GEpgwSBV3UPROnhgRYyPi1WV9q5SNiF3Luk6sO30psDMwFXg7cHJEHN6kvcdExJyImDNv3rxRvFO1goFRkqTqtSUwRsQNEZFDHDc1FD8SuCkz76mdyMwfAB8DLgPuA+6lmHt4f+OzMnMZcDBwAPAQ8H6KELhS2Yh4LnAt8J7MvLHu/t9m5l/K4eyfAGdSDJEPKjPPzcyZmTlz6tSpI/1I1GK1fRjduFuSpNZrS2DMzH0zM4Y49m4ofiQr9y7W6jg7M3fIzOdQBMcB4PYhnvfrzJyVmRtn5muA7YBbatcjYhvgeuDUzPzacM1n8GFudQHnMEqSVL2uGpKOiL2AaZSro+vOj4uIXaKwNcUq5zMz8/Eh6tm1vGdCRHwA2Bw4v7w2DfghcHZmfmmQew+KiA3LZ+0JvJti1bW6kEPSkiRVr6sCI8Vil8szc2HD+XHA14FFFD2FPwVOql2MiA9HxLV15Y8AHqSYy/gK4FWZuaS8djRFj+PH6vdarLv3MOAuiiHvC4HTM3OVHk91BwOjJEnVG+h0A+pl5rFDnJ8P7NrkvtMaXp/IygtZ6q99HPh4k7qGXOCi7mVglCSpOt3WwyiNinMYJUmqnoFRPc0haUmSqmdgVE8zMEqSVD0Do/qCgVGSpOoYGNXT6ucwunG3JEnVMDCqpzkkLUlS9QyM6mkGRkmSqmdgVF+oBcbMlYepJUnSmjMwqqfVh8OBchv65cs70xZJkvqVgVE9rX5IeuzY4vdlyzrXHkmS+pGBUT3NwChJUvUMjOoLBkZJkqpjYFRPq5/DaGCUJKkaBkb1tPoh6XXXLX5furRz7ZEkqR8ZGNXTnMMoSVL1BkZSKCJeDbwNmAGsDywE5gLnZeb3K2udNEIGRkmSqjNsYIyIE4APAv8PuAxYAEwGdgMuiIjTM/PMSlspDcE5jJIkVW8kPYwnAi/PzDsazl8eEZcAPwIMjOoIh6QlSareSOYwTgT+MsS1h4AJrWuONDoGRkmSqjeSwHgZcFVEvCIipkbEuhGxSUS8ArgC+Fa1TZSGZ2CUJKk6IwmM7wB+AlwAPAwsLn9eAPwMOK6y1knDqJ/D6LY6kiRVY9g5jJm5FPg34N8iYgowCViUmfMby0bEyzLz5lY3UhqKQ9KSJFVvRNvq1JQhcX6TItdSrKCW2sLAKElS9Vq9cXe0uD5pRAyMkiRVp9WBMYcvIrWO+zBKklQ9vxpQPc0haUmSqmdgVE8zMEqSVD3nMKpvuK2OJEnVGFVgjIiNI+KIiPhg+XqLiNiydj0z1291A6Vm7GGUJKl6Iw6METEL+D3wFuCk8vQOwDkVtEsaEQOjJEnVG00P4+eAN2XmfsDy8tzPgT1b3ShptAyMkiRVZzSBcXpm/qD8vbaZyVJGufm31Ep+NaAkSdUbTWD8bUS8puHcK4HftLA90qg0Dkmvsw4sXtzZNkmS1G9G0zv4fuDqiPguMD4ivgwcCBxUScukEagPjADjxxsYJUlqtRH3MGbmz4DdgLnAfwP3AHtm5i8qaps0YgZGSZKqM6r5h5n5APCZitoijVo2fBmlgVGSpNZrGhgj4muM4PuhM/PIlrVIGgWHpCVJqt5wQ9J3AX8sjwXAwcA6wP3lvQcB86trntScgVGSpOo1DYyZ+fHaAewIHJCZb8nMD2fmW4EDgOe1oiERsajhWBERX6i7fnRE3FVeuy4itmhS184R8cOIWFDe809116ZHRDY866S66xERp0fEX8vjMxHhVx52OQOjJEnVGc22Oi8FftZw7ufA37WiIZk5qXYAmwKLgdnwt2+ZOY2iR3MjigU3lwxWT0QMAFcCV5dljwEuiogdG4pOqXvmqXXnj6HoSd0N2BV4HXBsK96jWs85jJIkVW80gfF/gdMiYjxA+fOTwK8qaNfrgUeAG8vXBwKzM3NuZi4FTgX2iYjtB7l3J2AL4LOZuSIzfwjcDBwxwmcfBZyRmfeXi3zOAN62+m9FVXJIWpKk6o0mML4NeBmwICIeppjTuDdQxYKXo4ALM//WfxTlQd1rgF0GuXew4eMYpOx9EXF/RJwXEZvUnZ8B3Fb3+rbynLqQgVGSpOqNZh/GezNzL2B74B+B52bmXpl5bysbFBFbA7OAC+pOXwO8MSJ2LXs2T6ZYvT1hkCruoOidPDEixkbEq8v6amUfBV4MbAPsAawPXFx3/ySKMFyzAJg01DzGiDgmIuZExJx58+aN7s2qZQyMkiRVZzQ9jETEhsDLgX8A9i1fj+S+G8qFJoMdNzUUPxK4KTPvqZ0ov8P6Y8BlwH3AvcBCitXaK8nMZRRzEA8AHqL4hppLa2Uzc1FmzsnM5Zn5MPBO4NURMbmsYhEwua7KycCiut7Oxuedm5kzM3Pm1KlTR/JxqIWcwyhJUvVGHBgj4u8ottd5B8VikGOBP5bnm8rMfTMzhjj2bih+JCv3LtbqODszd8jM51AExwHg9iGe9+vMnJWZG2fma4DtgFuGal7tLZY/51IseKmpfbuNulDjkPSECfDUU51rjyRJ/Wg03/TyOeD4zPxG7UREvAn4PMUQ7xqLiL2AaZSro+vOjwOeSxHctgLOBc7MzMeHqGdX4E6KQHw8sDlwfnntJRR7R/4B2LBs/w2ZWRuGvhB4X0RcQxEm3w98AXWlxsA4eTIsWgTPPANjRtV/LkmShjKaf6XuSDG0W+9bFEGuVY4CLs/MhQ3nxwFfpxguvgX4KVC/d+KHI+LauvJHAA9SzGV8BfCqzFxSXtsOuI5iSPt2YAlweN29XwauAn5TXv9ueU5drBYYN9igCJGLFnW2PZIk9ZPR9DD+ATiMIrjVvIFimLolMnPQ/Q4zcz7FMPhQ953W8PpE4MQhyl7CEHs4ltcT+GB5qMs1zmGcXM4+XbDg2d8lSdKaGU1gfC9wdUS8m2LhyXRgB4qNraWOaByS3mCD4ueCBbDVVp1pkyRJ/WbEgTEzf1JulH0AxcbYVwHXZOZjVTVOGs5gcxgBnniiM+2RJKkfjaaHkXKRyUUVtUVabYP1MEqSpNYYcWCMiG0pvgpwd4rNrf8mM7dubbOkkRlqDqM9jJIktc5oehi/TrHA5f2AO92pKzSbwyhJklpjNIFxBvCyzHymqsZIo2VglCSpeqPZh/F/gBdW1RBpTdQC48SJxYbdDklLktQ6o+lhvBf4XkRcTvEdzX+TmSe3slHSSDXOYYwo5jHawyhJUuuMJjBOpNhKZyzF1/PV5ODFpeo1DklDERjtYZQkqXVGsw/jPw9XJiIOL79JRWqLwQLjBhvYwyhJUiuNZg7jSPidy+qIxh5GA6MkSa3T6sAYwxeRWqdxDiMUPYwOSUuS1DqtDozOZ1RbOSQtSVL1Wh0YpbYaLDBusgnMm9eZ9kiS1I+GDYwRYahU16sPjJttVvQwPv1059ojSVI/GUkYfCAiPhMRu4yg7J/WtEHSaAw2h3HTTYufDz/c3rZIktSvRhIY3wFsC/wiIn4ZEe+JiKmDFczMkYRKqWUGG5I2MEqS1FrDBsbMvDIz3wBsTrFtzhuAP0fEdyLi0IgYW3UjpeE0DkkDPPhgZ9oiSVK/GfH8xMycn5lfzsy9gZ2BOcBnAf+1rI4ZbEh6222Ln3ff3d62SJLUr0bz1YAARMR6wIuBlwCbAj9pdaOkkRpsSHrjjYuV0r/7XWfaJEnS6lq2DBYvXvV46qnBz6/JtdEYcWCMiL2BI4E3Ao8AXwOOz8z7RvdIqXUGC4wAO+0Ec+e2vz2SpP6TCUuXFuGrdtTCWKtfL1++em0cMwYmTIDx4wc/Ntxw1XNnnjny+ocNjBFxCnAEsBEwGzggM29evbcjVaMxMO61F/zXfxXf+DJ5cmfaJEmq1jPPFFuojSSUrWmgG2wK1HDGji1CXC3I1X6fMKEYCat/XbteC3PNwt9gx9ixq/67cDgtDYzAS4GPAN/OTHe2U1cZ6v/A++8Pn/kMXH89HHJIe9skSSosW1aErSeffPZY3deDhbjV3W93vfWGDnJTpqx6brSva+cGRj3xr3sN+1Yyc792NERaHUMNSe+1V/EVgVdfbWCUpKGsWLFyQBsuvI028C1bNrr2rLMOTJxYHBMmrPz71KlDB7PRvB43rniORqePsq/WRkMFxrFj4cAD4Yor4ItfLP5ASFIvyix61hYtWvl48slVz9XOjzTcLVkyurZEDB7oJk4s5sjVv268PpLX6647+mFVtYeBUX1hsD8w//IvcNFF8PnPwwc/2P42SVr7LF06fJgb7Pxw94xm/tz48SsHsVoY22yzocPaSAPduHEGurWVgVE9rdkf0X33hYMPhg99CLbYAt761na1SlK3yyx61xYuXPlYnTBX/3o0Q7DrrguTJq16bLXVqucmThy8bOP5CROK1bJSqxkY1dOGGpKunfv61+F1r4OjjoL58+H44/1jKvWq5ctXDXhrcox0+5IxYwYPa1OnFl8UsDrBbuLEYuqM1CsMjOppzQIjFEMz3/kOvOEN8K53wWWXwVe+Attv3742SmurzKIH7oknWhPwRroidmAA1l9/1WOLLQY/33g0hr311nMYVjIwqi80+2M+cSJ897tw3nnwvvfBC14Ap51WBEhXykmrqi2yWLCgCHu1n6vz+0jn3k2atGpw23rr4cPd5MmrnjPgSa1nYFRPG+m/jCKKRTCveQ0ceyyccAJ84xvwpS/B7rtX2kSpbWrz8kYS5oa7vmLF8M8bP77Yvmry5OLYYAPYdNNnf6+FucFCXf0xcaJTRaRuZ2BUTxvtzvvTpsFVV8HFFxe9jXvsAe9+N3ziE8W/uKROWr68CGvz5698LFgw9OvGEDiSRRfrrbdq0Nt225WD3nC/r7++c/CktYmBUT0tc/RDTxHFiukDDoB/+7fiq5Fmz4bPfQ4OPdShLK2+pUtHHvQGO7do0fDP2GCD4psopkwpft9yS3j+81cOdcMFvfXWq+LdS+pnBkb1vNUNeBtuWAxJv+1tcNxxxcKY174WzjoLttuupU1Uj3jmmaKn7vHH4bHHVv75+OPDh8HFi5vXv846zwa9WujbcceVX9eHwcbX66/vvFtJnWFgVE9bnS+Db/TSl8IvflEExZNOghkz4CMfgRNPtCemF9UWbDQGvvrgN9S1+fOL0DiUddddNcRttdXwQa/2+8SJ9mBL6k0GRvW01RmSHszAALz3vUUv4wknFMHxoovgnHPg5S9f8/o1esuWjT7w1X5funToetdZp+hd3nBD2Ggj2HhjeO5zi99r5+p/1v/ut1xIWlsZGNXTWhUYa6ZNg0svheuug3/9V/iHf4A3vQk++lHYZZfWPWdtURviHSrgNQuBw83nmzx55TA3Y8bwgW+jjYphXUOfJI2OgVE9r4p/+e+3H9x+O3zqU3DGGfDNb8KBBxa9j7NmrV1bgAw3xNssBA43xDtu3Mphbptt4IUvHDzo1f+cMqXoFZYktYd/ctXTWjGHcSjjxxfb7bznPXD22fD5zxdb8my9Nbz5zbD//sX8x27eWqS2L1/j3nsj+TnSId4xY1YOc5tsAjvsMLIh3vHj2/dZSJJWX9cExohoHIAaD3wxM99VXj8a+BCwGXAT8C+Z+Zch6toZOBvYA5gHnJiZV5TX3gJ8ua74mPJZMzPz1og4BfgIsKSuzK6ZefeavUNVodVD0oPZeGM4+WT4wAfgyivhwgvhP/4DPv3p4tspXvhC2G23Ysh62jTYfPMiNI0bVxy1hTPLlq16LFlS9N4tXlx87Vnt96GO1SnTrIevZty4Vbdgef7zm/fy1X6uv/7a1eMqSWujrgmMmTmp9ntETAQeBmaXr2cBpwEvB/4AnAlcAsxqrCciBoArgS8BryrLXBURL8zMOzPzYuDiuvJvA04CfllXzTcz862tfH+qRjsCY82ECXD44cUxfz786Edw/fXwq1/B+eePbA+9NbHeekWPXONRC3ubbjr49QkTiiDYuEdffThcd91q2y5J6m1dExgbvB54BLixfH0gMDsz5wJExKnAAxGxfWb+seHenYAtgM9mZgI/jIibgSMogmGjo4ALy7LqQZ1YwDBlCvzTPxUHFL14DzwAf/kLPPggPPpo0XtYO6AYum481luvCHyDBb36QDhunL14kqTO6dbA2Bjiojyoew2wC9AYGAeLD1GWXflkxDbAPsC/NFw6MCIeAx4EzsrMc0bXfLVLt8T8MWOK/fi22qrTLZEkqfW6rs8iIramGEa+oO70NcAbI2LXiBgPnAwkMGGQKu6g6J08MSLGRsSry/oGK3skcGNm3lN37lJgZ2Aq8Hbg5Ig4vEl7j4mIORExZ968eSN+n2qNdg5JS5K0tmpLYIyIGyIihzhuaih+JHBTfYjLzB8AHwMuA+4D7gUWAvc3PiszlwEHAwcADwHvpwiBq5Qtn1UfTMnM32bmXzJzRWb+hGK+5OuHem+ZeW5mzszMmVOnTm3+QajlDIySJFWvLYExM/fNzBji2Luh+Cohrqzj7MzcITOfQxEcB4Dbh3jerzNzVmZunJmvAbYDbqkvExEvo5jr+K3hms/gw9zqEgZGSZKq1VVD0hGxFzCNcnV03flxEbFLFLYGzgXOzMzHh6hn1/KeCRHxAWBz4PyGYkcBl2XmwoZ7D4qIDctn7Qm8m2LVtbpQt8xhlCSpn3XbopejgMsbQxwwDvg6sD3FUPR51K14jogPA3+fma8tTx0BHA2MpVhp/arMXFJXfhzwRuDQQdpwGPDfwHoUw9inZ+YqPZ5qr6VL4U9/gnvvLY577il+Xn653/ghSVLVwt1kWmfmzJk5Z86cTjejJ2XCvHlw113wxz8Wx913PxsMH3hg5d7EddYpjqVLi42jn3iiY02XJKknRcStmTlzJGXtm1HbrFgB99//bCCshcPaz/qNryNgyy1h223hH/4Bpk8vfp8+vTi23BIOOwwuu8w5jJIkVc3AqJbKLDatvuOO4vj974ufd91V9BbWfyfx2LGw3Xaw/fawzz7w3OcWv2+/fREOa1+pJ0mSOsvAqNWybFkxZFwfCmu/P/bYs+XGjYMddii+Z/mgg4owWAuGW25ZDCuvrlrPoj2MkiRVy8Copp55Bu67D37zm5WPO++E5cufLbfZZrDTTvCGNxQ/a8fWW1f3lXYGRkmS2sPAqL+ZPx9+9auVg+Htt688t3D6dHjBC+Af/xF23rkIhc97HmywQfvba1CUJKk9DIxrqfnz4Ze/hFtvffa4665nr2+0UREM3/a24ucLXgAzZsDkyZ1q8arsYZQkqT0MjGuBZcvgttvg5pvhpz9dNRxuvTXssQf88z/Di14Eu+4Km2/e/UHMwChJUnsYGPvQ/Pnwk58Ux803wy23wFNPFde23BJe/OIiHO6xRxEQe/0rsA2MkiRVy8DYB5YsKXoOr7++OH7xi2KxyjrrwO67w9FHw157FcdWW3W6ta1jUJQkqT0MjD3qz3+GK6+Eq6+G//kfWLy4CIgveQl89KOw776w554wcWKnW1odh6QlSWoPA2MP+e1vi+9O/va3i3mIADvuWPQgvvKVRUjspkUpVTMwSpLUHgbGLjdvHlxyCVxwQbGqGeClL4VPf7rYCHunnTrbvk4yMEqS1B4Gxi6UWSxW+dznimHn5cuLxSmf+1yxMfYWW3S6hd3BoChJUnsYGLvIihUwezaccQbMmQMbbgjveU+xF+Iuu3S6dd3L4ChJUrUMjF0gE77znWKxyu23F9+ccs45cMQR/b1oZU05JC1JUnsYGDts7lx4xzvgpptghx3gG98ohp2r+v7lfmJglCSpPYwlHbJ0KXzkI8U+ib/7HZx7brEK+k1vMiyOlEFRkqT2sIexA+69twiGt9wCRx0F//mfsMkmnW5V77GHUZKk9jAwttn3v1+ExRUr4FvfgkMP7XSLepeBUZKk9nDws40uvhj237/4er5f/tKw2CoGRkmSqmVgbJP//m9461th772Lr/LbfvtOt6j3GRQlSWoPA2MbXHEFvP3t8JrXwLXXwgYbdLpF/cEhaUmS2sPAWLGf/xwOOwz23BMuuwzGjet0i/qHgVGSpPYwMFbo0Uef/Sq/q692E+5WMzBKktQerpKu0LHHwiOPFN8LvfHGnW5N/zEoSpLUHgbGilxxBVx+OXz607DHHp1uTX8zOEqSVC2HpCvw1FPwrncV3+Lyvvd1ujX9yyFpSZLawx7GCpxzDjzwAHz96zB2bKdb078MjJIktYc9jC22bBn8x3/AK18J++zT6db0N4OiJEntYQ9ji119NTz8MHzlK51uSf+zh1GSpPawh7HFzjsPNt8c9tuv0y3pfwZGSZLaw8DYQpnwgx8U3xE9YN9t5QyMkiS1h4GxhZ56qjhmzep0SyRJklrHwNhCCxcWP13s0h72MEqS1B4GxhZatAie9zx4znM63ZK1g4FRkqT2MDC20OLF8KIXdboVaw8DoyRJ7WFgbKGlS4seRrWHQVGSpPYwMLaYgbF97GGUJKk9uiYwRsT0iLgmIh6PiIci4qyIGKi7/oqIuCMinoqIH0XENk3q2igiroiIJyPivoh4c8P1IeuKwukR8dfy+EzEyCPJ9OmjfONaYwZGSZKq1TWBEfgi8AiwObA7MAs4HiAiNgEuB04CNgLmAN9sUtfZwFJgU+AtwDkRMWOEdR0DHAzsBuwKvA44dqRvYtq0kZbUmrKHUZKk9uimwLgtcGlmPp2ZDwHXATPKa4cAczNzdmY+DZwC7BYROzVWEhETgUOBkzJzUWbeBHwHOGKEdR0FnJGZ92fmA8AZwNtG+iY222w0b1lrwqAoSVJ7dFNgPBM4LCImRMQ04LUUoRGK4HhbrWBmPgn8kWcDZb0dgRWZeWfdudvqyg5X10rXG+5tamAAxo4dSUm1gj2MkiS1RzcFxh9TBLMngPsphoq/XV6bBCxoKL8AWH+QeoYrO9rrC4BJQ81jjIhjImJORMwZM2bZYEVUEQOjJEnt0ZbAGBE3REQOcdwUEWOA71HMLZwIbAJsCJxeVrEImNxQ7WRg4SCPG67saK9PBhZlZg723jLz3MycmZkzX/ACuxfbyaAoSVJ7tCUwZua+mRlDHHtTLD7ZCjgrM5dk5l+B84D9yyrmUixCAf42T3H78nyjO4GBiNih7txudWWHq2ul6w33qgsZHCVJqlZXDEln5qPAPcBxETEQEVMoFp/U5hJeAewSEYdGxDjgZODXmXnHIHU9SdFT+YmImBgRLwMOAr42wrouBN4XEdMiYgvg/cD5rX/XWlMOSUuS1B5dERhLhwD7AfOAu4DlwAkAmTmPYuXzJ4HHgZcAh9VujIgPR8S1dXUdD4yn2KbnEuC4zJw7krqALwNXAb8Bbge+W55TlzEwSpLUHgPDF2mPzPwVsG+T69cDq2yjU147reH1YxR7Ka5OXQl8sDzUxQyKkiS1Rzf1MEqjYg+jJEntYWBUzzIwSpLUHgZG9TwDoyRJ1TIwqmcZFCVJag8Do3qWQ9KSJLWHgVE9y8AoSVJ7GBjVswyKkiS1h4FRPcvAKElSexgYJUmS1JSBUT3LHkZJktrDwKieVQuMmZ1thyRJ/c7AqJ5lD6MkSe1hYFTPMjBKktQeBkb1LPdhlCSpPQyM6nnOYZQkqVoGRvUsexYlSWoPA6N6loFRkqT2MDCqZ7mtjiRJ7WFgVM9y0YskSe1hYFTPMjBKktQeBkb1PAOjJEnVMjCqZxkUJUlqDwOjepZD0pIktYeBUT3LwChJUnsYGNWzDIySJLWHgVE9y8AoSVJ7GBglSZLUlIFRPcseRkmS2sPAqJ5lYJQkqT0MjOpZBkVJktrDwKieZQ+jJEntYWBUzzIwSpLUHgZG9TwDoyRJ1TIwqmcZFCVJag8Do3qWQ9KSJLWHgVE9y8AoSVJ7GBjVswyKkiS1h4FRPcseRkmS2sPAqJ5nYJQkqVpdExgjYnpEXBMRj0fEQxFxVkQM1F1/RUTcERFPRcSPImKbJnVtFBFXRMSTEXFfRLy57tpLI+L7EfFYRMyLiNkRsXnd9VMiYllELKo7tqvunWt12cMoSVJ7dE1gBL4IPAJsDuwOzAKOB4iITYDLgZOAjYA5wDeb1HU2sBTYFHgLcE5EzCivbQicC0wHtgEWAuc13P/NzJxUd9y9pm9OrWdglCSpPQaGL9I22wJnZebTwEMRcR1QC3mHAHMzczYUvYDAoxGxU2beUV9JREwEDgV2ycxFwE0R8R3gCOBDmXltQ/mzgB9X+L5UEYOiJEnt0U09jGcCh0XEhIiYBrwWuK68NgO4rVYwM58E/sizgbLejsCKzLyz7txtQ5QF2AeY23DuwHLIem5EHDf6t6J2sIdRkqT26KbA+GOKUPcEcD/FsPO3y2uTgAUN5RcA6w9Sz4jLRsSuwMnAiXWnLwV2BqYCbwdOjojDh2p0RBwTEXMiYs68efOGKqYKGBglSWqPtgTGiLghInKI46aIGAN8j2Ke4kRgE4q5hqeXVSwCJjdUO5li/mGjEZWNiOcC1wLvycwba+cz87eZ+ZfMXJGZP6Ho+Xz9UO8tM8/NzJmZOXPq1KnNPwi1lIFRkqT2aEtgzMx9MzOGOPamWMiyFcUcxiWZ+VeKhSj7l1XMBXar1VfOU9yeVYeSAe4EBiJih7pzu9WXLVdYXw+cmplfG675gJFEkiSttbpiSDozHwXuAY6LiIGImAIcxbPzFq8AdomIQyNiHMUw8q8bF7yUdT1J0VP5iYiYGBEvAw4CvgZQzo/8IXB2Zn6p8f6IOCgiNozCnsC7gStb/JbVAvYwSpLUHl0RGEuHAPsB84C7gOXACQCZOY9i5fMngceBlwCH1W6MiA9HRP3q5+OB8RTb9FwCHJeZtR7Go4HtgI/V77VYd+9h5fMXAhcCp2fmBS1+r2oBA6MkSe3RNdvqZOavgH2bXL8e2GmIa6c1vH4MOHiIsh8HPt7kOUMucFF3MShKktQe3dTDKI2KPYySJLWHgVE9y8AoSVJ7GBjV8wyMkiRVy8ConmUPoyRJ7WFgVM8yKEqS1B4GRvUsexglSWoPA6N6loFRkqT2MDCqZxkYJUlqDwOjJEmSmjIwqmfZwyhJUnsYGNXzDIySJFXLwKieldnpFkiStHYwMKrn2cMoSVK1DIzqWbUeRgOjJEnVMjCqZz3zTPHTwChJUrUMjOp5BkZJkqplYFTPctGLJEntYWBUz7OHUZKkahkY1bPsYZQkqT0MjOpZrpKWJKk9DIzqWQZGSZLaw8ConmVglCSpPQyM6nkGRkmSqmVgVM9y0YskSe1hYFTPs4dRkqRqGRjVs5zDKElSexgY1bP8LmlJktrDwKieZ2CUJKlaBkb1LBe9SJLUHgZG9Tx7GCVJqpaBUT3LHkZJktrDwKie5SppSZLaw8ConmVglCSpPQyM6lkGRkmS2sPAqJ5nYJQkqVoGRvUsF71IktQeBkb1PHsYJUmqloFRPcs5jJIktYeBUT3L75KWJKk9uiYwRsT0iLgmIh6PiIci4qyIGKi7/oqIuCMinoqIH0XENk3q2igiroiIJyPivoh4c8NzMiIW1R0n1V2PiDg9Iv5aHp+JMJJ0M//XkSSpWl0TGIEvAo8AmwO7A7OA4wEiYhPgcuAkYCNgDvDNJnWdDSwFNgXeApwTETMaykzJzEnlcWrd+WOAg4HdgF2B1wHHrskbUzVc9CJJUnt0U2DcFrg0M5/OzIeA64BayDsEmJuZszPzaeAUYLeI2KmxkoiYCBwKnJSZizLzJuA7wBEjbMdRwBmZeX9mPgCcAbxtDd6XKmYPoyRJ1eqmwHgmcFhETIiIacBrKUIjFMHxtlrBzHwS+CPPBsp6OwIrMvPOunO3DVL2voi4PyLOK3swa1Z61hD3/k1EHBMRcyJizrx585q/Q7WUPYySJLVHNwXGH1MEsyeA+ymGnb9dXpsELGgovwBYf5B6hiv7KPBiYBtgj/L8xU3uXwBMGmoeY2aem5kzM3Pm1KlTh3pvqoCrpCVJao+2BMaIuKFcaDLYcVNEjAG+RzFPcSKwCbAhcHpZxSJgckO1k4GFgzyuadlymHpOZi7PzIeBdwKvjojJQ9w/GViUaX9WtznqKDj4YPjoRzvdEkmS+ltbAmNm7puZMcSxN8VClq2AszJzSWb+FTgP2L+sYi7FIhTgb/MUty/PN7oTGIiIHerO7TZEWYBaEKz1U630rGHuVQdNngxXXAGbbdbplkiS1N+6Ykg6Mx8F7gGOi4iBiJhCsfikNpfwCmCXiDg0IsYBJwO/zsw7BqnrSYqeyk9ExMSIeBlwEPA1gIh4SUQ8LyLGRMTGwOeBGzKzNgx9IfC+iJgWEVsA7wfOr+adS5Ikdb+uCIylQ4D9gHnAXcBy4ASAzJxHsfL5k8DjwEuAw2o3RsSHI+LaurqOB8ZTbNNzCXBcZtZ6CbejWEyzELgdWAIcXnfvl4GrgN+U179bnpMkSVorhVPzWmfmzJk5Z86cTjdDkiRpWBFxa2bOHEnZbuphlCRJUhcyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaiszsdBv6RkQsBH7f6XasZTYBHu10I9Yyfubt52fefn7m7edn3n7Py8z1R1JwoOqWrGV+n5kzO92ItUlEzPEzby8/8/bzM28/P/P28zNvv4iYM9KyDklLkiSpKQOjJEmSmjIwtta5nW7AWsjPvP38zNvPz7z9/Mzbz8+8/Ub8mbvoRZIkSU3ZwyhJkqSmDIySJElqysDYAhGxUURcERFPRsR9EfHmTrep30XEOyNiTkQsiYjzO92efhcR60XEV8t/vhdGxP9GxGs73a5+FxEXRcSDEfFERNwZEUd3uk1ri4jYISKejoiLOt2WfhcRN5Sf9aLycD/jNoiIwyLid2V2+WNE/H2z8u7D2BpnA0uBTYHdge9GxG2ZObejrepvfwH+HXgNML7DbVkbDAB/BmYBfwL2By6NiBdk5r2dbFif+xTwfzJzSUTsBNwQEf+bmbd2umFrgbOBX3S6EWuRd2bmVzrdiLVFRLwKOB14E3ALsPlw99jDuIYiYiJwKHBSZi7KzJuA7wBHdLZl/S0zL8/MbwN/7XRb1gaZ+WRmnpKZ92bmM5l5NXAPsEen29bPMnNuZi6pvSyP7TvYpLVCRBwGzAd+0OGmSFX5OPCJzPxZ+Tf9gcx8oNkNBsY1tyOwIjPvrDt3GzCjQ+2RKhcRm1L8s28vesUi4osR8RRwB/AgcE2Hm9TXImIy8Ang/Z1uy1rmUxHxaETcHBH7drox/Swi1gFmAlMj4q6IuD8izoqIpqN1BsY1NwlY0HBuATCi72aUek1EjAUuBi7IzDs63Z5+l5nHU/w9+XvgcmBJ8zu0hk4FvpqZf+50Q9Yi/xfYDphGsS/gVRFhT3p1NgXGAq+n+LuyO/BC4KPNbjIwrrlFwOSGc5OBhR1oi1SpiBgDfI1izu47O9yctUZmriinu2wJHNfp9vSriNgdeCXw2Q43Za2SmT/PzIWZuSQzLwBuppgnrWosLn9+ITMfzMxHgf9imM/cRS9r7k5gICJ2yMw/lOd2w6E69ZmICOCrFP91un9mLutwk9ZGAziHsUr7AtOBPxX/uDMJWCcinp+ZL+pgu9Y2CUSnG9GvMvPxiLif4nMeMXsY11BmPkkxTPSJiJgYES8DDqLohVFFImIgIsYB61D8QR8XEf4HULXOAXYGDszMxcMV1pqJiOeU215Mioh1IuI1wOHADzvdtj52LkUg3708vgR8l2I3BlUgIqZExGtqf8Mj4i3APsD3Ot22Pnce8K7y78yGwHuBq5vd4L9gW+N44L+BRyhW7R7nljqV+yjwsbrXb6VY9XVKR1rT5yJiG+BYivlzD5W9LwDHZubFHWtYf0uK4ecvUfzH/X3AezPzyo62qo9l5lPAU7XXEbEIeDoz53WuVX1vLMUWaTsBKygWdx2cme7FWK1TgU0oRkmfBi4FPtnsBr9LWpIkSU05JC1JkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJLRIRcyNi3zY96/kRMaeCei+PiP1aXa+k3uY+jJI0QuVGzjUTKDYyX1G+busm5hFxGTA7M7/R4nr3BM7JzD1aWa+k3mZglKTVEBH3Akdn5vUdePbmFN9Xv0VmPl1B/X8ADs/MlvdgSupNDklLUotExL0R8cry91MiYnZEXBQRCyPiNxGxY0T8W0Q8EhF/johX1927QUR8NSIejIgHIuLfI2KdIR71KuCX9WGxfPaJEfHriHiyrGvTiLi2fP715XfGUn5v70UR8deImB8Rv4iITevqvwE4oOUfkKSeZWCUpOocCHwN2BD4X+B7FH93pwGfAL5cV/YCYDnwXOCFwKuBo4eo9wXAYN+1eyhFmNyxfPa1wIcpvjN2DPDustxRwAbAVsDGwDuAxXX1/A7YbcTvUlLfMzBKUnVuzMzvZeZyYDYwFfh0Zi4DvgFMj4gpZe/ea4H3ZuaTmfkI8FngsCHqnQIsHOT8FzLz4cx8ALgR+Hlm/m9mLgGuoAiiAMsoguJzM3NFZt6amU/U1bOwfIYkATDQ6QZIUh97uO73xcCjmbmi7jXAJGALYCzwYETUyo8B/jxEvY8D64/geY2vJ5W/f42id/EbETEFuAj4SBlkKeueP9SbkrT2sYdRkjrvzxQrrjfJzCnlMTkzZwxR/tcUw86rJTOXZebHM/P5wF7A64Aj64rsDNy2uvVL6j8GRknqsMx8EPj/gDMiYnJEjImI7SNi1hC3fB94UUSMW53nRcTLI+IF5aKaJyiGqFfUFZlFMf9RkgADoyR1iyOBdYHfUgw5fwvYfLCCmfkw8EPgoNV81mZl/U9QLHD5McWwNBHxYuDJzLxlNeuW1Ifch1GSelBEPJ9iZfWe2cI/5OWG4F/NzGtaVaek3mdglCRJUlMOSUuSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKa+v8BBKdSc1/2Ug4AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCCUlEQVR4nO3debgcZZ33//c3nEg2QlgiSwQCyDZBQInoIENw3BBlQEAFlWXmQRgYN0R8HBVEGVGYYRQFUR5nWARRIiCCgD9RcQAdMTiCRBkEAQVZwpKQhJCN7++PqpZO55zOOUlXb3m/rquuPl111113N+Hkk3upisxEkiRJGsqoTjdAkiRJ3c3AKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMktYqEXFTRHy97v2FEXFjJ9skSd3OwCipJ0TERhFxZkT8b0Q8FxGPR8R/RcQRETFQ8bX/LSLujogFETEvIn4WEW9ZjXoujIgst2UR8WBEfDUiNqqi3UO04ZyIWB4RH2jXNQdpw8vL4P5YRCyOiD+W7ZrUqTZJaq7SX7KS1AoR8RLgVmAZcArwP8BSYE/gI8CdwK8rbMJs4HrgAWA0cBRwdUS8KjNvH2FdNwPvoPj9uzvwdWALYMQBdKQiYhzwHuB04BjgS1VfcwiLgQsp/js+DewAnAtMAd7WoTZJasIeRkm94DxgXeAVmXlpZv42M3+fmRdRhK7f1wpGxPvL3sDnIuL3EfGJNe2BzMwLMvNHmXlfZt6dmR8D5gN7rUZ1SzLz0cx8KDOvBr4I7BsRY6PwkYj4Q0QsiYj7IuJD9SdHxAMR8dmI+HpEPBMRT0TEGRExnN/n7wTuA/4F2Dwi9myo+7yy/kl1+y4ov8f1yvf7RcTtZc/g4xHxlYgYX1f+woi4MSKOKXtQn4mIqyNicq1M+d/vwsy8IzP/mJk/pAiM+4zsq5TULgZGSV0tIjYE9gPOycx5jcczc2lmLizLnkrR4/jPwE7AB4FjgU+1sD0DEXE4MIGit3BNLaL4XTwAHA+cBnwemAb8K/D5iPg/Dee8H/gz8ErgBOB9wIeGca1jgYsyczHwLYpexnonAM8A/w8gIt4FvAs4NDPnR8QuwPeA/wJ2A44E3gp8taGeVwKvpeg13bcs+29DNSoitgAOAX4yjM8gqRMy083Nza1rN2APIIGDVlFuHPAssG/D/iOAuXXvbwK+Xvf+QuDGYbTjrcACYDnFMOpbV+OzrHAt4K8oevz+u3z/J+DMhnO+APyh7v0DwM0NZU4HHlrFtXcFlgCT677XZ4FJDeV2AhYCn6MIjyfUHfsGcFtD+QOA54Gt6j7jHGDdujIfAx4ZpE0/owjMSRFEx3b6z5ubm9vgmz2MkrpdlK+5inLTgLHAFeXilAURsQD4GrB+/ZDoavoJRU/Zqyl64C6OiFesRj37lG1bBNwF/AF4V0RMBF5C0XtX76fA1HL+Yc3PG8rcCkwp6xjKscB1mTkHIDNvA+6nmNP4F5n5O4pe2o8Bt1AMmddMG6J9QRF+a36XRS9mzcPAJoO06Z3AK4CDge1YuadSUpdw0Yukbvd7ih6sacBVTcrV/gH8duCeQY4/tSaNyGLY+97y7S8jYlfgo8ChI6zqFxRDucsoet0WA9SFvcZgHKxa0zLlHMN3A+tFxLK6Q6MohqXPaThlb4qe1C2BMRS9gDVDBff6/UsGObZSGzPzT+WPv4uIR4CfRcTnMvPuJh9HUgfYwyipq2XmUxQrlN8XEes3Ho+I0WUgmg08B2yTmfcOsi1vcdNGUSzEGalFZXseqO+Fy8xngIeAGQ3l9wbuz8xn6/a9uqHMXwN/LusYzKEUAXBXil7S2vY3wLSI+Et95XzJA8t2jKMYEq+ZPUj7ZlAEwt8Oce3hqv19tDrfqaSK2cMoqRccTzHsentEnEJxC50lFMHpJODIzPx1RJwOnB4RAD+k+B33MuDlmfl/V+fCEbFJef3rgEeBScBhwOsohlJb6XPAWRHxe4q5ln8LHAf8U0O53coFPt8EplMs7jm1Sb3HAldl5m8aD0TErRS9jP8dETsAZ1PMW7w1Ig4DbomIH2bmFRSLcH4VEf8OnA9MBb4MXJqZfxzuh4yIo4G5vBDydwbOoLjNzkptlNR5BkZJXS8z/1jOF/wYRTDakmJBxu8oQsxdZbnTIuLPFKuI/41iKPUeioUYq2sJRW/ce4GNKYa2fwPsl5k31AqVAe5TmTmcIeShnAeMBz4OfIViEczHMvM/Gsp9GdgKmEUxtH0eK/YE/kVE7EaxavnkIa75beDMiDiBYuX0DzLzqwCZ+YsyoH89ImZl5p0R8XcUK7n/ieK/wXco5jyOxHLgE8C2FH8P/YliusG/ZubzI6xLUhtE5qrmkUuSViUiLgY2zcw3VnydByhWef9LldeRpHr2MErSGipvmv06insPSlLfMTBK0hoqh1GndLodklQVh6QlSZLUlLfVkSRJUlMGRkmSJDXlHMYW2njjjXPq1KmdboYkSdIq3X777U9k5rAem2pgbKGpU6cya9asTjdDkiRplSLiweGWdUhakiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRjV8178Ypgxo9OtkCSpfw10ugHSmpozp9gkSVI1uqaHMSIWNGzLI+LLdcePjoh7y2M3RMTmTeqaGhHXRcTTEfFoRJwTEQN1x7LhWifXnRsRcUZEPFluZ0ZEVPvpJUmSulfXBMbMnFDbgE2ARcBMgIiYAZwOHABsCNwPXNakuq8AjwObAbsBM4DjG8pMqrvmaXX7jwEOBHYFdgHeChy7Rh9OkiSph3VNYGxwCEXgu7l8vz8wMzNnZ+YS4DRg74jYdojztwYuz8znMvNR4AZg2jCvfSRwVmY+lJkPA2cBR63m55AkSep53RoYjwQuzsws30e5UfceYOchzj8bODQixkXEFODNFKGx3oMR8VBEXBARG9ftnwbcUff+DoYfNiVJkvpO1wXGiNiSYgj5orrd1wHviIhdImIscAqQwLghqvkpRch7BngImAV8tzz2BPBKYCtgd2A94NK6cycA8+rezwMmDDWPMSKOiYhZETFrjisvJElSH2pLYIyIm8qFJoNttzQUPwK4JTPvr+3IzB8BnwKuAB4EHgDmU4TBxmuNAn4AXAmMBzYGNgDOKOtakJmzMnNZZj4GvA94Y0RMLKtYAEysq3IisKCut3MFmXl+Zk7PzOmTJ08e0fciSZLUC9oSGDNzn8yMIba9GoofwYq9i7U6zs3M7TLzxRTBcQC4a5DLbQhsAZyTmYsz80ngAmC/oZpXvtZ6EGdTLHip2bXcJ0mStFbqqiHpiNgTmEK5Orpu/5iI2Lm85c2WwPnA2Zn5dGMdmfkExSrq4yJiICImUcyJvKOs61URsUNEjIqIjYAvATdlZm0Y+mLgwxExpbx1z4nAhVV8XkmSpF7QVYGRIthdmZnzG/aPAb5JMVx8G/BzoP7eiR+PiOvryh8E7AvMAe4FlgEnlMe2oVgAM5+ih3IxcFjduV8DrgF+Ux7/frlPkiRprRRDTM3Tapg+fXrOmjWr081Y69SWI/lHWZKk4YuI2zNz+nDKdlsPoyRJkrqMgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRfcMnvUiSVA0Do/rG8uWdboEkSf3JwKi+sWxZp1sgSVJ/MjCqbxgYJUmqhoFRfcPAKElSNQyM6hsGRkmSqmFgVN8wMEqSVA0Do/qGgVGSpGoYGNU3DIySJFXDwKi+sXRpp1sgSVJ/MjCqb9jDKElSNQyM6htLlnS6BZIk9ScDo/rG4sWdboEkSf3JwKi+YQ+jJEnVMDCqbxgYJUmqhoFRfcMhaUmSqmFgVN+wh1GSpGoYGNU3DIySJFXDwKi+4ZC0JEnVMDCqb9jDKElSNQyM6hsGRkmSqmFgVN9wSFqSpGoYGNXzRpV/iu1hlCSpGgZG9bwXvah4NTBKklQNA6N63sBA8eqQtCRJ1TAwqudlFq/2MEqSVA0Do3qegVGSpGoZGNU3HJKWJKkaBkb1vFoPo4FRkqRqGBjV82qBcfnyzrZDkqR+1TWBMSIWNGzLI+LLdcePjoh7y2M3RMTmTeqaGhHXRcTTEfFoRJwTEQPlsXc3XOfZiMiI2L08fmpELG0os03134BWVy0wLlvW2XZIktSvuiYwZuaE2gZsAiwCZgJExAzgdOAAYEPgfuCyJtV9BXgc2AzYDZgBHF9e59KGax0P/AH4Vd35364vk5l/aOFHVUXsYZQkqRpdExgbHEIR+G4u3+8PzMzM2Zm5BDgN2Dsith3i/K2ByzPzucx8FLgBmDZE2SOBizNr/VTqNfYwSpJUrW4NjI0hLsqNuvcAOw9x/tnAoRExLiKmAG+mCI0riIitgL2BixsO7R8RT0XE7Ig4rllDI+KYiJgVEbPmzJnT/FOpEgZGSZKq1XWBMSK2pBhCvqhu93XAOyJil4gYC5wCJDBuiGp+StGj+AzwEDAL+O4g5Y4Abs7M++v2XQ7sBEwG3gucEhGHDdXezDw/M6dn5vTJkycP4xOq1Vz0IklStdoSGCPipnJhyWDbLQ3FjwBuqQ9xmfkj4FPAFcCDwAPAfIow2HitUcAPgCuB8cDGwAbAGYM07QhWDKZk5m8z88+ZuTwzf0bRW3nIan1wtZU9jJIkVaMtgTEz98nMGGLbq6H4SiGurOPczNwuM19MERwHgLsGudyGwBbAOZm5ODOfBC4A9qsvFBGvATYHvrOq5rPicLi6jD2MkiRVq6uGpCNiT2AK5erouv1jImLnKGwJnA+cnZlPN9aRmU9QrKI+LiIGImISxZzIOxqKHglckZnzG651QERsUF5rD+ADwNUt+oiqgHMYJUmqVlcFRooQd2VjiAPGAN8EFgC3AT8HTq4djIiPR8T1deUPAvYF5gD3AsuAE+rKjwHewSA9mcCh5TnzKRbDnJGZg5VTl7CHUZKkag10ugH1MvPYIfbPBXZpct7pDe9/DezTpPxzwKQhjg25wEXdzR5GSZKq0W09jNKI2cMoSVK1DIzqG/YwSpJUDQOjelr983nsYZQkqRoGRvUNexglSaqGgVE9rb6H0cAoSVI1DIzqaQ5JS5JUPQOjepo9jJIkVc/AqL5hD6MkSdUwMKqn2cMoSVL1DIzqac5hlCSpegZG9TR7GCVJqp6BUX3DHkZJkqphYFRPs4dRkqTqGRjV05zDKElS9QyM6hv2MEqSVA0Do3parYdxnXXsYZQkqSoGRvW0WmAcPbroYawfopYkSa1hYFRPqwXEgYHi9fnnO9cWSZL6lYFRfWH06OLVYWlJklrPwKie1tjD6MIXSZJaz8ContYYGO1hlCSp9QyM6mn1i17AHkZJkqpgYFRfWGed4tUeRkmSWs/AqJ7mkLQkSdUzMKqnGRglSaqegVE9zcAoSVL1DIzqC85hlCSpOgZG9TR7GCVJqp6BUT3NwChJUvUMjOppBkZJkqpnYFRfqM1hfP75zrZDkqR+ZGBUT6v1MLroRZKk6hgY1dMckpYkqXoGRvU0A6MkSdUzMKovOCQtSVJ1DIzqafYwSpJUPQOjepqBUZKk6hkY1dMMjJIkVa9rAmNELGjYlkfEl+uOHx0R95bHboiIzZvUtVNE/Dgi5pXnvK3h+Osi4u6IeDYifhIRW9Udi4g4IyKeLLczIyKq+dRqFecwSpJUna4JjJk5obYBmwCLgJkAETEDOB04ANgQuB+4bLB6ImIAuBq4tix7DHBJRGxfHt8YuBI4uTw+C/h2XRXHAAcCuwK7AG8Fjm3hR1ULNd6H0Rt3S5LUel0TGBscAjwO3Fy+3x+YmZmzM3MJcBqwd0RsO8i5OwKbA1/IzOWZ+WPgVuDw8vhBwOzMnJmZzwGnArtGxI7l8SOBszLzocx8GDgLOKrln1At4ZC0JEnV69bAeCRwcWYtDhDlRt17gJ0HOXew4eOoKzsNuKN2IDMXAveV+1c6Xv48DXUlA6MkSdXrusAYEVsCM4CL6nZfB7wjInaJiLHAKUAC4wap4m6K3smTImJ0RLyxrK9WdgIwr+GcecB6QxyfB0wYah5jRBwTEbMiYtacOXOG+zHVYs5hlCSpOm0JjBFxU0TkENstDcWPAG7JzPtrOzLzR8CngCuAB4EHgPnAQ43XysylFHMQ3wI8CpwIXF5XdgEwseG0iWV9gx2fCCyo6+1svN75mTk9M6dPnjy52degCtjDKElS9doSGDNzn8yMIba9GoofwYq9i7U6zs3M7TLzxRTBcQC4a4jr3ZmZMzJzo8x8E7ANcFt5eDbFghYAImI8sG25f6Xj5c+zUVcyMEqSVL2uGpKOiD2BKZSro+v2j4mInctb3mwJnA+cnZlPD1HPLuU54yLiI8BmwIXl4auAnSPi4IgYQzG8fWdm3l0evxj4cERMKW/dc2LdueoyBkZJkqrXVYGRYrHLlZk5v2H/GOCbFMPFtwE/p7gtDgAR8fGIuL6u/OHAIxRzGV8HvCEzFwNk5hzgYOCzwNPAq4BD6879GnAN8BuKHszvl/vUxZzDKElSdQY63YB6mTno/Q4zcy7FPRGHOu/0hvcnASc1KX8jxe13BjuWwEfLTV2u8T6MBkZJklqv23oYpRFpHJL2xt2SJLWegVF9wR5GSZKqY2BUT3PRiyRJ1TMwqqcZGCVJqp6BUT3NwChJUvUMjOoLzmGUJKk6Bkb1NHsYJUmqnoFRPc3AKElS9QyM6mneuFuSpOoZGNUXaoHRG3dLktR6Bkb1NIekJUmqnoFRPc3AKElS9QyM6mm1wDiq/JNsYJQkqfUMjOoLEcU8RgOjJEmtZ2BUT6v1MIKBUZKkqhgY1dNqgdEeRkmSqmNgVE8zMEqSVD0Do/pCLTB6H0ZJklrPwKieVj+HcdQoexglSaqCgVE9zSFpSZKqZ2BUTzMwSpJUPQOj+oKBUZKk6hgY1dO8D6MkSdUzMKqnOSQtSVL1DIzqaQZGSZKqZ2BUXzAwSpJUHQOjelrjHEZv3C1JUusZGNXT6oekvXG3JEnVMDCqpzmHUZKk6hkY1RcMjJIkVcfAqJ7mfRglSaqegVE9zSFpSZKqZ2BUTzMwSpJUPQOj+oKBUZKk6hgY1dOcwyhJUvUMjOppjUPS3rhbkqTWMzCqp3njbkmSqmdgVF9wDqMkSdUxMKqnOYdRkqTqdU1gjIgFDdvyiPhy3fGjI+Le8tgNEbF5k7p2iogfR8S88py31R17dUT8MCKeiog5ETEzIjarO35qRCxtaMs21X1yrQlvqyNJUvW6JjBm5oTaBmwCLAJmAkTEDOB04ABgQ+B+4LLB6omIAeBq4Nqy7DHAJRGxfVlkA+B8YCqwFTAfuKChmm/Xtycz/9CyD6pKGBglSapO1wTGBocAjwM3l+/3B2Zm5uzMXAKcBuwdEdsOcu6OwObAFzJzeWb+GLgVOBwgM6/PzJmZ+UxmPgucA7ym4s+jijgkLUlS9bo1MB4JXJz5lzgQ5Ubde4CdBzk3htg3WFmAvYHZDfv2L4esZ0fEccNsszrAIWlJkqrXdYExIrYEZgAX1e2+DnhHROwSEWOBU4AExg1Sxd0UvZMnRcToiHhjWd9KZSNil7Kuk+p2Xw7sBEwG3gucEhGHNWnvMRExKyJmzZkzZwSfVK1gYJQkqXptCYwRcVNE5BDbLQ3FjwBuycz7azsy80fAp4ArgAeBByjmHj7UeK3MXAocCLwFeBQ4kSIErlA2Il4KXA98MDNvrjv/t5n553I4+2fA2RRD5IPKzPMzc3pmTp88efJwvxK1WO0+jN64W5Kk1mtLYMzMfTIzhtj2aih+BCv2LtbqODczt8vMF1MExwHgriGud2dmzsjMjTLzTcA2wG214xGxFXAjcFpmfmNVzWfwYW51AecwSpJUva4ako6IPYEplKuj6/aPiYido7AlxSrnszPz6SHq2aU8Z1xEfATYDLiwPDYF+DFwbmZ+dZBzD4iIDcpr7QF8gGLVtbqQQ9KSJFWvqwIjxWKXKzNzfsP+McA3gQUUPYU/B06uHYyIj0fE9XXlDwceoZjL+DrgDZm5uDx2NEWP46fq77VYd+6hwL0UQ94XA2dk5ko9nuoOBkZJkqo30OkG1MvMY4fYPxfYpcl5pze8P4kVF7LUH/s08OkmdQ25wEXdy8AoSVJ1uq2HURoR5zBKklQ9A6N6mkPSkiRVz8ConmZglCSpegZG9QUDoyRJ1TEwqqfVz2H0xt2SJFXDwKie5pC0JEnVMzCqpxkYJUmqnoFRfaEWGDNXHKaWJElrzsConlYfDgfK29AvW9aZtkiS1K8MjOpp9UPSo0cXPy9d2rn2SJLUjwyM6mkGRkmSqmdgVF8wMEqSVB0Do3pa/RxGA6MkSdUwMKqn1Q9Jv+hFxc9LlnSuPZIk9SMDo3qacxglSarewHAKRcQbgaOAacB6wHxgNnBBZv6wstZJw2RglCSpOqsMjBFxAvBR4P8BVwDzgInArsBFEXFGZp5daSulITiHUZKk6g2nh/Ek4LWZeXfD/isj4jLgJ4CBUR3hkLQkSdUbzhzG8cCfhzj2KDCudc2RRsbAKElS9YYTGK8AromI10XE5Ih4UURsHBGvA64CvlNtE6VVMzBKklSd4QTGfwR+BlwEPAYsKl8vAv4bOK6y1kmrUD+H0dvqSJJUjVXOYczMJcA/A/8cEZOACcCCzJzbWDYiXpOZt7a6kdJQHJKWJKl6w7qtTk0ZEuc2KXI9xQpqqS0MjJIkVa/VN+6OFtcnDYuBUZKk6rQ6MOaqi0it430YJUmqno8GVE9zSFqSpOoZGNXTDIySJFXPOYzqG95WR5KkaowoMEbERhFxeER8tHy/eUS8pHY8M9drdQOlZuxhlCSpesMOjBExA/hf4N3AyeXu7YDzKmiXNCwGRkmSqjeSHsYvAu/MzH2BZeW+XwB7tLpR0kgZGCVJqs5IAuPUzPxR+XPtZiZLGOHNv6VW8tGAkiRVbySB8bcR8aaGfa8HftPC9kgj0jgkvc46sGhRZ9skSVK/GUnv4InAtRHxfWBsRHwN2B84oJKWScNQHxgBxo41MEqS1GrD7mHMzP8GdgVmA/8J3A/skZm/rKht0rAZGCVJqs6I5h9m5sPAmRW1RRqxbHgYpYFRkqTWaxoYI+IbDOP50Jl5RMtaJI2AQ9KSJFVvVUPS9wL3lds84EBgHeCh8twDgLnVNU9qzsAoSVL1mgbGzPx0bQO2B96Sme/OzI9n5nuAtwA7tKIhEbGgYVseEV+uO350RNxbHrshIjZvUtdOEfHjiJhXnvO2umNTIyIbrnVy3fGIiDMi4slyOzMifORhlzMwSpJUnZHcVufVwH837PsF8NetaEhmTqhtwCbAImAm/OUpM6dT9GhuSLHg5rLB6omIAeBq4Nqy7DHAJRGxfUPRSXXXPK1u/zEUPam7ArsAbwWObcVnVOs5h1GSpOqNJDD+D3B6RIwFKF8/C/y6gnYdAjwO3Fy+3x+YmZmzM3MJcBqwd0RsO8i5OwKbA1/IzOWZ+WPgVuDwYV77SOCszHyoXORzFnDU6n8UVckhaUmSqjeSwHgU8BpgXkQ8RjGncS+gigUvRwIXZ/6l/yjKjbr3ADsPcu5gw8cxSNkHI+KhiLggIjau2z8NuKPu/R3lPnUhA6MkSdUbyX0YH8jMPYFtgb8DXpqZe2bmA61sUERsCcwALqrbfR3wjojYpezZPIVi9fa4Qaq4m6J38qSIGB0Rbyzrq5V9AnglsBWwO7AecGnd+RMownDNPGDCUPMYI+KYiJgVEbPmzJkzsg+rljEwSpJUnZH0MBIRGwCvBf4W2Kd8P5zzbioXmgy23dJQ/Ajglsy8v7ajfIb1p4ArgAeBB4D5FKu1V5CZSynmIL4FeJTiCTWX18pm5oLMnJWZyzLzMeB9wBsjYmJZxQJgYl2VE4EFdb2djdc7PzOnZ+b0yZMnD+frUAs5h1GSpOoNOzBGxF9T3F7nHykWgxwL3Ffubyoz98nMGGLbq6H4EazYu1ir49zM3C4zX0wRHAeAu4a43p2ZOSMzN8rMNwHbALcN1bzaRyxfZ1MseKmpPd1GXahxSHrcOHj22c61R5KkfjSSJ718ETg+M79V2xER7wS+RDHEu8YiYk9gCuXq6Lr9Y4CXUgS3LYDzgbMz8+kh6tkFuIciEB8PbAZcWB57FcW9I38PbFC2/6bMrA1DXwx8OCKuowiTJwJfRl2pMTBOnAgLFsDzz8OoEfWfS5KkoYzkr9TtKYZ2632HIsi1ypHAlZk5v2H/GOCbFMPFtwE/B+rvnfjxiLi+rvzhwCMUcxlfB7whMxeXx7YBbqAY0r4LWAwcVnfu14BrgN+Ux79f7lMXqwXG9dcvQuSCBZ1tjyRJ/WQkPYy/Bw6lCG41b6cYpm6JzBz0foeZOZdiGHyo805veH8ScNIQZS9jiHs4lscT+Gi5qcs1zmGcWM4+nTfvhZ8lSdKaGUlg/BBwbUR8gGLhyVRgO4obW0sd0Tgkvf76xeu8ebDFFp1pkyRJ/WbYgTEzf1beKPstFDfGvga4LjOfqqpx0qoMNocR4JlnOtMeSZL60Uh6GCkXmVxSUVuk1TZYD6MkSWqNYQfGiNia4lGAu1Hc3PovMnPL1jZLGp6h5jDawyhJUuuMpIfxmxQLXE4EvNOdukKzOYySJKk1RhIYpwGvycznq2qMNFIGRkmSqjeS+zD+F/DyqhoirYlaYBw/vrhht0PSkiS1zkh6GB8AfhARV1I8o/kvMvOUVjZKGq7GOYwRxTxGexglSWqdkQTG8RS30hlN8Xi+mhy8uFS9xiFpKAKjPYySJLXOSO7D+PerKhMRh5VPUpHaYrDAuP769jBKktRKI5nDOBw+c1kd0djDaGCUJKl1Wh0YY9VFpNZpnMMIRQ+jQ9KSJLVOqwOj8xnVVkMNSc+d25HmSJLUl1odGKW2GiwwbrwxPPFEZ9ojSVI/WmVgjAhDpbpefWDcdNNiDuNzz3WuPZIk9ZPhhMGHI+LMiNh5GGX/uKYNkkZisDmMm2xSvD72WHvbIklSvxpOYPxHYGvglxHxq4j4YERMHqxgZg4nVEotM9iQtIFRkqTWWmVgzMyrM/PtwGYUt815O/CniPheRBwcEaOrbqS0Ko1D0gCPPNKZtkiS1G+GPT8xM+dm5tcycy9gJ2AW8AXAv5bVMYMNSW+9dfH6hz+0ty2SJPWrkTwaEICIWBd4JfAqYBPgZ61ulDRcgw1Jb7RRsVL6d7/rTJskSVodmbB0KSxaNPT27LPNj4+k3EgMOzBGxF7AEcA7gMeBbwDHZ+aDI7uk1DqDBUaAHXeE2bPb3x5JUv/JhMWLXwhhzz674ta4b03eL1++em1cZx0YO/aFbdy4Fd9vuOGK78eOhS9+cfj1rzIwRsSpwOHAhsBM4C2ZeevqfRypGo2Bcc894d//vXjiy8SJnWmTJKlazz9f3EJtuMFsTcLcYFOgVmX06CK41bZakBs3DiZPHvzYYGFvsK2xzOjVWFHS0sAIvBr4BPDdzPTOduoqQ/0PvN9+cOaZcOONcNBB7W2TJKmwdCksXFgEroULX9jq3zc7Vv9+sDC3uvfbHTNm5QBXe7/BBoMHvJG+HzsWBkY88a97rfKjZOa+7WiItDqGGpLec8/iEYHXXmtglKShLF8+8uA2ktC3dOnI2jMwAOPHF9u4cS/8PH48vPjFaxbg6nvkRvlIkhHro+yrtdFQgXH0aNh/f7jqKvjKV4p/TUpSL8osAtiCBStuCxeuvK+2f7ihb8mSkbVl1KihA92GG674vvH4cN6/6EXVfIdacwZG9YXGwAjwD/8Al1wCX/oSfPSj7W+TpLVLZhHAVhXmBtvf7NhI5881BrFaGNt886HD2nAD3brrDv77Vv3PwKie1uyX6D77wIEHwsc+VvyifM972tUqSd0us5j/Nn/+ittIw1zj/mXLht+GddeFCRNe2MaPL1432mjw/Y3bYPsdblVVDIzqaUMNSdf2ffOb8Na3wpFHwty5cPzx/jKVetWyZSsHvPrtmWeaH2/chnv7klGjBg9sm2wydJhbVdAbP371VrVKnWJgVE9rFhih+Nf2974Hb387vP/9cMUV8PWvw7bbtq+N0toqs+iBG2mQG2ob7orYgQFYb70Vt4kTYcqUlfcPtjUGPIdhJQOj+kSzX+bjx8P3vw8XXAAf/jC87GVw+ulFgFxnnfa1UeoVtUUWzzwD8+YVr6vz8zPPDG/uXUQRzBqD21ZbDS/gNW4GPKn1DIzqacOdCB5RLIJ505vg2GPhhBPgW9+Cr34Vdtut0iZKbVOblzfcUNcs6A1nuHbcuOL2VRMnFtv668Omm77w88SJL/TuNQt448Y5VUTqdgZG9bSR3nl/yhS45hq49NKit3H33eEDH4DPfKb4i0vqpGXLiuA2d+6KW+O++veNYW84970bM2bloLfttisGvVX9vN56/XVTYknN+b+7elrmyIeeIooV0295C/zzP8PZZ8PMmcUjkg4+2KEsrb7Fi4cf9Abbt3Bh8/ojirA2aVKxrb8+bLnlyIOe97qTNFIGRvW81Q14G2xQDEkfdRQcd1yxMObNb4ZzzoFttmlpE9Ujnn++CHBPPw1PPbXi69NPrzoMrmpRxjrrvBD2aoFv001X3lf/vn7/eus5dCupMwyM6mmr8zD4Rq9+Nfzyl0VQPPlkmDYNPvEJOOmkYvK8ekttwcZgoW+o19rPc+c2/zP1ohetHOS23HLwcDfYvvHj7cGW1JsMjOppqzMkPZiBAfjQh4pexhNOKILjJZfAeefBa1+75vVr5JYuHVnoqw9/zR53ts46Re/yBhsUjzLbeGPYbrvi59q++tf6n8eObd/nl6RuYmBUT2tVYKyZMgUuvxxuuAH+6Z/gb/8W3vlO+OQnYeedW3edtcXzzxcLMVYn9C1Y0LzuiRNXDHM777zqwLfhhsWwrr18kjQyBkb1vCr+8t93X7jrLvjc5+Css+Db34b99y96H2fMWLvmkWXCokWrF/rmzi1C41DGjFkxzE2dCq94xeBBr/510iRX6EpSO/krVz2tFXMYhzJ2bHG7nQ9+EM49F770peKWPFtuCe96F+y3XzH/sZsf75VZrNxtvO/ecF7r5/aNdIh3++2H7u1ziFeSek/XBMaIaByAGgt8JTPfXx4/GvgYsClwC/APmfnnIeraCTgX2B2YA5yUmVeVx94NfK2u+KjyWtMz8/aIOBX4BLC4rswumfmHNfuEqkKrh6QHs9FGcMop8JGPwNVXw8UXw7/+K3z+88XTKV7+cth112JIdMoU2GyzIjSNGVNstYUzS5euvC1eXPTeLVpUrLCt/TzUtjplmvXw1Ywdu/ItWKZNa97L5xCvJK09uiYwZuaE2s8RMR54DJhZvp8BnA68Fvg9cDZwGTCjsZ6IGACuBr4KvKEsc01EvDwz78nMS4FL68ofBZwM/Kqumm9n5nta+flUjXYExppx4+Cww4pt7lz4yU/gxhvh17+GCy9c9Zy7NTVmTBHsxo5d8eexY1+4PUv9vtpWexpHLQw2vnpfPknSqnRNYGxwCPA4cHP5fn9gZmbOBoiI04CHI2LbzLyv4dwdgc2BL2RmAj+OiFuBwymCYaMjgYvLsupBnejdmjQJ3va2YoOiF+/hh+HPf4ZHHoEnnyx6DxcvfuHefKNHr7ytu+7K4W+wbd111655k5Kk7tKtgbExxEW5UfceYGegMTAOFh+iLLvizoitgL2Bf2g4tH9EPAU8ApyTmeeNrPlql26J+aNGwRZbFJskSf2m6/osImJLimHki+p2Xwe8IyJ2iYixwClAAuMGqeJuit7JkyJidES8saxvsLJHADdn5v11+y4HdgImA+8FTomIw5q095iImBURs+bMmTPsz6nWaOeQtCRJa6u2BMaIuCkicojtlobiRwC31Ie4zPwR8CngCuBB4AFgPvBQ47UycylwIPAW4FHgRIoQuFLZ8lr1wZTM/G1m/jkzl2fmzyjmSx4y1GfLzPMzc3pmTp88eXLzL0ItZ2CUJKl6bQmMmblPZsYQ214NxVcKcWUd52bmdpn5YorgOADcNcT17szMGZm5UWa+CdgGuK2+TES8hmKu43dW1XwGH+ZWlzAwSpJUra4ako6IPYEplKuj6/aPiYido7AlcD5wdmY+PUQ9u5TnjIuIjwCbARc2FDsSuCIz5zece0BEbFBeaw/gAxSrrtWFumUOoyRJ/azbFr0cCVzZGOKAMcA3gW0phqIvoG7Fc0R8HPibzHxzuetw4GhgNMVK6zdk5uK68mOAdwAHD9KGQ4H/BNalGMY+IzNX6vFUey1ZAn/8IzzwQLHdf3/xeuWVPvFDkqSqhXeTaZ3p06fnrFmzOt2MnpQJc+bAvffCffcV2x/+8EIwfPjhFXsT11mn2JYsKe4j+MwzHWu6JEk9KSJuz8zpwylr34zaZvlyeOihFwJhLRzWXutvfB0BL3kJbL01/O3fFs8Y3nrr4nXq1OLYoYfCFVc4h1GSpKoZGNVSmfDEE3D33cX2v/9bvN57b9FbWP9M4tGjYZttYNttYe+94aUvLX7edtsiHNYeqSdJkjrLwKjVsnRpMWRcHwprPz/11AvlxoyB7bYrnrN8wAFFGKwFw5e8pBhWXl21nkV7GCVJqpaBUU09/zw8+CD85jcrbvfcA8uWvVBu001hxx3h7W8vXmvblltW90g7A6MkSe1hYNRfzJsHv/51EQjvvLN4veuuFecWTp0KL3sZ/N3fwU47FaFwhx1g/fXb316DoiRJ7WFgXEvNnQu/+hXcfvsL2733vnB8ww2LYHjUUcXry14G06bBxImdavHK7GGUJKk9DIxrgaVL4Y474NZb4ec/Xzkcbrkl7L47/P3fwyteAbvsAptt1v1BzMAoSVJ7GBj70Lx58LOfFQHx1lvhttvg2WeLYy95CbzylUU43H33IiD2+iOwDYySJFXLwNgHFi8ueg5vvLHYfvnLYrHKOuvAbrvB0UfDnnsW2xZbdLq1rWNQlCSpPQyMPepPf4Krr4Zrr4X/+i9YtKgIiK96FXzyk7DPPrDHHjB+fKdbWh2HpCVJag8DYw/53e+KZyd/97tQewLh9tsXPYivf30RErtpUUrVDIySJLWHgbHLzZkDl10GF11UrGoGePWr4fOfL26EveOOnW1fJxkYJUlqDwNjF8osFqt88YvFsPOyZcXilC9+sbgx9uabd7qF3cGgKElSexgYu8jy5TBzJpx1VjHkvMEG8MEPFvdC3HnnTreuexkcJUmqloGxC2TCNdfAJz5RPFllhx3gvPPg8MP7e9HKmnJIWpKk9jAwdtjs2XDccXDzzbDddvCtbxXDzlU9f7mfGBglSWoPY0mHLFlS3P5mt92K0Pi1rxWv73ynYXG4DIqSJLWHPYwd8OCDRTD8xS+KYeezzur9p610gj2MkiS1h4GxzX74wyIs1ha4HHJIp1vUuwyMkiS1h4OfbXTppbDffsXj+X71K8NiqxgYJUmqloGxTf7zP+E974G99ioe5bfttp1uUe8zKEqS1B4Gxja46ip473vhTW+C66+H9dfvdIv6g0PSkiS1h4GxYrfdBocdBnvsAVdcAWPGdLpF/cPAKElSexgYK/TEE8U8xU03hWuv9SbcrWZglCSpPVwlXaFjj4XHHiueC73RRp1uTf8xKEqS1B4GxopcdRVceSV87nMwfXqnW9PfDI6SJFXLIekKLFoE738/7LornHhip1vTvxySliSpPexhrMB558HDD8M3vwmjR3e6Nf3LwChJUnvYw9hiS5fCmWfC618Pe+/d6db0N4OiJEntYQ9ji33/+8VCl69/vdMt6X/2MEqS1B72MLbYBRfAZpvBvvt2uiX9z8AoSVJ7GBhbKBNuvBEOOggG7LutnIFRkqT2MDC20LPPFts++3S6JZIkSa1jYGyh+fOL17/5m862Y21hD6MkSe1hYGyhBQtghx1gk0063ZK1g4FRkqT2MDC20KJF8PKXd7oVaw8DoyRJ7WFgbKElS2DHHTvdirWHQVGSpPYwMLbYDjt0ugVrD3sYJUlqj64JjBExNSKui4inI+LRiDgnIgbqjr8uIu6OiGcj4icRsVWTujaMiKsiYmFEPBgR72o4PmRdUTgjIp4stzMjhh9Jpk4d4QfXGjMwSpJUra4JjMBXgMeBzYDdgBnA8QARsTFwJXAysCEwC/h2k7rOBZYAmwDvBs6LiGnDrOsY4EBgV2AX4K3AscP9EFOmDLek1pQ9jJIktUc3Bcatgcsz87nMfBS4AZhWHjsImJ2ZMzPzOeBUYNeIWGnGYESMBw4GTs7MBZl5C/A94PBh1nUkcFZmPpSZDwNnAUcN90NsuulIPrLWhEFRkqT26KbAeDZwaESMi4gpwJspQiMUwfGOWsHMXAjcxwuBst72wPLMvKdu3x11ZVdV1wrHG85tamAARo8eTkm1gj2MkiS1RzcFxp9SBLNngIcohoq/Wx6bAMxrKD8PWG+QelZVdqTH5wEThprHGBHHRMSsiJg1atSywYqoIgZGSZLaoy2BMSJuiogcYrslIkYBP6CYWzge2BjYADijrGIBMLGh2onA/EEut6qyIz0+EViQmTnYZ8vM8zNzemZOf9nLfIB0OxkUJUlqj7YExszcJzNjiG0visUnWwDnZObizHwSuADYr6xiNsUiFOAv8xS3Lfc3ugcYiIjt6vbtWld2VXWtcLzhXHUhg6MkSdXqiiHpzHwCuB84LiIGImISxeKT2lzCq4CdI+LgiBgDnALcmZl3D1LXQoqeys9ExPiIeA1wAPCNYdZ1MfDhiJgSEZsDJwIXtv5Ta005JC1JUnt0RWAsHQTsC8wB7gWWAScAZOYcipXPnwWeBl4FHFo7MSI+HhHX19V1PDCW4jY9lwHHZebs4dQFfA24BvgNcBfw/XKfuoyBUZKk9uiaSXeZ+WtgnybHbwQGffBeZp7e8P4pinsprk5dCXy03NTFDIqSJLVHN/UwSiNiD6MkSe1hYFTPMjBKktQeBkb1PAOjJEnVMjCqZxkUJUlqDwOjepZD0pIktYeBUT3LwChJUnsYGNWzDIqSJLWHgVE9y8AoSVJ7GBglSZLUlIFRPcseRkmS2sPAqJ5VC4yZnW2HJEn9zsConmUPoyRJ7WFgVM8yMEqS1B4GRvUs78MoSVJ7GBjV85zDKElStQyM6ln2LEqS1B4GRvUsA6MkSe1hYFTP8rY6kiS1h4FRPctFL5IktYeBUT3LwChJUnsYGNXzDIySJFXLwKieZVCUJKk9DIzqWQ5JS5LUHgZG9SwDoyRJ7WFgVM8yMEqS1B4GRvUsA6MkSe1hYJQkSVJTBkb1LHsYJUlqDwOjepaBUZKk9jAwqmcZFCVJag8Do3qWPYySJLWHgVE9y8AoSVJ7GBjV8wyMkiRVy8ConmVQlCSpPQyM6lkOSUuS1B4GRvUsA6MkSe1hYFTPMihKktQeBkb1LHsYJUlqDwOjep6BUZKkanVNYIyIqRFxXUQ8HRGPRsQ5ETFQd/x1EXF3RDwbET+JiK2a1LVhRFwVEQsj4sGIeFfdsVdHxA8j4qmImBMRMyNis7rjp0bE0ohYULdtU90n1+qyh1GSpPbomsAIfAV4HNgM2A2YARwPEBEbA1cCJwMbArOAbzep61xgCbAJ8G7gvIiYVh7bADgfmApsBcwHLmg4/9uZOaFu+8Oafji1noFRkqT2GFh1kbbZGjgnM58DHo2IG4BayDsImJ2ZM6HoBQSeiIgdM/Pu+koiYjxwMLBzZi4AbomI7wGHAx/LzOsbyp8D/LTCz6WKGBQlSWqPbuphPBs4NCLGRcQU4M3ADeWxacAdtYKZuRC4jxcCZb3tgeWZeU/dvjuGKAuwNzC7Yd/+5ZD17Ig4buQfRe1gD6MkSe3RTYHxpxSh7hngIYph5++WxyYA8xrKzwPWG6SeYZeNiF2AU4CT6nZfDuwETAbeC5wSEYcN1eiIOCYiZkXErDlz5gxVTBUwMEqS1B5tCYwRcVNE5BDbLRExCvgBxTzF8cDGFHMNzyirWABMbKh2IsX8w0bDKhsRLwWuBz6YmTfX9mfmbzPzz5m5PDN/RtHzechQny0zz8/M6Zk5ffLkyc2/CLWUgVGSpPZoS2DMzH0yM4bY9qJYyLIFxRzGxZn5JMVClP3KKmYDu9bqK+cpbsvKQ8kA9wADEbFd3b5d68uWK6xvBE7LzG+sqvmAkUSSJK21umJIOjOfAO4HjouIgYiYBBzJC/MWrwJ2joiDI2IMxTDynY0LXsq6FlL0VH4mIsZHxGuAA4BvAJTzI38MnJuZX208PyIOiIgNorAH8AHg6hZ/ZLWAPYySJLVHVwTG0kHAvsAc4F5gGXACQGbOoVj5/FngaeBVwKG1EyPi4xFRv/r5eGAsxW16LgOOy8xaD+PRwDbAp+rvtVh37qHl9ecDFwNnZOZFLf6sagEDoyRJ7dE1t9XJzF8D+zQ5fiOw4xDHTm94/xRw4BBlPw18usl1hlzgou5iUJQkqT26qYdRGhF7GCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9yx5GSZLaw8ConmVQlCSpPQyM6ln2MEqS1B4GRvUsA6MkSe1hYFTPMjBKktQeBkZJkiQ1ZWBUz7KHUZKk9jAwqucZGCVJqpaBUT0rs9MtkCRp7WBgVM+zh1GSpGoZGNWzaj2MBkZJkqplYFTPev754tXAKElStQyM6nkGRkmSqmVgVM9y0YskSe1hYFTPs4dRkqRqGRjVs+xhlCSpPQyM6lmukpYkqT0MjOpZBkZJktrDwKieZWCUJKk9DIzqeQZGSZKqZWBUz3LRiyRJ7WFgVM+zh1GSpGoZGNWznMMoSVJ7GBjVs3yWtCRJ7WFgVM8zMEqSVC0Do3qWi14kSWoPA6N6nj2MkiRVy8ConmUPoyRJ7WFgVM9ylbQkSe1hYFTPMjBKktQeBkb1LAOjJEntYWBUzzMwSpJULQOjepaLXiRJag8Do3qePYySJFXLwKie5RxGSZLaw8ConuWzpCVJao+uCYwRMTUirouIpyPi0Yg4JyIG6o6/LiLujohnI+InEbFVk7o2jIirImJhRDwYEe9quE5GxIK67eS64xERZ0TEk+V2ZoSRpJv5X0eSpGp1TWAEvgI8DmwG7AbMAI4HiIiNgSuBk4ENgVnAt5vUdS6wBNgEeDdwXkRMaygzKTMnlNtpdfuPAQ4EdgV2Ad4KHLsmH0zVcNGLJEnt0U2BcWvg8sx8LjMfBW4AaiHvIGB2Zs7MzOeAU4FdI2LHxkoiYjxwMHByZi7IzFuA7wGHD7MdRwJnZeZDmfkwcBZw1Bp8LlXMHkZJkqrVTYHxbODQiBgXEVOAN1OERiiC4x21gpm5ELiPFwJlve2B5Zl5T92+OwYp+2BEPBQRF5Q9mDUrXGuIc/8iIo6JiFkRMWvOnDnNP6Fayh5GSZLao5sC408pgtkzwEMUw87fLY9NAOY1lJ8HrDdIPasq+wTwSmArYPdy/6VNzp8HTBhqHmNmnp+Z0zNz+uTJk4f6bKqAq6QlSWqPtgTGiLipXGgy2HZLRIwCfkAxT3E8sDGwAXBGWcUCYGJDtROB+YNcrmnZcph6VmYuy8zHgPcBb4yIiUOcPxFYkGl/Vrc58kg48ED45Cc73RJJkvpbWwJjZu6TmTHEthfFQpYtgHMyc3FmPglcAOxXVjGbYhEK8Jd5ituW+xvdAwxExHZ1+3YdoixALQjW+qlWuNYqzlUHTZwIV10Fm27a6ZZIktTfumJIOjOfAO4HjouIgYiYRLH4pDaX8Cpg54g4OCLGAKcAd2bm3YPUtZCip/IzETE+Il4DHAB8AyAiXhURO0TEqIjYCPgScFNm1oahLwY+HBFTImJz4ETgwmo+uSRJUvfrisBYOgjYF5gD3AssA04AyMw5FCufPws8DbwKOLR2YkR8PCKur6vreGAsxW16LgOOy8xaL+E2FItp5gN3AYuBw+rO/RpwDfCb8vj3y32SJElrpXBqXutMnz49Z82a1elmSJIkrVJE3J6Z04dTtpt6GCVJktSFDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpiIzO92GvhER84H/7XQ71jIbA090uhFrGb/z9vM7bz+/8/bzO2+/HTJzveEUHKi6JWuZ/83M6Z1uxNokImb5nbeX33n7+Z23n995+/mdt19EzBpuWYekJUmS1JSBUZIkSU0ZGFvr/E43YC3kd95+fuft53fefn7n7ed33n7D/s5d9CJJkqSm7GGUJElSUwZGSZIkNWVgbIGI2DAiroqIhRHxYES8q9Nt6ncR8b6ImBURiyPiwk63p99FxLoR8R/ln+/5EfE/EfHmTrer30XEJRHxSEQ8ExH3RMTRnW7T2iIitouI5yLikk63pd9FxE3ld72g3LyfcRtExKER8bsyu9wXEX/TrLz3YWyNc4ElwCbAbsD3I+KOzJzd0Vb1tz8D/wK8CRjb4basDQaAPwEzgD8C+wGXR8TLMvOBTjasz30O+D+ZuTgidgRuioj/yczbO92wtcC5wC873Yi1yPsy8+udbsTaIiLeAJwBvBO4DdhsVefYw7iGImI8cDBwcmYuyMxbgO8Bh3e2Zf0tM6/MzO8CT3a6LWuDzFyYmadm5gOZ+XxmXgvcD+ze6bb1s8ycnZmLa2/LbdsONmmtEBGHAnOBH3W4KVJVPg18JjP/u/yd/nBmPtzsBAPjmtseWJ6Z99TtuwOY1qH2SJWLiE0o/uzbi16xiPhKRDwL3A08AlzX4Sb1tYiYCHwGOLHTbVnLfC4inoiIWyNin043pp9FxDrAdGByRNwbEQ9FxDkR0XS0zsC45iYA8xr2zQOG9WxGqddExGjgUuCizLy70+3pd5l5PMXvk78BrgQWNz9Da+g04D8y80+dbsha5P8C2wBTKO4LeE1E2JNenU2A0cAhFL9XdgNeDnyy2UkGxjW3AJjYsG8iML8DbZEqFRGjgG9QzNl9X4ebs9bIzOXldJeXAMd1uj39KiJ2A14PfKHDTVmrZOYvMnN+Zi7OzIuAWynmSasai8rXL2fmI5n5BPDvrOI7d9HLmrsHGIiI7TLz9+W+XXGoTn0mIgL4D4p/ne6XmUs73KS10QDOYazSPsBU4I/FH3cmAOtExF9l5is62K61TQLR6Ub0q8x8OiIeovieh80exjWUmQsphok+ExHjI+I1wAEUvTCqSEQMRMQYYB2KX+hjIsJ/AFXrPGAnYP/MXLSqwlozEfHi8rYXEyJinYh4E3AY8ONOt62PnU8RyHcrt68C36e4G4MqEBGTIuJNtd/hEfFuYG/gB51uW5+7AHh/+XtmA+BDwLXNTvAv2NY4HvhP4HGKVbvHeUudyn0S+FTd+/dQrPo6tSOt6XMRsRVwLMX8uUfL3heAYzPz0o41rL8lxfDzVyn+cf8g8KHMvLqjrepjmfks8GztfUQsAJ7LzDmda1XfG01xi7QdgeUUi7sOzEzvxVit04CNKUZJnwMuBz7b7ASfJS1JkqSmHJKWJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUpBaJiNkRsU+brvVXETGrgnqvjIh9W12vpN7mfRglaZjKGznXjKO4kfny8n1bb2IeEVcAMzPzWy2udw/gvMzcvZX1SuptBkZJWg0R8QBwdGbe2IFrb0bxvPrNM/O5Cur/PXBYZra8B1NSb3JIWpJaJCIeiIjXlz+fGhEzI+KSiJgfEb+JiO0j4p8j4vGI+FNEvLHu3PUj4j8i4pGIeDgi/iUi1hniUm8AflUfFstrnxQRd0bEwrKuTSLi+vL6N5bPjKV8bu8lEfFkRMyNiF9GxCZ19d8EvKXlX5CknmVglKTq7A98A9gA+B/gBxS/d6cAnwG+Vlf2ImAZ8FLg5cAbgaOHqPdlwGDP2j2YIkxuX177euDjFM+MHQV8oCx3JLA+sAWwEfCPwKK6en4H7DrsTymp7xkYJak6N2fmDzJzGTATmAx8PjOXAt8CpkbEpLJ3783AhzJzYWY+DnwBOHSIeicB8wfZ/+XMfCwzHwZuBn6Rmf+TmYuBqyiCKMBSiqD40sxcnpm3Z+YzdfXML68hSQAMdLoBktTHHqv7eRHwRGYur3sPMAHYHBgNPBIRtfKjgD8NUe/TwHrDuF7j+wnlz9+g6F38VkRMAi4BPlEGWcq65w71oSStfexhlKTO+xPFiuuNM3NSuU3MzGlDlL+TYth5tWTm0sz8dGb+FbAn8FbgiLoiOwF3rG79kvqPgVGSOiwzHwH+P+CsiJgYEaMiYtuImDHEKT8EXhERY1bnehHx2oh4Wbmo5hmKIerldUVmUMx/lCTAwChJ3eII4EXAbymGnL8DbDZYwcx8DPgxcMBqXmvTsv5nKBa4/JRiWJqIeCWwMDNvW826JfUh78MoST0oIv6KYmX1HtnCX+TlDcH/IzOva1WdknqfgVGSJElNOSQtSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJaur/B3KmWX/Lnb4PAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBwklEQVR4nO3debgcZZ33//c3nEg2wpbIEoUAgjCsSlwGGYIbIsrAgAuoLL8ZhIFxQ8THUUGUEcV5GEVBhNFhEUSJgMjqT1QcQEcMjiBRBBRQ9oAQEgjZ+D5/VLV0mtOdc5Ku3vJ+XVdd3V111113t3j4cC9VkZlIkiRJzYzpdgMkSZLU2wyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoabUSEddFxNfrPp8TEdd2s02S1OsMjJL6QkSsHxFfiIjfR8QzEfFIRPx3RBwcEUMdbMcJEZH1oXMU555TnpsRsTQi7o2Ir0XE+lW0tUkbTouIZRHxgU5ds5WI2CAiHip/kxd1uz2ShmdglNTzyiDxK2B/4DPAy4HXAN8APgJs16F2vA44BLh1Faq5HtgImA58gOI7nbfKjRuBiJgAvAc4CTi8E9dsJSLGABcAN3W7LZJaMzBK6gdnAGsCL8/MCzLzt5l5Z2aeC+wM3FkrGBHvj4jby17IOyPiE+3ogYyIDSiC3UHA46tQ1eLMfCgz78vMy4AvAXtGxPgofCQi/hgRiyPiDxHxoYZ23BMRn42Ir0fEkxHxaEScXIavFXkn8Afg34CNI2KXhrrPKOtfp27f2eXvuFb5ea+IuDkiFpW9vF+NiIl15c+JiGsj4vCyB/XJiLgsIqYO057jgCXAF0fyw0nqHgOjpJ4WEesBewGnZea8xuOZuSQznyrLnkDR4/ivwDbAB4EjgE+tYhtqPWFnZuYNq1LXMBZS/C0eAo4CTgQ+D2wL/Dvw+Yj4p4Zz3g88ALwCOBp4H/ChEVzrCODczFwEfJvn9zIeDTwJ/CdARLwLeBdwQGbOj4gdgO8D/w3sRNHb+lbgaw31vAJ4LfAWYM+y7P+tLxARrwXeW9bhM2qlHtexeT+StJJeQhGoftuqUDnc+lFgv8y8ptx9d0R8EvgyRW/WyjqO4u/lZ1ehjueJiL8B/gX4RRnIPgZ8JTPPKovcGREvBT5BMfxec0tmHl++/31EbAN8GPiPFtfakWIof+9y1znAdRHxocx8AiAzn4mIdwKzI+JzZds+lpk3l+ccC/wqM48uP/8uIt4PXBoRn8zMe8v9i4FDy2BKRJxBEd5rbdkAOL8s80j5O0jqYfYwSup1Ub6uqBdqW2A8cHFELKhtwJnA2k2GRFd88YjdKHr+3p2Zz65MHQ12L9u2ELgN+CPwroiYDLyIoveu3k+B6WUgrvl5Q5kbgWllHc0cAVyVmXMBMvMm4G6KOY1/lZm/o+il/RhwA8WQec22TdoXQH3o+10tLJbuBzao+3wBcF5m/rBFeyX1EHsYJfW6O4FnKcLKpS3K1f4D+O3AHcMc/8tKXv91wFTg3ohadmUNYLeIOBTYNDPvH0V9v6AYhl0KPFjXC1cLe43BOFixlmXKOYbvBtaKiKV1h8ZQDEuf1nDKbsAyYBNgHMWweU2z4F6/f/Ewx+rb+HqK4HxsQ/vviYhvZOYRLb6OpC4wMErqaZn5l4i4GnhfRHylcR5jRIwFXgDMAZ4BNs/Mq9rYhK8C323YdzbwJ4q5kQ+Psr6FmXlX487MfDIi7gNmAlfWHdoNuDszn67b9+qG0/8WeCAzn2xyzQMoAuCOLB/s1gb+OyJenZn/A1DOl9y3bMc3KRak/HNZfk65v97Mss6WUwYabN/w+RXAfwFvAn43inokdYiBUVI/OIpi2PXmiDge+DVFL9arKebVHZKZv46Ik4CTyp7AH1L8jdseeFlm/p+VuXBmPgI8Ur8vIp4CHs/M21bu6zT1OeCUiLgTuI6id/NIirmE9XYqF/h8C5hBMT/whBb1HgFcmpm/aTwQETdS9DL+Tzlf8lTg6My8MSIOBG6IiB9m5sUUi3B+FRH/AZxFcWugrwAXZOafRvolG3+3iJhSvv19Zj4w0nokdY6BUVLPy8w/RcTLKebVnUAxVPokRW/Uv1PMBSQzT4yIByhWEf9fiqHUOygWeFSqDHCfysyRDCE3cwYwEfg4Rc/mnykWnXyjodxXgE2B2RRD22fQ5NY0EbETRQ9es0U/3wG+EBFHU6yc/kFmfg0gM39RBvSvR8TszLw1Iv6eYiX3v1D8b/BdijmPkgZYZHo3A0laVRFxHrBhZu5R8XXuAb6emf9W5XUkqZ49jJK0isr7NL6e4t6DkjRwDIyStIrK2+1M63Y7JKkqDklLkiSpJW/cLUmSpJYMjJIkSWrJOYxtNGXKlJw+fXq3myFJkrRCN99886OZOaLHphoY22j69OnMnj27282QJElaoYi4d6RlHZKWJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkb1vRe+EGbO7HYrJEkaXEPdboC0qubOLTZJklSNnulhjIgFDduyiPhK3fHDIuKu8tg1EbFxi7qmR8RVEfF4RDwUEadFxFDdsWy41nF150ZEnBwRj5XbFyIiqv32kiRJvatnAmNmTqptwAbAQmAWQETMBE4C9gHWA+4GLmxR3VeBR4CNgJ2AmcBRDWXWqbvmiXX7Dwf2BXYEdgDeChyxSl9OkiSpj/VMYGzwNorAd335eW9gVmbOyczFwInAbhGxRZPzNwMuysxnMvMh4Bpg2xFe+xDglMy8LzPvB04BDl3J7yFJktT3ejUwHgKcl5lZfo5yo+4zwHZNzj8VOCAiJkTENODNFKGx3r0RcV9EnB0RU+r2bwvcUvf5FkYeNiVJkgZOzwXGiNiEYgj53LrdVwHviIgdImI8cDyQwIQm1fyUIuQ9CdwHzAa+Vx57FHgFsCmwM7AWcEHduZOAeXWf5wGTms1jjIjDI2J2RMye68oLSZI0gDoSGCPiunKhyXDbDQ3FDwZuyMy7azsy80fAp4CLgXuBe4D5FGGw8VpjgB8AlwATgSnAusDJZV0LMnN2Zi7NzIeB9wF7RMTksooFwOS6KicDC+p6O5eTmWdl5ozMnDF16tRR/S6SJEn9oCOBMTN3z8xosu3aUPxglu9drNVxemZumZkvpAiOQ8Btw1xuPeDFwGmZuSgzHwPOBvZq1rzytdaDOIdiwUvNjuU+SZKk1VJPDUlHxC7ANMrV0XX7x0XEduUtbzYBzgJOzczHG+vIzEcpVlEfGRFDEbEOxZzIW8q6XhURL42IMRGxPvBl4LrMrA1Dnwd8OCKmlbfuOQY4p4rvK0mS1A96KjBSBLtLMnN+w/5xwLcohotvAn4O1N878eMRcXVd+f2APYG5wF3AUuDo8tjmFAtg5lP0UC4CDqw790zgcuA35fEry32SJEmrpWgyNU8rYcaMGTl79uxuN2O1U1uO5D/KkiSNXETcnJkzRlK213oYJUmS1GMMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIwaGD7pRZKkahgYNTCWLet2CyRJGkwGRg2MpUu73QJJkgaTgVEDw8AoSVI1DIwaGAZGSZKqYWDUwDAwSpJUDQOjBoaBUZKkahgYNTAMjJIkVcPAqIFhYJQkqRoGRg2MJUu63QJJkgaTgVEDwx5GSZKqYWDUwFi8uNstkCRpMBkYNTAWLep2CyRJGkwGRg0MexglSaqGgVEDw8AoSVI1DIwaGA5JS5JUDQOjBoY9jJIkVcPAqIFhYJQkqRoGRg0Mh6QlSaqGgVEDwx5GSZKqYWDUwDAwSpJUDQOjBoZD0pIkVcPAqL43pvyn2B5GSZKqYWBU33vBC4pXA6MkSdUwMKrvDQ0Vrw5JS5JUDQOj+l5m8WoPoyRJ1TAwqu8ZGCVJqpaBUQPDIWlJkqphYFTfq/UwGhglSaqGgVF9rxYYly3rbjskSRpUPRMYI2JBw7YsIr5Sd/ywiLirPHZNRGzcoq7pEXFVRDweEQ9FxGkRMVQee3fDdZ6OiIyIncvjJ0TEkoYym1f/C2hl1QLj0qXdbYckSYOqZwJjZk6qbcAGwEJgFkBEzAROAvYB1gPuBi5sUd1XgUeAjYCdgJnAUeV1Lmi41lHAH4Ff1Z3/nfoymfnHNn5VVcQeRkmSqtEzgbHB2ygC3/Xl572BWZk5JzMXAycCu0XEFk3O3wy4KDOfycyHgGuAbZuUPQQ4L7PWT6V+Yw+jJEnV6tXA2Bjiotyo+wywXZPzTwUOiIgJETENeDNFaFxORGwK7Aac13Bo74j4S0TMiYgjWzU0Ig6PiNkRMXvu3Lmtv5UqYWCUJKlaPRcYI2ITiiHkc+t2XwW8IyJ2iIjxwPFAAhOaVPNTih7FJ4H7gNnA94YpdzBwfWbeXbfvImAbYCrwXuD4iDiwWXsz86zMnJGZM6ZOnTqCb6h2c9GLJEnV6khgjIjryoUlw203NBQ/GLihPsRl5o+ATwEXA/cC9wDzKcJg47XGAD8ALgEmAlOAdYGTh2nawSwfTMnM32bmA5m5LDN/RtFb+baV+uLqKHsYJUmqRkcCY2bunpnRZNu1ofjzQlxZx+mZuWVmvpAiOA4Btw1zufWAFwOnZeaizHwMOBvYq75QRLwG2Bj47oqaz/LD4eox9jBKklStnhqSjohdgGmUq6Pr9o+LiO2isAlwFnBqZj7eWEdmPkqxivrIiBiKiHUo5kTe0lD0EODizJzfcK19ImLd8lqvBD4AXNamr6gKOIdRkqRq9VRgpAhxlzSGOGAc8C1gAXAT8HPguNrBiPh4RFxdV34/YE9gLnAXsBQ4uq78OOAdDNOTCRxQnjOfYjHMyZk5XDn1CHsYJUmq1lC3G1AvM49osv8JYIcW553U8PnXwO4tyj8DrNPkWNMFLupt9jBKklSNXuthlEbNHkZJkqplYNTAsIdRkqRqGBjV1+qfz2MPoyRJ1TAwamDYwyhJUjUMjOpr9T2MBkZJkqphYFRfc0hakqTqGRjV1+xhlCSpegZGDQx7GCVJqoaBUX3NHkZJkqpnYFRfcw6jJEnVMzCqr9nDKElS9QyMGhj2MEqSVA0Do/qaPYySJFXPwKi+5hxGSZKqZ2DUwLCHUZKkahgY1ddqPYxrrGEPoyRJVTEwqq/VAuPYsUUPY/0QtSRJag8Do/paLSAODRWvzz7bvbZIkjSoDIwaCGPHFq8OS0uS1H4GRvW1xh5GF75IktR+Bkb1tcbAaA+jJEntZ2BUX6tf9AL2MEqSVAUDowbCGmsUr/YwSpLUfgZG9TWHpCVJqp6BUX3NwChJUvUMjOprBkZJkqpnYNRAcA6jJEnVMTCqr9nDKElS9QyM6msGRkmSqmdgVF8zMEqSVD0DowZCbQ7js892tx2SJA0iA6P6Wq2H0UUvkiRVx8CovuaQtCRJ1TMwqq8ZGCVJqp6BUQPBIWlJkqpjYFRfs4dRkqTqGRjV1wyMkiRVz8CovmZglCSpej0TGCNiQcO2LCK+Unf8sIi4qzx2TURs3KKubSLixxExrzznHxqOvz4ibo+IpyPiJxGxad2xiIiTI+KxcvtCREQ131rt4hxGSZKq0zOBMTMn1TZgA2AhMAsgImYCJwH7AOsBdwMXDldPRAwBlwFXlGUPB86PiK3K41OAS4DjyuOzge/UVXE4sC+wI7AD8FbgiDZ+VbVR430YvXG3JEnt1zOBscHbgEeA68vPewOzMnNOZi4GTgR2i4gthjl3a2Bj4IuZuSwzfwzcCBxUHt8PmJOZszLzGeAEYMeI2Lo8fghwSmbel5n3A6cAh7b9G6otHJKWJKl6vRoYDwHOy6zFAaLcqPsMsN0w5w43fBx1ZbcFbqkdyMyngD+U+593vHy/LepJBkZJkqrXc4ExIjYBZgLn1u2+CnhHROwQEeOB44EEJgxTxe0UvZPHRsTYiNijrK9WdhIwr+GcecBaTY7PAyY1m8cYEYdHxOyImD137tyRfk21mXMYJUmqTkcCY0RcFxHZZLuhofjBwA2ZeXdtR2b+CPgUcDFwL3APMB+4r/FambmEYg7iW4CHgGOAi+rKLgAmN5w2uaxvuOOTgQV1vZ2N1zsrM2dk5oypU6e2+hlUAXsYJUmqXkcCY2bunpnRZNu1ofjBLN+7WKvj9MzcMjNfSBEch4Dbmlzv1sycmZnrZ+abgM2Bm8rDcygWtAAQEROBLcr9zztevp+DepKBUZKk6vXUkHRE7AJMo1wdXbd/XERsV97yZhPgLODUzHy8ST07lOdMiIiPABsB55SHLwW2i4j9I2IcxfD2rZl5e3n8PODDETGtvHXPMXXnqscYGCVJql5PBUaKxS6XZOb8hv3jgG9RDBffBPyc4rY4AETExyPi6rryBwEPUsxlfD3wxsxcBJCZc4H9gc8CjwOvAg6oO/dM4HLgNxQ9mFeW+9TDnMMoSVJ1hrrdgHqZOez9DjPzCYp7IjY776SGz8cCx7Yofy3F7XeGO5bAR8tNPa7xPowGRkmS2q/XehilUWkckvbG3ZIktZ+BUQPBHkZJkqpjYFRfc9GLJEnVMzCqrxkYJUmqnoFRfc3AKElS9QyMGgjOYZQkqToGRvU1exglSaqegVF9zcAoSVL1DIzqa964W5Kk6hkYNRBqgdEbd0uS1H4GRvU1h6QlSaqegVF9zcAoSVL1DIzqa7XAOKb8J9nAKElS+xkYNRAiinmMBkZJktrPwKi+VuthBAOjJElVMTCqr9UCoz2MkiRVx8CovmZglCSpegZGDYRaYPQ+jJIktZ+BUX2tfg7jmDH2MEqSVAUDo/qaQ9KSJFXPwKi+ZmCUJKl6BkYNBAOjJEnVMTCqr3kfRkmSqmdgVF9zSFqSpOoZGNXXDIySJFXPwKiBYGCUJKk6Bkb1tcY5jN64W5Kk9jMwqq/VD0l7425JkqphYFRfcw6jJEnVMzBqIBgYJUmqjoFRfc37MEqSVD0Do/qaQ9KSJFXPwKi+ZmCUJKl6BkYNBAOjJEnVMTCqrzmHUZKk6hkY1dcah6S9cbckSe1nYFRf88bdkiRVz8CogeAcRkmSqmNgVF9zDqMkSdXrmcAYEQsatmUR8ZW644dFxF3lsWsiYuMWdW0TET+OiHnlOf9Qd+zVEfHDiPhLRMyNiFkRsVHd8RMiYklDWzav7ptrVXhbHUmSqtczgTEzJ9U2YANgITALICJmAicB+wDrAXcDFw5XT0QMAZcBV5RlDwfOj4ityiLrAmcB04FNgfnA2Q3VfKe+PZn5x7Z9UVXCwChJUnV6JjA2eBvwCHB9+XlvYFZmzsnMxcCJwG4RscUw524NbAx8MTOXZeaPgRuBgwAy8+rMnJWZT2bm08BpwGsq/j6qiEPSkiRVr1cD4yHAeZl/jQNRbtR9BthumHOjyb7hygLsBsxp2Ld3OWQ9JyKOHGGb1QUOSUuSVL2eC4wRsQkwEzi3bvdVwDsiYoeIGA8cDyQwYZgqbqfonTw2IsZGxB5lfc8rGxE7lHUdW7f7ImAbYCrwXuD4iDiwRXsPj4jZETF77ty5o/imagcDoyRJ1etIYIyI6yIim2w3NBQ/GLghM++u7cjMHwGfAi4G7gXuoZh7eF/jtTJzCbAv8BbgIeAYihC4XNmIeAlwNfDBzLy+7vzfZuYD5XD2z4BTKYbIh5WZZ2XmjMycMXXq1JH+JGqz2n0YvXG3JEnt15HAmJm7Z2Y02XZtKH4wy/cu1uo4PTO3zMwXUgTHIeC2Jte7NTNnZub6mfkmYHPgptrxiNgUuBY4MTO/uaLmM/wwt3qAcxglSapeTw1JR8QuwDTK1dF1+8dFxHZR2IRilfOpmfl4k3p2KM+ZEBEfATYCzimPTQN+DJyemV8b5tx9ImLd8lqvBD5AsepaPcghaUmSqtdTgZFiscslmTm/Yf844FvAAoqewp8Dx9UORsTHI+LquvIHAQ9SzGV8PfDGzFxUHjuMosfxU/X3Wqw79wDgLooh7/OAkzPzeT2e6g0GRkmSqjfU7QbUy8wjmux/AtihxXknNXw+luUXstQf+zTw6RZ1NV3got5lYJQkqTq91sMojYpzGCVJqp6BUX3NIWlJkqpnYFRfMzBKklQ9A6MGgoFRkqTqGBjV1+rnMHrjbkmSqmFgVF9zSFqSpOoZGNXXDIySJFXPwKiBUAuMmcsPU0uSpFVnYFRfqw+HQ+Vt6Jcu7U5bJEkaVAZG9bX6IemxY4v3S5Z0rz2SJA0iA6P6moFRkqTqGRg1EAyMkiRVx8CovlY/h9HAKElSNQyM6mv1Q9IveEHxfvHi7rVHkqRBZGBUX3MOoyRJ1RsaSaGI2AM4FNgWWAuYD8wBzs7MH1bWOmmEDIySJFVnhYExIo4GPgr8J3AxMA+YDOwInBsRJ2fmqZW2UmrCOYySJFVvJD2MxwKvzczbG/ZfEhEXAj8BDIzqCoekJUmq3kjmME4EHmhy7CFgQvuaI42OgVGSpOqNJDBeDFweEa+PiKkR8YKImBIRrwcuBb5bbROlFTMwSpJUnZEExn8GfgacCzwMLCxfzwX+BziystZJK1A/h9Hb6kiSVI0VzmHMzMXAvwL/GhHrAJOABZn5RGPZiHhNZt7Y7kZKzTgkLUlS9UZ0W52aMiQ+0aLI1RQrqKWOMDBKklS9dt+4O9pcnzQiBkZJkqrT7sCYKy4itY/3YZQkqXo+GlB9zSFpSZKqZ2DUQDAwSpJUHecwqq95Wx1Jkqo3qsAYEetHxEER8dHy88YR8aLa8cxcq90NlFpxSFqSpOqNODBGxEzg98C7gePK3VsCZ1TQLmlEDIySJFVvND2MXwLemZl7AkvLfb8AXtnuRkmjZWCUJKk6owmM0zPzR+X72syxxYzy5t9SOzmHUZKk6o0mMP42It7UsO8NwG/a2B5pVBqHpNdYAxYu7G6bJEkaNKPpHTwGuCIirgTGR8SZwN7APpW0TBqB+sAIMH68gVGSpHYbcQ9jZv4PsCMwB/gv4G7glZn5y4raJo2YgVGSpOqMav5hZt4PfKGitkijlg0PozQwSpLUfi0DY0R8kxE8HzozD25bi6RRcEhakqTqrWhI+i7gD+U2D9gXWAO4rzx3H+CJ6pontWZglCSpei0DY2Z+urYBWwFvycx3Z+bHM/M9wFuAl7ajIRGxoGFbFhFfqTt+WETcVR67JiI2blHXNhHx44iYV57zD3XHpkdENlzruLrjEREnR8Rj5faFiPCRhz3OwChJUnVGc1udVwP/07DvF8DftqMhmTmptgEbAAuBWfDXp8ycRNGjuR7FgpsLh6snIoaAy4AryrKHA+dHxFYNRdepu+aJdfsPp+hJ3RHYAXgrcEQ7vqPazzmMkiRVbzSB8X+BkyJiPED5+lng1xW0623AI8D15ee9gVmZOSczFwMnArtFxBbDnLs1sDHwxcxclpk/Bm4EDhrhtQ8BTsnM+8pFPqcAh678V1GVHJKWJKl6owmMhwKvAeZFxMMUcxp3BapY8HIIcF7mX/uPotyo+wyw3TDnDjd8HMOUvTci7ouIsyNiSt3+bYFb6j7fUu5TDzIwSpJUvdHch/GezNwF2AL4e+AlmblLZt7TzgZFxCbATODcut1XAe+IiB3Kns3jKVZvTximitspeiePjYixEbFHWV+t7KPAK4BNgZ2BtYAL6s6fRBGGa+YBk5rNY4yIwyNidkTMnjt37ui+rNrGwChJUnVG08NIRKwLvBZ4HbB7+Xkk511XLjQZbruhofjBwA2ZeXdtR/kM608BFwP3AvcA8ylWay8nM5dQzEF8C/AQxRNqLqqVzcwFmTk7M5dm5sPA+4A9ImJyWcUCYHJdlZOBBXW9nY3XOyszZ2TmjKlTp47k51AbOYdRkqTqjTgwRsTfUtxe558pFoMcAfyh3N9SZu6emdFk27Wh+MEs37tYq+P0zNwyM19IERyHgNuaXO/WzJyZmetn5puAzYGbmjWv9hXL1zkUC15qak+3UQ9qHJKeMAGefrp77ZEkaRCN5kkvXwKOysxv13ZExDuBL1MM8a6yiNgFmEa5Orpu/zjgJRTB7cXAWcCpmfl4k3p2AO6gCMRHARsB55THXkVx78g7gXXL9l+XmbVh6POAD0fEVRRh8hjgK6gnNQbGyZNhwQJ49lkYM6r+c0mS1Mxo/pW6FcXQbr3vUgS5djkEuCQz5zfsHwd8i2K4+Cbg50D9vRM/HhFX15U/CHiQYi7j64E3Zuai8tjmwDUUQ9q3AYuAA+vOPRO4HPhNefzKcp96WC0wrr12ESIXLOhueyRJGiSj6WG8EziAIrjVvJ1imLotMnPY+x1m5hMUw+DNzjup4fOxwLFNyl5Ik3s4lscT+Gi5qcc1zmGcXM4+nTfvufeSJGnVjCYwfgi4IiI+QLHwZDqwJcWNraWuaBySXnvt4nXePHjxi7vTJkmSBs2IA2Nm/qy8UfZbKG6MfTlwVWb+parGSSsy3BxGgCef7E57JEkaRKPpYaRcZHJ+RW2RVtpwPYySJKk9RhwYI2IzikcB7kRxc+u/ysxN2tssaWSazWG0h1GSpPYZTQ/jtygWuBwDeKc79YRWcxglSVJ7jCYwbgu8JjOfraox0mgZGCVJqt5o7sP438DLqmqItCpqgXHixOKG3Q5JS5LUPqPpYbwH+EFEXELxjOa/yszj29koaaQa5zBGFPMY7WGUJKl9RhMYJ1LcSmcsxeP5anL44lL1GoekoQiM9jBKktQ+o7kP4/+3ojIRcWD5JBWpI4YLjGuvbQ+jJEntNJo5jCPhM5fVFY09jAZGSZLap92BMVZcRGqfxjmMUPQwOiQtSVL7tDswOp9RHdVsSPqJJ7rSHEmSBlK7A6PUUcMFxilT4NFHu9MeSZIG0QoDY0QYKtXz6gPjhhsWcxifeaZ77ZEkaZCMJAzeHxFfiIjtRlD2T6vaIGk0hpvDuMEGxevDD3e2LZIkDaqRBMZ/BjYDfhkRv4qID0bE1OEKZuZIQqXUNsMNSRsYJUlqrxUGxsy8LDPfDmxEcductwN/jojvR8T+ETG26kZKK9I4JA3w4IPdaYskSYNmxPMTM/OJzDwzM3cFtgFmA18E/Neyuma4IenNNite//jHzrZFkqRBNZpHAwIQEWsCrwBeBWwA/KzdjZJGargh6fXXL1ZK/+533WmTJEkrIxOWLIGFC5/bnn56+c+N26ocH40RB8aI2BU4GHgH8AjwTeCozLx3dJeU2me4wAiw9dYwZ07n2yNJGjyZsGhREb7qt1oga9fnp5+GZ59duTausQaMH19sEyY89772ef31l983fjx86Usjr3+FgTEiTgAOAtYDZgFvycwbV+7rSNVoDIy77AL/8R/FE18mT+5OmyRJ1Xr22eV70loFsVUJcwsXDj8FakVe8ILnAlttq33eYIPlP9e/bwx2jeFvuP1jV2JFSVsDI/Bq4BPA9zLTO9uppzT7P/Bee8EXvgDXXgv77dfZNkmSCosXF4Hrqaee21bmc7Pwt7L32x037vlhrfZ53XWfH+BG+rkx9A2NeuJf71rhV8nMPTvREGllNBuS3mWX4hGBV1xhYJSkZpYtG114G23gW7p0dO0ZGoKJE4ttwoTn3k+cCFOnji68Nfs8fjyM8ZEkozZA2Vero2aBcexY2HtvuPRS+OpXi/+alKR+9Oyzz4WwBQuG3+qPjSbcLV48uraMGdM80K2//vKfG4+P5PMLXlDNb6hVZ2DUQGgMjAD/+I9w/vnw5S/DRz/a+TZJWr1kFgGsWZAbyf7hjj311Oja0SyMbbxx87A20kC35prD/73V4DMwqq+1moS8++6w777wsY8Vfyjf855OtUpSr8ss5r/Nn7/8NtIQ1+zYaIZg11wTJk16/jZlyvD7J00qglur/Q63qioGRvW1ZkPStX3f+ha89a1wyCHwxBNw1FH+MZX61dKlzw949duTT7Y+3rgtWzay644ZA2ut9fywtsEGsMUWzUPcigLeIC2I0ODzH1f1tVaBEYr/2v7+9+Htb4f3vx8uvhi+/vXij7ykamUWvW+jDXLNtpGuiB0aKgJe/TZ5Mkyb9vz9w22N4c5hWMnAqAHR6o/5xIlw5ZVw9tnw4Q/D9tvDSScVAXKNNTrXRqlfZBaLI558EubNK15X5v2TT47s3nURRTBrDG6bbjqygNe4GfCk9jMwqq+N9EaqEcUimDe9CY44Ao4+Gr79bfja12CnnSptotQxtXl5Iw11rYLeSIZrJ0wobl81eXKxrb02bLjhc+8nT36ud69VwJswwakiUq8zMKqvjfbO+9OmweWXwwUXFL2NO+8MH/gAfOYzxb+4pG5aurQIbk88sfzWuK/+c2PYW7JkxdcZN+75QW+LLZYPeit6v9ZazsGTVif+3119LXP0Q08RxYrpt7wF/vVf4dRTYdas4hFJ++/vUJZW3qJFIw96w+1b0e1TIoqwts46xbb22rDJJqMPet7rTtJoGRjV91Y24K27bjEkfeihcOSRxcKYN78ZTjsNNt+8rU1Un3j22SLAPf44/OUvy78+/viKw+CKFmUMDT0X9Gqhb6ONlv9cHwYbP6+1lkO3krrDwKi+tjIPg2/06lfDL39ZBMXjjoNtt4VPfAKOPbaYPK/+UluwMVzoa/Zae//EE63/mVpzzeeHuE03XXHQq72fMMEebEn9ycCovrYyQ9LDGRqCD32o6GU8+ugiOJ5/PpxxBrz2tatev0ZvyZLRhb768NfqcWdrrFH0Lq+3XvE6dSpstdVznxtf69/7iElJqysDo/pauwJjzbRpcNFFcM018C//Aq97HbzznfDJT8J227XvOquLZ58tFmKsTOhbsKB13ZMnLx/uttuueeirD39rrWUvnySNloFRfa+Kf/nvuSfcdht87nNwyinwne/A3nsXvY8zZ65e88gyYeHClQt9TzxRhMZmxo1bPtRNnw4vf/mKQ98667hCV5I6yT+56mvtmMPYzPjxxe12PvhBOP10+PKXi1vybLIJvOtdsNdexfzHsWOra8OqyixW7jbed28kr/Vz+0YyxFsLdVOmFEO8zcJe/efx4zv3W0iSVl7PBMaIaByAGg98NTPfXx4/DPgYsCFwA/CPmflAk7q2AU4HdgbmAsdm5qXlsXcDZ9YVH1Nea0Zm3hwRJwCfABbVldkhM/+4at9QVWj3kPRw1l8fjj8ePvIRuOwyOO88+Pd/h89/vng6xcteBjvuWAyJTptWrHqdMqXoPRs37rmFM0uWPH9btKjovVu4sFhhW3vfbFuZMq16+GrGj3/+LVi23XbFPX3rrecQryStDnomMGbmpNr7iJgIPAzMKj/PBE4CXgvcCZwKXAjMbKwnIoaAy4CvAW8sy1weES/LzDsy8wLggrryhwLHAb+qq+Y7mfmedn4/VaMTgbFmwgQ48MBie+IJ+MlP4Npr4de/hnPOWfGcu1U1blwR7MaPX/79+PHPPWGjfl9tqz2NoxYGG1+9L58kaUV6JjA2eBvwCHB9+XlvYFZmzgGIiBOB+yNii8z8Q8O5WwMbA1/MzAR+HBE3AgdRBMNGhwDnlWXVh7rRu7XOOvAP/1BsUPTi3X8/PPAAPPggPPZY0Xu4aNFz9+YbO/b525prPj/8DbetuebqNW9SktRbejUwNoa4KDfqPgNsBzQGxuHiQ5Rll98ZsSmwG/CPDYf2joi/AA8Cp2XmGaNrvjqlV2L+mDHw4hcXmyRJg6bn+iwiYhOKYeRz63ZfBbwjInaIiPHA8UACE4ap4naK3sljI2JsROxR1jdc2YOB6zPz7rp9FwHbAFOB9wLHR8SBLdp7eETMjojZc+fOHfH3VHt0ckhakqTVVUcCY0RcFxHZZLuhofjBwA31IS4zfwR8CrgYuBe4B5gP3Nd4rcxcAuwLvAV4CDiGIgQ+r2x5rfpgSmb+NjMfyMxlmfkzivmSb2v23TLzrMyckZkzpk6d2vqHUNsZGCVJql5HAmNm7p6Z0WTbtaH480JcWcfpmbllZr6QIjgOAbc1ud6tmTkzM9fPzDcBmwM31ZeJiNdQzHX87oqaz/DD3OoRBkZJkqrVU0PSEbELMI1ydXTd/nERsV0UNgHOAk7NzMeb1LNDec6EiPgIsBFwTkOxQ4CLM3N+w7n7RMS65bVeCXyAYtW1elCvzGGUJGmQ9dqil0OASxpDHDAO+BawBcVQ9NnUrXiOiI8Df5eZby53HQQcBoylWGn9xsxcVFd+HPAOYP9h2nAA8F/AmhTD2Cdn5vN6PNVZixfDn/4E99xTbHffXbxecolP/JAkqWrh3WTaZ8aMGTl79uxuN6MvZcLcuXDXXfCHPxTbH//4XDC8//7lexPXWKPYFi8u7iP45JNda7okSX0pIm7OzBkjKWvfjDpm2TK4777nAmEtHNZe6298HQEvehFsthm87nXFM4Y326x4nT69OHbAAXDxxc5hlCSpagZGtVUmPPoo3H57sf3+98XrXXcVvYX1zyQeOxY23xy22AJ22w1e8pLi/RZbFOGw9kg9SZLUXQZGrZQlS4oh4/pQWHv/l788V27cONhyy+I5y/vsU4TBWjB80YuKYeWVVetZtIdRkqRqGRjV0rPPwr33wm9+s/x2xx2wdOlz5TbcELbeGt7+9uK1tm2ySXWPtDMwSpLUGQZG/dW8efDrXxeB8NZbi9fbblt+buH06bD99vD3fw/bbFOEwpe+FNZeu/PtNShKktQZBsbV1Lx58Ktfwc03P7fdeedzx9dbrwiGhx5avG6/PWy7LUye3LUmP489jJIkdYaBcTWwdCnccgvceCP8/OfPD4ebbAI771yEw5e/HHbYATbaqPeDmIFRkqTOMDAOoHnz4Gc/K7Ybb4Rf/AKefro49qIXwSteUYTDnXcuAmK/PwLbwChJUrUMjANg0aKi5/Daa4vtl78sFqussQbstBP80z/Ba14Du+wCL35xt1vbPgZFSZI6w8DYp/78Z7jsMrjiCvjv/4aFC4uA+MpXwic+AbvvXryfNKnbLa2OQ9KSJHWGgbGP/O53xbOTv/c9qD2BcKut4LDD4A1vgJkzu7NauVsMjJIkdYaBscfNnQsXXgjnnlusagZ49avh858vboS99dbdbV83GRglSeoMA2MPyiwWq3zpS8Ww89KlxeKUL32puDH2xht3u4W9waAoSVJnGBh7yLJlMGsWnHJKMeS87rrwwQ8WK5q3267bretdBkdJkqplYOwBmXD55cVildtuK56ccsYZcNBBMHFit1vXuxySliSpMwyMXTZnDhx5JFx/PWy5JXz728Wwc1XPXx4kBkZJkjrDWNIlixfDJz9Z3Cdxzhw488zi9Z3vNCyOlEFRkqTOsIexC+69twiGv/hFMex8yin9/7SVbrCHUZKkzjAwdtgPf1iExdoCl7e9rdst6l8GRkmSOsPBzw664ALYa6/i8Xy/+pVhsV0MjJIkVcvA2CH/9V/wnvfArrsWj/LbYotut6j/GRQlSeoMh6Q74NJL4b3vhT32KG7EPW5ct1s0GBySliSpM+xhrNhNN8GBB8IrX1k8B9qw2D4GRkmSOsPAWKFHHy3mKW64IVxxhTfhbjcDoyRJneGQdIWOOAIefrh4LvT663e7NYPHoChJUmcYGCty6aXFEPTnPgczZnS7NYPN4ChJUrUckq7AwoXw/vfDjjvCMcd0uzWDyyFpSZI6wx7GCpxxBtx/P3zrWzB2bLdbM7gMjJIkdYY9jG22ZAn8+7/DG94Au+3W7dYMNoOiJEmdYQ9jm115JTz0EPznf3a7JYPPHkZJkjrDHsY2O/ts2Ggj2HPPbrdk8BkYJUnqDANjG2XCtdfCfvvBkH23lTMwSpLUGQbGNnr66WLbffdut0SSJKl9DIxtNH9+8fp3f9fddqwu7GGUJKkzDIxttGABvPSlsMEG3W7J6sHAKElSZxgY22jhQnjZy7rditWHgVGSpM4wMLbR4sWw9dbdbsXqw6AoSVJnGBjb7KUv7XYLVh/2MEqS1Bk9ExgjYnpEXBURj0fEQxFxWkQM1R1/fUTcHhFPR8RPImLTFnWtFxGXRsRTEXFvRLyr4XjTuqJwckQ8Vm5fiBh5JJk+fZRfXKvMwChJUrV6JjACXwUeATYCdgJmAkcBRMQU4BLgOGA9YDbwnRZ1nQ4sBjYA3g2cERHbjrCuw4F9gR2BHYC3AkeM9EtMmzbSklpV9jBKktQZvRQYNwMuysxnMvMh4Bpg2/LYfsCczJyVmc8AJwA7RsTzZgxGxERgf+C4zFyQmTcA3wcOGmFdhwCnZOZ9mXk/cApw6Ei/xIYbjuYra1UYFCVJ6oxeCoynAgdExISImAa8mSI0QhEcb6kVzMyngD/wXKCstxWwLDPvqNt3S13ZFdW13PGGc1saGoKxY0dSUu1gD6MkSZ3RS4HxpxTB7EngPoqh4u+VxyYB8xrKzwPWGqaeFZUd7fF5wKRm8xgj4vCImB0Rs8eMWTpcEVXEwChJUmd0JDBGxHURkU22GyJiDPADirmFE4EpwLrAyWUVC4DJDdVOBuYPc7kVlR3t8cnAgszM4b5bZp6VmTMyc8b22/sA6U4yKEqS1BkdCYyZuXtmRpNtV4rFJy8GTsvMRZn5GHA2sFdZxRyKRSjAX+cpblHub3QHMBQRW9bt27Gu7IrqWu54w7nqQQZHSZKq1RND0pn5KHA3cGREDEXEOhSLT2pzCS8FtouI/SNiHHA8cGtm3j5MXU9R9FR+JiImRsRrgH2Ab46wrvOAD0fEtIjYGDgGOKf931qryiFpSZI6oycCY2k/YE9gLnAXsBQ4GiAz51KsfP4s8DjwKuCA2okR8fGIuLqurqOA8RS36bkQODIz54ykLuBM4HLgN8BtwJXlPvUYA6MkSZ3RM5PuMvPXwO4tjl8LDPvgvcw8qeHzXyjupbgydSXw0XJTDzMoSpLUGb3UwyiNij2MkiR1hoFRfcvAKElSZxgY1fcMjJIkVcvAqL5lUJQkqTMMjOpbDklLktQZBkb1LQOjJEmdYWBU3zIoSpLUGQZG9S0DoyRJnWFglCRJUksGRvUtexglSeoMA6P6Vi0wZna3HZIkDToDo/qWPYySJHWGgVF9y8AoSVJnGBjVt7wPoyRJnWFgVN9zDqMkSdUyMKpv2bMoSVJnGBjVtwyMkiR1hoFRfcvb6kiS1BkGRvUtF71IktQZBkb1LQOjJEmdYWBU3zMwSpJULQOj+pZBUZKkzjAwqm85JC1JUmcYGNW3DIySJHWGgVF9y8AoSVJnGBjVtwyMkiR1hoFRkiRJLRkY1bfsYZQkqTMMjOpbBkZJkjrDwKi+ZVCUJKkzDIzqW/YwSpLUGQZG9S0DoyRJnWFgVN8zMEqSVC0Do/qWQVGSpM4wMKpvOSQtSVJnGBjVtwyMkiR1hoFRfcugKElSZxgY1bfsYZQkqTMMjOp7BkZJkqrVM4ExIqZHxFUR8XhEPBQRp0XEUN3x10fE7RHxdET8JCI2bVHXehFxaUQ8FRH3RsS76o69OiJ+GBF/iYi5ETErIjaqO35CRCyJiAV12+bVfXOtLHsYJUnqjJ4JjMBXgUeAjYCdgJnAUQARMQW4BDgOWA+YDXynRV2nA4uBDYB3A2dExLblsXWBs4DpwKbAfODshvO/k5mT6rY/ruqXU/sZGCVJ6oyhFRfpmM2A0zLzGeChiLgGqIW8/YA5mTkLil5A4NGI2Dozb6+vJCImAvsD22XmAuCGiPg+cBDwscy8uqH8acBPK/xeqohBUZKkzuilHsZTgQMiYkJETAPeDFxTHtsWuKVWMDOfAv7Ac4Gy3lbAssy8o27fLU3KAuwGzGnYt3c5ZD0nIo4c/VdRJ9jDKElSZ/RSYPwpRah7EriPYtj5e+WxScC8hvLzgLWGqWfEZSNiB+B44Ni63RcB2wBTgfcCx0fEgc0aHRGHR8TsiJg9d+7cZsVUAQOjJEmd0ZHAGBHXRUQ22W6IiDHADyjmKU4EplDMNTy5rGIBMLmh2skU8w8bjahsRLwEuBr4YGZeX9ufmb/NzAcyc1lm/oyi5/Ntzb5bZp6VmTMyc8bUqVNb/xBqKwOjJEmd0ZHAmJm7Z2Y02XalWMjyYoo5jIsy8zGKhSh7lVXMAXas1VfOU9yC5w8lA9wBDEXElnX7dqwvW66wvhY4MTO/uaLmA0YSSZK02uqJIenMfBS4GzgyIoYiYh3gEJ6bt3gpsF1E7B8R4yiGkW9tXPBS1vUURU/lZyJiYkS8BtgH+CZAOT/yx8Dpmfm1xvMjYp+IWDcKrwQ+AFzW5q+sNrCHUZKkzuiJwFjaD9gTmAvcBSwFjgbIzLkUK58/CzwOvAo4oHZiRHw8IupXPx8FjKe4Tc+FwJGZWethPAzYHPhU/b0W6849oLz+fOA84OTMPLfN31VtYGCUJKkzeua2Opn5a2D3FsevBbZucuykhs9/AfZtUvbTwKdbXKfpAhf1FoOiJEmd0Us9jNKo2MMoSVJnGBjVtwyMkiR1hoFRfc/AKElStQyM6lv2MEqS1BkGRvUtg6IkSZ1hYFTfsodRkqTOMDCqbxkYJUnqDAOj+paBUZKkzjAwSpIkqSUDo/qWPYySJHWGgVF9z8AoSVK1DIzqW5ndboEkSasHA6P6nj2MkiRVy8CovlXrYTQwSpJULQOj+tazzxavBkZJkqplYFTfMzBKklQtA6P6loteJEnqDAOj+p49jJIkVcvAqL5lD6MkSZ1hYFTfcpW0JEmdYWBU3zIwSpLUGQZG9S0DoyRJnWFgVN8zMEqSVC0Do/qWi14kSeoMA6P6nj2MkiRVy8CovuUcRkmSOsPAqL7ls6QlSeoMA6P6noFRkqRqGRjVt1z0IklSZxgY1ffsYZQkqVoGRvUtexglSeoMA6P6lqukJUnqDAOj+paBUZKkzjAwqm8ZGCVJ6gwDo/qegVGSpGoZGNW3XPQiSVJnGBjV9+xhlCSpWgZG9S3nMEqS1BkGRvUtnyUtSVJn9ExgjIjpEXFVRDweEQ9FxGkRMVR3/PURcXtEPB0RP4mITVvUtV5EXBoRT0XEvRHxrobrZEQsqNuOqzseEXFyRDxWbl+IMJL0Mv/XkSSpWj0TGIGvAo8AGwE7ATOBowAiYgpwCXAcsB4wG/hOi7pOBxYDGwDvBs6IiG0byqyTmZPK7cS6/YcD+wI7AjsAbwWOWJUvpmq46EWSpM7opcC4GXBRZj6TmQ8B1wC1kLcfMCczZ2XmM8AJwI4RsXVjJRExEdgfOC4zF2TmDcD3gYNG2I5DgFMy877MvB84BTh0Fb6XKmYPoyRJ1eqlwHgqcEBETIiIacCbKUIjFMHxllrBzHwK+APPBcp6WwHLMvOOun23DFP23oi4LyLOLnswa5a7VpNz/yoiDo+I2RExe+7cua2/odrKHkZJkjqjlwLjTymC2ZPAfRTDzt8rj00C5jWUnwesNUw9Kyr7KPAKYFNg53L/BS3OnwdMajaPMTPPyswZmTlj6tSpzb6bKuAqaUmSOqMjgTEirisXmgy33RARY4AfUMxTnAhMAdYFTi6rWABMbqh2MjB/mMu1LFsOU8/OzKWZ+TDwPmCPiJjc5PzJwIJM+7N6zSGHwL77wic/2e2WSJI02DoSGDNz98yMJtuuFAtZXgyclpmLMvMx4Gxgr7KKORSLUIC/zlPcotzf6A5gKCK2rNu3Y5OyALUgWOunWu5aKzhXXTR5Mlx6KWy4YbdbIknSYOuJIenMfBS4GzgyIoYiYh2KxSe1uYSXAttFxP4RMQ44Hrg1M28fpq6nKHoqPxMREyPiNcA+wDcBIuJVEfHSiBgTEesDXwauy8zaMPR5wIcjYlpEbAwcA5xTzTeXJEnqfT0RGEv7AXsCc4G7gKXA0QCZOZdi5fNngceBVwEH1E6MiI9HxNV1dR0FjKe4Tc+FwJGZWesl3JxiMc184DZgEXBg3blnApcDvymPX1nukyRJWi2FU/PaZ8aMGTl79uxuN0OSJGmFIuLmzJwxkrK91MMoSZKkHmRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLUUmdntNgyMiJgP/L7b7VjNTAEe7XYjVjP+5p3nb955/uad52/eeS/NzLVGUnCo6pasZn6fmTO63YjVSUTM9jfvLH/zzvM37zx/887zN++8iJg90rIOSUuSJKklA6MkSZJaMjC211ndbsBqyN+88/zNO8/fvPP8zTvP37zzRvybu+hFkiRJLdnDKEmSpJYMjJIkSWrJwNgGEbFeRFwaEU9FxL0R8a5ut2nQRcT7ImJ2RCyKiHO63Z5BFxFrRsQ3yn++50fE/0bEm7vdrkEXEedHxIMR8WRE3BERh3W7TauLiNgyIp6JiPO73ZZBFxHXlb/1gnLzfsYdEBEHRMTvyuzyh4j4u1blvQ9je5wOLAY2AHYCroyIWzJzTldbNdgeAP4NeBMwvsttWR0MAX8GZgJ/AvYCLoqI7TPznm42bMB9DvinzFwUEVsD10XE/2bmzd1u2GrgdOCX3W7EauR9mfn1bjdidRERbwROBt4J3ARstKJz7GFcRRExEdgfOC4zF2TmDcD3gYO627LBlpmXZOb3gMe63ZbVQWY+lZknZOY9mflsZl4B3A3s3O22DbLMnJOZi2ofy22LLjZptRARBwBPAD/qclOkqnwa+Exm/k/5N/3+zLy/1QkGxlW3FbAsM++o23cLsG2X2iNVLiI2oPhn3170ikXEVyPiaeB24EHgqi43aaBFxGTgM8Ax3W7LauZzEfFoRNwYEbt3uzGDLCLWAGYAUyPiroi4LyJOi4iWo3UGxlU3CZjXsG8eMKJnM0r9JiLGAhcA52bm7d1uz6DLzKMo/p78HXAJsKj1GVpFJwLfyMw/d7shq5H/A2wOTKO4L+DlEWFPenU2AMYCb6P4u7IT8DLgk61OMjCuugXA5IZ9k4H5XWiLVKmIGAN8k2LO7vu63JzVRmYuK6e7vAg4stvtGVQRsRPwBuCLXW7KaiUzf5GZ8zNzUWaeC9xIMU9a1VhYvn4lMx/MzEeB/2AFv7mLXlbdHcBQRGyZmXeW+3bEoToNmIgI4BsU/3W6V2Yu6XKTVkdDOIexSrsD04E/Ff+4MwlYIyL+JjNf3sV2rW4SiG43YlBl5uMRcR/F7zxi9jCuosx8imKY6DMRMTEiXgPsQ9ELo4pExFBEjAPWoPiDPi4i/A+gap0BbAPsnZkLV1RYqyYiXlje9mJSRKwREW8CDgR+3O22DbCzKAL5TuX2NeBKirsxqAIRsU5EvKn2Nzwi3g3sBvyg220bcGcD7y//zqwLfAi4otUJ/gu2PY4C/gt4hGLV7pHeUqdynwQ+Vff5PRSrvk7oSmsGXERsChxBMX/uobL3BeCIzLygaw0bbEkx/Pw1iv+4vxf4UGZe1tVWDbDMfBp4uvY5IhYAz2Tm3O61auCNpbhF2tbAMorFXftmpvdirNaJwBSKUdJngIuAz7Y6wWdJS5IkqSWHpCVJktSSgVGSJEktGRglSZLUkoFRkiRJLRkYJUmS1JKBUZIkSS0ZGCWpTSJiTkTs3qFr/U1EzK6g3ksiYs921yupv3kfRkkaofJGzjUTKG5kvqz83NGbmEfExcCszPx2m+t9JXBGZu7cznol9TcDoySthIi4BzgsM6/twrU3onhe/caZ+UwF9d8JHJiZbe/BlNSfHJKWpDaJiHsi4g3l+xMiYlZEnB8R8yPiNxGxVUT8a0Q8EhF/jog96s5dOyK+EREPRsT9EfFvEbFGk0u9EfhVfVgsr31sRNwaEU+VdW0QEVeX17+2fGYs5XN7z4+IxyLiiYj4ZURsUFf/dcBb2v4DSepbBkZJqs7ewDeBdYH/BX5A8Xd3GvAZ4My6sucCS4GXAC8D9gAOa1Lv9sBwz9rdnyJMblVe+2rg4xTPjB0DfKAsdwiwNvBiYH3gn4GFdfX8DthxxN9S0sAzMEpSda7PzB9k5lJgFjAV+HxmLgG+DUyPiHXK3r03Ax/KzKcy8xHgi8ABTepdB5g/zP6vZObDmXk/cD3wi8z838xcBFxKEUQBllAExZdk5rLMvDkzn6yrZ355DUkCYKjbDZCkAfZw3fuFwKOZuazuM8AkYGNgLPBgRNTKjwH+3KTex4G1RnC9xs+TyvffpOhd/HZErAOcD3yiDLKUdT/R7EtJWv3YwyhJ3fdnihXXUzJznXKbnJnbNil/K8Ww80rJzCWZ+enM/BtgF+CtwMF1RbYBblnZ+iUNHgOjJHVZZj4I/P/AKRExOSLGRMQWETGzySk/BF4eEeNW5noR8dqI2L5cVPMkxRD1sroiMynmP0oSYGCUpF5xMPAC4LcUQ87fBTYarmBmPgz8GNhnJa+1YVn/kxQLXH5KMSxNRLwCeCozb1rJuiUNIO/DKEl9KCL+hmJl9SuzjX/IyxuCfyMzr2pXnZL6n4FRkiRJLTkkLUmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrp/wGjB0Qq02t+BAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABB8ElEQVR4nO3debgcZZ33//c3nEA2whpZIhBBEAwCSlwGGYIrCDKguIAKYeZBGBg3VHzcQJQRxRlGURDl0WGRRYmAKAL+RMUBdMSDChJFRAEFWYJASFiy8f39UdXQ6ZzT55ykq7e8X9dVV3dX3XXXXS0ePtxLdWQmkiRJ0nDGdboBkiRJ6m4GRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglLRGiYhrIuJrdZ/PjoirO9kmSep2BkZJPSEiNoqIz0XEHyLiyYh4ICL+JyIOjYiBiq99TURkw3b3KtRzdt35yyLiroj4SkRsVEW7h2nDaRGxPCLe065rDtGGPYf4PjMiDu9UmyQ1V+kfWUlqhYh4NnA9sAw4Hvg1sBTYDfggcDPwm4qbcQHwgbrPy1exnmuBt1D8/d0V+BqwBbDvarVuFCJiEvAO4CTgCOCLVV9zBC8C7q37vKBTDZHUnD2MknrBGcA6wIsy8/zM/F1m/jEzz6EIXX+sFYyId0fErWUv5B8j4mMt6oF8IjPvq9vmr2I9S8rz787My4AvAHtHxMQofDAi/hwRSyLiTxHxvvqTI+LOiPh0RHwtIh6NiAcj4uSIGM3f87cCfwL+Hdg8InZrqPuMsv716/adVX6P65af94mIGyNicdnL++WImFxX/uyIuDoijih7UB+NiMsiYtoQ7Znf8J0+MbqvUFK7GRgldbWI2BDYBzgtM1fqgcrMpZn5WFn2BIoex48AOwDvBY4EPtGCprwhIuZHxG1lKNqyBXUCPEHxt3gAOBo4EfgsMBP4D+CzEfF/Gs55N/A34MXAMcC7gPeN4lpHAudk5mLgmxS9jPWOAR4F/h9ARLwNeBtwUGYujIidgO8C/wPsAswBXg98paGeFwOvoOg13bss+59DtOe6MnT+LCLmRESM4h4kdYBD0pK63XMpAtXvmhUqh1s/BLwxM68qd98RER+nGHo9bjXacAFwF3AP8ByKYfHBiNgpM+9b1Uoj4vnAvwG/KAPZh4EvZeaZZZE/RsTzgI8BX6879abMPL58/4eI2AF4P/BfTa61M8UQ8H7lrrOBayLifZn5CEBmPhkRby3v7TNl2z6cmTeW5xwL/Cozjyk//z4i3g1cGhEfz8y7yv1LgMPKYEpEnEER3mvuBY4CBsvP+1KE1Oeyev87SaqIgVFSt6v1OuUI5WYCE4GLI6K+7FrAhIiYtqrDyHUBDuCWiLge+DPwLxTzAcdiz4hYVLZrHeBHwJERMRV4NkXvXb2fAu+NiEmZ+Xi57+cNZa4HPhIRUzPz0WGueyRwRe07yMwbIuIOijmNp9Xd6+8j4oPAl4ErKYbMa2YCPx6ifQE8nyJUA/y+FhZL9wCb1F3jD8Af6o4PRsRawPsj4lOZuXSYe5DUIQZGSd3uj8BTFGHl0iblalNs3gzcNsTxh1rVoMx8KCJuBWaswum/oBjKXQbcW9cLN7VWfUP50QzTNi1TzjF8O7BuRCyrOzSOYlj6tIZT9qBY1LMlMIFi2LxmuOBev3/JEMdGuo+fUfQuTqMYbpfURZzDKKmrZeZDFD1d74qI9RqPR8T4MhDNA54Ets7M24fYVnVV80oiYgqwLfDXVTj9ibI9d9b3wpU9g3cDsxvK7wHcUde7CPCyhjL/APytSe/iQRQBcGeK+YS17R+BmRHxdH3lfMkDynZMAj5fV8+8Ido3myIQNp0yMAovpAimD65mPZIqYA+jpF5wNMWw640RcTzFI3SWUASnY4E5mfmbiDgJOKlcO/FDir9xLwBemJn/d1UuHBHbAIcC3wfuB7YCTqDoMTtr1W9pSJ8BTomIPwLXAK+kmOv3bw3ldikX+FwAzKKYH3hCk3qPBC7NzN82HiiH148A/recL3kqcExmXh8RB1MsTPlhZl5MsQjnVxHxX8CZFD2sXwLOz8y/jPYmI+IY4C8UATSBvSh6F0/PzMbeSUldwMAoqetl5l8i4kXAhymC0ZYUq3l/TxFibinLnRgRf6NYRfyfFD1Wt1Es8FhVSyh6+Y4G1qNYsHEdcERmPv3w7jLAfSIzV2el7xnAZOCjFHMI/0qx6OTrDeW+RBFcBymGts9gxZ7Ap0XELhSrlodbTPIt4HNliPsm8IPM/ApAZv6iDOhfi4jBzLw5Iv6JYiX3v1H8b/BtipXpYzFAMfdzC4rnad5OEXob71NSl4jMkeaRS5JGEhHnAptm5msrvs6dwNcy89+rvI4k1bOHUZJWU/nQ7FdRPHtQkvqOgVGSVlNmPgVM73Q7JKkqDklLkiSpKR+rI0mSpKYMjJIkSWrKOYwttPHGG+eMGTM63QxJkqQR3XjjjQ9m5rTRlDUwttCMGTMYHBzsdDMkSZJGFBF3jVyq4JC0JEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjCq5z3rWTB7dqdbIUlS/xrodAOk1TV/frFJkqRqdE0PY0QsatiWR8SX6o4fHhG3l8euiojNm9Q1IyKuiIiHI+K+iDgtIgbqjmXDtY6rOzci4uSI+Hu5fS4iotq7lyRJ6l5dExgzc0ptAzYBngDmAkTEbOAkYH9gQ+AO4MIm1X0ZeADYDNgFmA0c3VBm/bprnli3/wjgAGBnYCfg9cCRq3VzkiRJPaxrAmODN1EEvmvLz/sBczNzXmYuAU4E9oiIbYY5/znARZn5ZGbeB1wFzBzltecAp2Tm3Zl5D3AKcNgq3ockSVLP69bAOAc4NzOz/BzlRt1ngB2HOf9U4KCImBQR04HXUYTGendFxN0RcVZEbFy3fyZwU93nmxh92JQkSeo7XRcYI2JLiiHkc+p2XwG8JSJ2ioiJwPFAApOGqeanFCHvUeBuYBD4TnnsQeDFwFbArsC6wPl1504BFtR9XgBMGW4eY0QcERGDETE435UXkiSpD7UlMEbENeVCk6G26xqKHwpcl5l31HZk5o+ATwAXA3cBdwILKcJg47XGAT8ALgEmAxsDGwAnl3UtyszBzFyWmfcD7wJeGxFTyyoWAVPrqpwKLKrr7VxBZp6ZmbMyc9a0adPG9L1IkiT1grYExszcMzNjmG33huKHsmLvYq2O0zNz28x8FkVwHABuGeJyGwJbAKdl5uLM/DtwFrDPcM0rX2s9iPMoFrzU7FzukyRJWiN11ZB0ROwGTKdcHV23f0JE7Fg+8mZL4Ezg1Mx8uLGOzHyQYhX1URExEBHrU8yJvKms66UR8byIGBcRGwFfBK7JzNow9LnA+yNievnong8AZ1dxv5IkSb2gqwIjRbC7JDMXNuyfAFxAMVx8A/BzoP7ZiR+NiCvryr8R2BuYD9wOLAOOKY9tTbEAZiFFD+Vi4OC6c78KfA/4bXn8++U+SZKkNVIMMzVPq2DWrFk5ODjY6WascWrLkfxHWZKk0YuIGzNz1mjKdlsPoyRJkrqMgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRfcNfepEkqRoGRvWN5cs73QJJkvqTgVF9Y9myTrdAkqT+ZGBU3zAwSpJUDQOj+oaBUZKkahgY1TcMjJIkVcPAqL5hYJQkqRoGRvUNA6MkSdUwMKpvGBglSaqGgVF9Y+nSTrdAkqT+ZGBU37CHUZKkahgY1TeWLOl0CyRJ6k8GRvWNxYs73QJJkvqTgVF9wx5GSZKqYWBU3zAwSpJUDQOj+oZD0pIkVcPAqL5hD6MkSdUwMKpvGBglSaqGgVF9wyFpSZKqYWBU37CHUZKkahgY1TcMjJIkVcPAqL7hkLQkSdUwMKrnjSv/KbaHUZKkahgY1fPWXrt4NTBKklQNA6N63sBA8eqQtCRJ1TAwqudlFq/2MEqSVA0Do3qegVGSpGoZGNU3HJKWJKkaBkb1vFoPo4FRkqRqGBjV82qBcfnyzrZDkqR+1TWBMSIWNWzLI+JLdccPj4jby2NXRcTmTeqaERFXRMTDEXFfRJwWEQPlsbc3XOfxiMiI2LU8fkJELG0os3X134BWVS0wLlvW2XZIktSvuiYwZuaU2gZsAjwBzAWIiNnAScD+wIbAHcCFTar7MvAAsBmwCzAbOLq8zvkN1zoa+DPwq7rzv1VfJjP/3MJbVUXsYZQkqRpdExgbvIki8F1bft4PmJuZ8zJzCXAisEdEbDPM+c8BLsrMJzPzPuAqYOYwZecA52bW+qnUa+xhlCSpWt0aGBtDXJQbdZ8Bdhzm/FOBgyJiUkRMB15HERpXEBFbAXsA5zYc2i8iHoqIeRFx1KrehNrDwChJUrW6LjBGxJYUQ8jn1O2+AnhLROwUEROB44EEJg1TzU8pehQfBe4GBoHvDFHuUODazLyjbt9FwA7ANOCdwPERcXCT9h4REYMRMTh//vxR3KFazUUvkiRVqy2BMSKuKReWDLVd11D8UOC6+hCXmT8CPgFcDNwF3AkspAiDjdcaB/wAuASYDGwMbACcPETTDmXFYEpm/i4z/5aZyzPzZxS9lW8a7t4y88zMnJWZs6ZNmzbCN6Eq2cMoSVI12hIYM3PPzIxhtt0biq8U4so6Ts/MbTPzWRTBcQC4ZYjLbQhsAZyWmYsz8+/AWcA+9YUi4uXA5sC3R2o+Kw6Hq8vYwyhJUrW6akg6InYDplOujq7bPyEidozClsCZwKmZ+XBjHZn5IMUq6qMiYiAi1qeYE3lTQ9E5wMWZubDhWvtHxAbltV4CvAe4rEW3qAo4h1GSpGp1VWCkCHGXNIY4YAJwAbAIuAH4OXBc7WBEfDQirqwr/0Zgb2A+cDuwDDimrvwE4C0M0ZMJHFSes5BiMczJmTlUOXUJexglSarWQKcbUC8zjxxm/yPATk3OO6nh82+APZuUfxJYf5hjwy5wUXezh1GSpGp0Ww+jNGb2MEqSVC0Do/qGPYySJFXDwKieVv/7PPYwSpJUDQOj+oY9jJIkVcPAqJ5W38NoYJQkqRoGRvU0h6QlSaqegVE9zR5GSZKqZ2BU37CHUZKkahgY1dPsYZQkqXoGRvU05zBKklQ9A6N6mj2MkiRVz8CovmEPoyRJ1TAwqqfZwyhJUvUMjOppzmGUJKl6Bkb1DXsYJUmqhoFRPa3Ww7jWWvYwSpJUFQOjelotMI4fX/Qw1g9RS5Kk1jAwqqfVAuLAQPH61FOda4skSf3KwKi+MH588eqwtCRJrWdgVE9r7GF04YskSa1nYFRPawyM9jBKktR6Bkb1tPpFL2APoyRJVTAwqi+stVbxag+jJEmtZ2BUT3NIWpKk6hkY1dMMjJIkVc/AqJ5mYJQkqXoGRvUF5zBKklQdA6N6mj2MkiRVz8ConmZglCSpegZG9TQDoyRJ1TMwqi/U5jA+9VRn2yFJUj8yMKqn1XoYXfQiSVJ1DIzqaQ5JS5JUPQOjepqBUZKk6hkY1RcckpYkqToGRvU0exglSaqegVE9zcAoSVL1DIzqaQZGSZKq1zWBMSIWNWzLI+JLdccPj4jby2NXRcTmTeraISJ+HBELynPe0HD8VRFxa0Q8HhE/iYit6o5FRJwcEX8vt89FRFRz12oV5zBKklSdrgmMmTmltgGbAE8AcwEiYjZwErA/sCFwB3DhUPVExABwGXB5WfYI4LyI2K48vjFwCXBceXwQ+FZdFUcABwA7AzsBrweObOGtqoUan8Pog7slSWq9rgmMDd4EPABcW37eD5ibmfMycwlwIrBHRGwzxLnbA5sDn8/M5Zn5Y+B64JDy+BuBeZk5NzOfBE4Ado6I7cvjc4BTMvPuzLwHOAU4rOV3qJZwSFqSpOp1a2CcA5ybWYsDRLlR9xlgxyHOHWr4OOrKzgRuqh3IzMeAP5X7Vzpevp+JupKBUZKk6nVdYIyILYHZwDl1u68A3hIRO0XEROB4IIFJQ1RxK0Xv5LERMT4iXlvWVys7BVjQcM4CYN1hji8Apgw3jzEijoiIwYgYnD9//mhvUy3mHEZJkqrTlsAYEddERA6zXddQ/FDgusy8o7YjM38EfAK4GLgLuBNYCNzdeK3MXEoxB3Ff4D7gA8BFdWUXAVMbTpta1jfU8anAorrezsbrnZmZszJz1rRp05p9DaqAPYySJFWvLYExM/fMzBhm272h+KGs2LtYq+P0zNw2M59FERwHgFuGud7NmTk7MzfKzL2ArYEbysPzKBa0ABARk4Ftyv0rHS/fz0NdycAoSVL1umpIOiJ2A6ZTro6u2z8hInYsH3mzJXAmcGpmPjxMPTuV50yKiA8CmwFnl4cvBXaMiAMjYgLF8PbNmXlrefxc4P0RMb18dM8H6s5VlzEwSpJUva4KjBSLXS7JzIUN+ycAF1AMF98A/JzisTgARMRHI+LKuvKHAPdSzGV8FfCazFwMkJnzgQOBTwMPAy8FDqo796vA94DfUvRgfr/cpy7mHEZJkqoz0OkG1MvMIZ93mJmPUDwTcbjzTmr4fCxwbJPyV1M8fmeoYwl8qNzU5Rqfw2hglCSp9bqth1Eak8YhaR/cLUlS6xkY1RfsYZQkqToGRvU0F71IklQ9A6N6moFRkqTqGRjV0wyMkiRVz8CovuAcRkmSqmNgVE+zh1GSpOoZGNXTDIySJFXPwKie5oO7JUmqnoFRfaEWGH1wtyRJrWdgVE9zSFqSpOoZGNXTDIySJFXPwKieVguM48p/kg2MkiS1noFRfSGimMdoYJQkqfUMjOpptR5GMDBKklQVA6N6Wi0w2sMoSVJ1DIzqaQZGSZKqZ2BUX6gFRp/DKElS6xkY1dPq5zCOG2cPoyRJVTAwqqc5JC1JUvUMjOppBkZJkqpnYFRfMDBKklQdA6N6ms9hlCSpegZG9TSHpCVJqp6BUT3NwChJUvUMjOoLBkZJkqpjYFRPa5zD6IO7JUlqPQOjelr9kLQP7pYkqRoGRvU05zBKklQ9A6P6goFRkqTqGBjV03wOoyRJ1TMwqqc5JC1JUvUMjOppBkZJkqpnYFRfMDBKklQdA6N6mnMYJUmqnoFRPa1xSNoHd0uS1HoGRvU0H9wtSVL1DIzqC85hlCSpOgZG9TTnMEqSVL2uCYwRsahhWx4RX6o7fnhE3F4euyoiNm9S1w4R8eOIWFCe84a6Yy+LiB9GxEMRMT8i5kbEZnXHT4iIpQ1t2bq6O9fq8LE6kiRVr2sCY2ZOqW3AJsATwFyAiJgNnATsD2wI3AFcOFQ9ETEAXAZcXpY9AjgvIrYri2wAnAnMALYCFgJnNVTzrfr2ZOafW3ajqoSBUZKk6nRNYGzwJuAB4Nry837A3Mycl5lLgBOBPSJimyHO3R7YHPh8Zi7PzB8D1wOHAGTmlZk5NzMfzczHgdOAl1d8P6qIQ9KSJFWvWwPjHODczKfjQJQbdZ8Bdhzi3Bhm31BlAfYA5jXs268csp4XEUeNss3qAIekJUmqXtcFxojYEpgNnFO3+wrgLRGxU0RMBI4HEpg0RBW3UvROHhsR4yPitWV9K5WNiJ3Kuo6t230RsAMwDXgncHxEHNykvUdExGBEDM6fP38Md6pWMDBKklS9tgTGiLgmInKY7bqG4ocC12XmHbUdmfkj4BPAxcBdwJ0Ucw/vbrxWZi4FDgD2Be4DPkARAlcoGxHPBa4E3puZ19ad/7vM/Fs5nP0z4FSKIfIhZeaZmTkrM2dNmzZttF+JWqz2HEYf3C1JUuu1JTBm5p6ZGcNsuzcUP5QVexdrdZyemdtm5rMoguMAcMsw17s5M2dn5kaZuRewNXBD7XhEbAVcDZyYmd8YqfkMPcytLuAcRkmSqtdVQ9IRsRswnXJ1dN3+CRGxYxS2pFjlfGpmPjxMPTuV50yKiA8CmwFnl8emAz8GTs/Mrwxx7v4RsUF5rZcA76FYda0u5JC0JEnV66rASLHY5ZLMXNiwfwJwAbCIoqfw58BxtYMR8dGIuLKu/CHAvRRzGV8FvCYzF5fHDqfocfxE/bMW6849CLidYsj7XODkzFypx1PdwcAoSVL1BjrdgHqZeeQw+x8Bdmpy3kkNn49lxYUs9cc+CXyySV3DLnBR9zIwSpJUnW7rYZTGxDmMkiRVz8ConuaQtCRJ1TMwqqcZGCVJqp6BUX3BwChJUnUMjOpp9XMYfXC3JEnVMDCqpzkkLUlS9QyM6mkGRkmSqmdgVF+oBcbMFYepJUnS6jMwqqfVh8OB8jH0y5Z1pi2SJPUrA6N6Wv2Q9PjxxfulSzvXHkmS+pGBUT3NwChJUvUMjOoLBkZJkqpjYFRPq5/DaGCUJKkaBkb1tPoh6bXXLt4vWdK59kiS1I8MjOppzmGUJKl6A6MpFBGvBQ4DZgLrAguBecBZmfnDylonjZKBUZKk6owYGCPiGOBDwP8DLgYWAFOBnYFzIuLkzDy10lZKw3AOoyRJ1RtND+OxwCsy89aG/ZdExIXATwADozrCIWlJkqo3mjmMk4G/DXPsPmBS65ojjY2BUZKk6o0mMF4MfC8iXhUR0yJi7YjYOCJeBVwKfLvaJkojMzBKklSd0QTGfwV+BpwD3A88Ub6eA/wvcFRlrZNGUD+H0cfqSJJUjRHnMGbmEuAjwEciYn1gCrAoMx9pLBsRL8/M61vdSGk4DklLklS9UT1Wp6YMiY80KXIlxQpqqS0MjJIkVa/VD+6OFtcnjYqBUZKk6rQ6MObIRaTW8TmMkiRVz58GVE9zSFqSpOoZGNXTDIySJFXPOYzqGz5WR5KkaowpMEbERhFxSER8qPy8eUQ8u3Y8M9dtdQOlZuxhlCSpeqMOjBExG/gD8HbguHL3tsAZFbRLGhUDoyRJ1RtLD+MXgLdm5t7AsnLfL4CXtLpR0lgZGCVJqs5YAuOMzPxR+b72MJMljPHh31Ir+dOAkiRVbyyB8XcRsVfDvlcDv21he6QxaRySXmsteOKJzrZJkqR+M5bewQ8Al0fE94GJEfFVYD9g/0paJo1CfWAEmDjRwChJUquNuocxM/8X2BmYB/w3cAfwksz8ZUVtk0bNwChJUnXGNP8wM+8BPldRW6Qxy4YfozQwSpLUek0DY0R8g1H8PnRmHtqyFklj4JC0JEnVG2lI+nbgT+W2ADgAWAu4uzx3f+CR6ponNWdglCSpek0DY2Z+srYB2wH7ZubbM/OjmfkOYF/gea1oSEQsatiWR8SX6o4fHhG3l8euiojNm9S1Q0T8OCIWlOe8oe7YjIjIhmsdV3c8IuLkiPh7uX0uIvzJwy5nYJQkqTpjeazOy4D/bdj3C+AfWtGQzJxS24BNgCeAufD0r8ycRNGjuSHFgpsLh6onIgaAy4DLy7JHAOdFxHYNRdevu+aJdfuPoOhJ3RnYCXg9cGQr7lGt5xxGSZKqN5bA+GvgpIiYCFC+fhr4TQXtehPwAHBt+Xk/YG5mzsvMJcCJwB4Rsc0Q524PbA58PjOXZ+aPgeuBQ0Z57TnAKZl5d7nI5xTgsFW/FVXJIWlJkqo3lsB4GPByYEFE3E8xp3F3oIoFL3OAczOf7j+KcqPuM8COQ5w71PBxDFH2roi4OyLOioiN6/bPBG6q+3xTuU9dyMAoSVL1xvIcxjszczdgG+CfgOdm5m6ZeWcrGxQRWwKzgXPqdl8BvCUidip7No+nWL09aYgqbqXonTw2IsZHxGvL+mplHwReDGwF7AqsC5xfd/4UijBcswCYMtw8xog4IiIGI2Jw/vz5Y7tZtYyBUZKk6oylh5GI2AB4BfBKYM/y82jOu6ZcaDLUdl1D8UOB6zLzjtqO8jesPwFcDNwF3AkspFitvYLMXEoxB3Ff4D6KX6i5qFY2Mxdl5mBmLsvM+4F3Aa+NiKllFYuAqXVVTgUW1fV2Nl7vzMyclZmzpk2bNpqvQy3kHEZJkqo36sAYEf9A8Xidf6VYDHIk8Kdyf1OZuWdmxjDb7g3FD2XF3sVaHadn5raZ+SyK4DgA3DLM9W7OzNmZuVFm7gVsDdwwXPNqt1i+zqNY8FJT+3UbdaHGIelJk+DxxzvXHkmS+tFYfunlC8DRmfnN2o6IeCvwRYoh3tUWEbsB0ylXR9ftnwA8lyK4bQGcCZyamQ8PU89OwG0UgfhoYDPg7PLYSymeHflHYIOy/ddkZm0Y+lzg/RFxBUWY/ADwJdSVGgPj1KmwaBE89RSMG1P/uSRJGs5Y/pW6HcXQbr1vUwS5VpkDXJKZCxv2TwAuoBguvgH4OVD/7MSPRsSVdeUPAe6lmMv4KuA1mbm4PLY1cBXFkPYtwGLg4Lpzvwp8D/htefz75T51sVpgXG+9IkQuWtTZ9kiS1E/G0sP4R+AgiuBW82aKYeqWyMwhn3eYmY9QDIMPd95JDZ+PBY4dpuyFDPMMx/J4Ah8qN3W5xjmMU8vZpwsWPPNekiStnrEExvcBl0fEeygWnswAtqV4sLXUEY1D0uutV7wuWABbbNGZNkmS1G9GHRgz82flg7L3pXgw9veAKzLzoaoaJ41kqDmMAI8+2pn2SJLUj8bSw0i5yOS8itoirbKhehglSVJrjDowRsRzKH4KcBeKh1s/LTO3bG2zpNEZbg6jPYySJLXOWHoYL6BY4PIBwCfdqSs0m8MoSZJaYyyBcSbw8sx8qqrGSGNlYJQkqXpjeQ7j/wAvrKoh0uqoBcbJk4sHdjskLUlS64ylh/FO4AcRcQnFbzQ/LTOPb2WjpNFqnMMYUcxjtIdRkqTWGUtgnEzxKJ3xFD/PV5NDF5eq1zgkDUVgtIdRkqTWGctzGP95pDIRcXD5SypSWwwVGNdbzx5GSZJaaSxzGEfD31xWRzT2MBoYJUlqnVYHxhi5iNQ6jXMYoehhdEhakqTWaXVgdD6j2sohaUmSqtfqwCi11VCBceONYf78zrRHkqR+NGJgjAhDpbpefWDcdNOih/HJJzvXHkmS+slowuA9EfG5iNhxFGX/sroNksZiqDmMm2xSvN5/f3vbIklSvxpNYPxX4DnALyPiVxHx3oiYNlTBzBxNqJRaZqghaQOjJEmtNWJgzMzLMvPNwGYUj815M/DXiPhuRBwYEeOrbqQ0ksYhaYB77+1MWyRJ6jejnp+YmY9k5lczc3dgB2AQ+Dzgv5bVMUMNST/nOcXrn//c3rZIktSvxvLTgABExDrAi4GXApsAP2t1o6TRGmpIeqONipXSv/99Z9okSdKqWroUnnhi5e3xx4fevzrHxmLUgTEidgcOBd4CPAB8Azg6M+8a2yWl1hkqMAJsvz3Mm9f+9kiS+k8mLFlShK/aVgtjrf68bNmqtXHcOJg0CSZOHHrbYIOV95166ujrHzEwRsQJwCHAhsBcYN/MvH7VbkeqRmNg3G03+K//Kn7xZerUzrRJklStp54qHqE2mlC2uoFuqClQIxk/vghxtSBXez9pUjESVv+5drwW5pqFv6G28eNX/nfhSFoaGIGXAR8DvpOZPtlOXWW4/wPvsw987nNw9dXwxje2t02SpMLSpUXYeuyxZ7ZV/TxUiFvV5+2us87wQW799VfeN9bPtX0DY574171GvJXM3LsdDZFWxXBD0rvtVvxE4OWXGxglaTjLl68Y0EYKb2MNfEuXjq09a60FkycX26RJK76fNm34YDaWzxMmFNfR2PRR9tWaaLjAOH487LcfXHopfPnLxR8ISepFmUXP2qJFK26PPbbyvtr+0Ya7xYvH1paIoQPd5MnFHLn6z43HR/N57bXHPqyq9jAwqi8M9QfmX/4FzjsPvvhF+NCH2t8mSWueJUtGDnND7R/pnLHMn5s4ccUgVgtjm246fFgbbaCbMMFAt6YyMKqnNfsjuueecMAB8OEPw+abwzve0a5WSep2mUXv2sKFK26rEubqP49lCHbttWHKlJW3LbZYed/kyUOXbdw/aVKxWlZqNQOjetpwQ9K1fRdcAK9/PcyZA488Akcf7R9TqVctW7ZywFudbbSPLxk3buiwNm1a8UMBqxLsJk8ups5IvcLAqJ7WLDBCMTTz3e/Cm98M7343XHwxfO1rsM027WujtKbKLHrgHn20NQFvtCtiBwZg3XVX3jbffOj9jVtj2FtnHYdhJQOj+kKzP+aTJ8P3vw9nnQXvfz+84AVw0klFgHSlnLSyzGJxxKOPwoIFxeuqvH/00dHPvZsyZeXgtuWWI4e7qVNX3mfAk1rPwKieNtp/GUUUi2D22guOPBKOOQa++U34yldgl10qbaLUNplFL9xoQ12zoLd8+cjXmzixeHzV1KnFtt56sMkmz7yvhbmhQl39NnmyU0WkbmdgVE8b65P3p0+H730Pzj+/6G3cdVd4z3vgU58q/sUlddKyZUVwe+SRZ7bGz437GsPeaBZdrLPOykFv661XDHojvV93XefgSWsSA6N6WubYh54iihXT++4LH/lI8dNIc+fCF74ABx7oUJZW3eLFowt8w+1/7LGRr7HeesUvUay/fvF+iy1g5swVQ91IQW+ddaq4e0n9zMConreqAW+DDYoh6cMOg6OOKhbGvO51cNppRW+L1jxPPVX00j38MDz00IqvDz88cuAbaVHGWms9E/Rqoe95z1vxc30YbPy87rrOu5XUGQZG9bRV+TH4Ri97Gfzyl0VQPO64orfmYx+DY4+1J6YX1X4VozHw1Qe/4Y498kgRGoez9torh7gtthg56NXeT55sD7ak3mRgVE9blSHpoQwMwPveV/QyHnNMERzPOw/OOANe8YrVr19jt3Tp2ANf7f2SJcPXu9ZaRe/yBhvAhhvCRhvBc59bvK/tq3+tf++vXEhaUxkY1dNaFRhrpk+Hiy6Cq66Cf/s3eOUr4a1vhY9/HHbcsXXXWVPUhniHC3jNQuCiRc3rnjp1xTA3c+bIgW/DDYthXUOfJI2NgVE9r4p/+e+9N9xyC3zmM3DKKfCtb8F++xW9j7Nnr1mPABlpiLdZCBxpiHfChBXD3FZbwQtfOHTQq39df/2iV1iS1B7+yVVPa8UcxuFMnFg8bue974XTT4cvfrF4JM+WW8Lb3gb77FPMf+zmR4vUfi+38bl7o3kd7RDvuHErhrmNN4Zttx3dEO/Eie37LiRJq65rAmNENA5ATQS+nJnvLo8fDnwY2BS4DviXzPzbMHXtAJwO7ArMB47NzEvLY28HvlpXfFx5rVmZeWNEnAB8DFhcV2anzPzz6t2hqtDqIemhbLQRHH88fPCDcNllcO658B//AZ/9bPHrFC98Iey8czFkPX06bLZZEZomTCi22sKZpUtX3hYvLnrvnniiWGFbez/ctiplmvXw1UyYsPIjWJ7//Oa9fLXXdddds3pcJWlN1DWBMTOn1N5HxGTgfmBu+Xk2cBLwCuCPwKnAhcDsxnoiYgC4DPgK8JqyzPci4oWZeVtmng+cX1f+MOA44Fd11XwrM9/RyvtTNdoRGGsmTYKDDy62Rx6Bn/wErr4afvMbOPvskefcra511il65Bq3WtjbZJOhj0+aVATBxmf01YfDtdeutu2SpN7WNYGxwZuAB4Bry8/7AXMzcx5ARJwI3BMR22TmnxrO3R7YHPh8Zibw44i4HjiEIhg2mgOcW5ZVD+rEAob114c3vKHYoOjFu+ce+Nvf4N574cEHi97D2gbF0HXjts46ReAbKujVB8IJE+zFkyR1TrcGxsYQF+VG3WeAHYHGwDhUfIiy7Io7I7YC9gD+peHQfhHxEHAvcFpmnjG25qtduiXmjxtXPI9viy063RJJklqv6/osImJLimHkc+p2XwG8JSJ2ioiJwPFAApOGqOJWit7JYyNifES8tqxvqLKHAtdm5h11+y4CdgCmAe8Ejo+Ig5u094iIGIyIwfnz54/6PtUa7RySliRpTdWWwBgR10REDrNd11D8UOC6+hCXmT8CPgFcDNwF3AksBO5uvFZmLgUOAPYF7gM+QBECVypbXqs+mJKZv8vMv2Xm8sz8GcV8yTcNd2+ZeWZmzsrMWdOmTWv+RajlDIySJFWvLYExM/fMzBhm272h+Eohrqzj9MzcNjOfRREcB4BbhrnezZk5OzM3ysy9gK2BG+rLRMTLKeY6fnuk5jP0MLe6hIFRkqRqddWQdETsBkynXB1dt39CROwYhS2BM4FTM/PhYerZqTxnUkR8ENgMOLuh2Bzg4sxc2HDu/hGxQXmtlwDvoVh1rS7ULXMYJUnqZ9226GUOcEljiAMmABcA21AMRZ9F3YrniPgo8I+Z+bpy1yHA4cB4ipXWr8nMxXXlJwBvAQ4cog0HAf8NrEMxjH1yZq7U46n2WrIE/vIXuPPOYrvjjuL1kkv8xQ9JkqoWPk2mdWbNmpWDg4OdbkZPyoT58+H22+FPfyq2P//5mWB4zz0r9iautVaxLVlSPDj60Uc71nRJknpSRNyYmbNGU9a+GbXN8uVw993PBMJaOKy91j/4OgKe/Wx4znPgla+EGTOK9zNmFNuznw0HHQQXX+wcRkmSqmZgVEtlFg+tvvXWYvvDH4rX228vegvrf5N4/HjYemvYZhvYYw947nOL99tsU4TD2k/qSZKkzjIwapUsXVoMGdeHwtr7hx56ptyECbDttsXvLO+/fxEGa8Hw2c8uhpVXVa1n0R5GSZKqZWBUU089BXfdBb/97YrbbbfBsmXPlNt0U9h+e3jzm4vX2rblltX9pJ2BUZKk9jAw6mkLFsBvflMEwptvLl5vuWXFuYUzZsALXgD/9E+www5FKHze82C99drfXoOiJEntYWBcQz3yCPzqV3Djjc9st9/+zPENNyyC4WGHFa8veAHMnAlTp3aqxSuzh1GSpPYwMK4Bli6Fm26C66+Hn/985XC45Zaw667wz/8ML3oR7LQTbLZZ9wcxA6MkSe1hYOxDjzwCP/tZsV1/PdxwAzz+eHHs2c+GF7+4CIe77loExF7/CWwDoyRJ1TIw9oHFi4uew6uvLrZf/rJYrLLWWrDLLnD44bDbbsW2xRadbm3rGBQlSWoPA2OP+utf4bLL4PLL4X/+B554ogiIL30pfPzjsOee8JKXwOTJnW5pdRySliSpPQyMPeR3vyt+O/k73ynmIQJst13Rg/jqVxchsZsWpVTNwChJUnsYGLvc/Plw4YVwzjnFqmaAl70MPvvZ4kHY22/f2fZ1koFRkqT2MDB2ocxiscoXvlAMOy9bVixO+cIXigdjb755p1vYHQyKkiS1h4GxiyxfDnPnwimnwOAgbLABvPe9xbMQd9yx063rXgZHSZKqZWDsApnw3e8Wi1VuuaX45ZQzzoBDDunvRSuryyFpSZLaw8DYYfPmwb/+K1x3HWy7LXzzm8Wwc1W/v9xPDIySJLWHsaRDliyBj32seE7i738PZ55ZrIJ+61sNi6NlUJQkqT3sYeyAO+8sguENN8CcOfCf/wkbb9zpVvUeexglSWoPA2Ob/fCHRVhcvhy+/W048MBOt6h3GRglSWoPBz/b6PzzYZ99ip/n+9WvDIutYmCUJKlaBsY2+e//hne8A3bfvfgpv2226XSLep9BUZKk9jAwtsGll8I73wl77QVXXgnrrdfpFvUHh6QlSWoPA2PFfvELOOggeMlL4OKLYcKETreofxgYJUlqDwNjhR588Jmf8rv8ch/C3WoGRkmS2sNV0hU68kh44IHid6E32qjTrek/BkVJktrDwFiRSy+FSy6Bz34Wdt21063pbwZHSZKq5ZB0BR5/HN797uJXXN7//k63pn85JC1JUnvYw1iBM86Ae+6BCy6A8eM73Zr+ZWCUJKk97GFssaVL4T/+A179athjj063pr8ZFCVJag97GFvs8svh/vvha1/rdEv6nz2MkiS1hz2MLXbWWbDZZrD33p1uSf8zMEqS1B4GxhbKhB/9qPiN6AH7bitnYJQkqT0MjC30+OPFNnt2p1siSZLUOgbGFlq4sHh1sUt72MMoSVJ7GBhbaNEieN7z4FnP6nRL1gwGRkmS2sPA2EJPPAEvelGnW7HmMDBKktQeBsYWWrKk6GFUexgUJUlqDwNjixkY28ceRkmS2qNrAmNEzIiIKyLi4Yi4LyJOi4iBuuOviohbI+LxiPhJRGzVpK4NI+LSiHgsIu6KiLc1HB+2riicHBF/L7fPRYw+ksyYMcYb12ozMEqSVK2uCYzAl4EHgM2AXYDZwNEAEbExcAlwHLAhMAh8q0ldpwNLgE2AtwNnRMTMUdZ1BHAAsDOwE/B64MjR3sT06aMtqdVlD6MkSe3RTYHxOcBFmflkZt4HXAXMLI+9EZiXmXMz80ngBGDniNi+sZKImAwcCByXmYsy8zrgu8Aho6xrDnBKZt6dmfcApwCHjfYmNt10LLes1WFQlCSpPbopMJ4KHBQRkyJiOvA6itAIRXC8qVYwMx8D/sQzgbLedsDyzLytbt9NdWVHqmuF4w3nNjUwAOPHj6akWsEeRkmS2qObAuNPKYLZo8DdFEPF3ymPTQEWNJRfAKw7RD0jlR3r8QXAlOHmMUbEERExGBGD48YtHaqIKmJglCSpPdoSGCPimojIYbbrImIc8AOKuYWTgY2BDYCTyyoWAVMbqp0KLBziciOVHevxqcCizMyh7i0zz8zMWZk56wUvsHuxnQyKkiS1R1sCY2bumZkxzLY7xeKTLYDTMnNxZv4dOAvYp6xiHsUiFODpeYrblPsb3QYMRMS2dft2ris7Ul0rHG84V13I4ChJUrW6Ykg6Mx8E7gCOioiBiFifYvFJbS7hpcCOEXFgREwAjgduzsxbh6jrMYqeyk9FxOSIeDmwP/CNUdZ1LvD+iJgeEZsDHwDObv1da3U5JC1JUnt0RWAsvRHYG5gP3A4sA44ByMz5FCufPw08DLwUOKh2YkR8NCKurKvraGAixWN6LgSOysx5o6kL+CrwPeC3wC3A98t96jIGRkmS2mNg5CLtkZm/AfZscvxqYKXH6JTHTmr4/BDFsxRXpa4EPlRu6mIGRUmS2qObehilMbGHUZKk9jAwqmcZGCVJag8Do3qegVGSpGoZGNWzDIqSJLWHgVE9yyFpSZLaw8ConmVglCSpPQyM6lkGRUmS2sPAqJ5lYJQkqT0MjJIkSWrKwKieZQ+jJEntYWBUz6oFxszOtkOSpH5nYFTPsodRkqT2MDCqZxkYJUlqDwOjepbPYZQkqT0MjOp5zmGUJKlaBkb1LHsWJUlqDwOjepaBUZKk9jAwqmf5WB1JktrDwKie5aIXSZLaw8ConmVglCSpPQyM6nkGRkmSqmVgVM8yKEqS1B4GRvUsh6QlSWoPA6N6loFRkqT2MDCqZxkYJUlqDwOjepaBUZKk9jAwSpIkqSkDo3qWPYySJLWHgVE9y8AoSVJ7GBjVswyKkiS1h4FRPcseRkmS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPMihKktQeBkb1LIekJUlqDwOjepaBUZKk9jAwqmcZFCVJag8Do3qWPYySJLWHgVE9z8AoSVK1uiYwRsSMiLgiIh6OiPsi4rSIGKg7/qqIuDUiHo+In0TEVk3q2jAiLo2IxyLiroh4W92xl0XEDyPioYiYHxFzI2KzuuMnRMTSiFhUt21d3Z1rVdnDKElSe3RNYAS+DDwAbAbsAswGjgaIiI2BS4DjgA2BQeBbTeo6HVgCbAK8HTgjImaWxzYAzgRmAFsBC4GzGs7/VmZOqdv+vLo3p9YzMEqS1B4DIxdpm+cAp2Xmk8B9EXEVUAt5bwTmZeZcKHoBgQcjYvvMvLW+koiYDBwI7JiZi4DrIuK7wCHAhzPzyobypwE/rfC+VBGDoiRJ7dFNPYynAgdFxKSImA68DriqPDYTuKlWMDMfA/7EM4Gy3nbA8sy8rW7fTcOUBdgDmNewb79yyHpeRBw19ltRO9jDKElSe3RTYPwpRah7FLibYtj5O+WxKcCChvILgHWHqGfUZSNiJ+B44Ni63RcBOwDTgHcCx0fEwcM1OiKOiIjBiBicP3/+cMVUAQOjJEnt0ZbAGBHXREQOs10XEeOAH1DMU5wMbEwx1/DksopFwNSGaqdSzD9sNKqyEfFc4ErgvZl5bW1/Zv4uM/+Wmcsz82cUPZ9vGu7eMvPMzJyVmbOmTZvW/ItQSxkYJUlqj7YExszcMzNjmG13ioUsW1DMYVycmX+nWIiyT1nFPGDnWn3lPMVtWHkoGeA2YCAitq3bt3N92XKF9dXAiZn5jZGaDxhJJEnSGqsrhqQz80HgDuCoiBiIiPWBOTwzb/FSYMeIODAiJlAMI9/cuOClrOsxip7KT0XE5Ih4ObA/8A2Acn7kj4HTM/MrjedHxP4RsUEUXgK8B7isxbesFrCHUZKk9uiKwFh6I7A3MB+4HVgGHAOQmfMpVj5/GngYeClwUO3EiPhoRNSvfj4amEjxmJ4LgaMys9bDeDiwNfCJ+mct1p17UHn9hcC5wMmZeU6L71UtYGCUJKk9uuaxOpn5G2DPJsevBrYf5thJDZ8fAg4YpuwngU82uc6wC1zUXQyKkiS1Rzf1MEpjYg+jJEntYWBUzzIwSpLUHgZG9TwDoyRJ1TIwqmfZwyhJUnsYGNWzDIqSJLWHgVE9yx5GSZLaw8ConmVglCSpPQyM6lkGRkmS2sPAKEmSpKYMjOpZ9jBKktQeBkb1PAOjJEnVMjCqZ2V2ugWSJK0ZDIzqefYwSpJULQOjelath9HAKElStQyM6llPPVW8GhglSaqWgVE9z8AoSVK1DIzqWS56kSSpPQyM6nn2MEqSVC0Do3qWPYySJLWHgVE9y1XSkiS1h4FRPcvAKElSexgY1bMMjJIktYeBUT3PwChJUrUMjOpZLnqRJKk9DIzqefYwSpJULQOjepZzGCVJag8Do3qWvyUtSVJ7GBjV8wyMkiRVy8ConuWiF0mS2sPAqJ5nD6MkSdUyMKpn2cMoSVJ7GBjVs1wlLUlSexgY1bMMjJIktYeBUT3LwChJUnsYGNXzDIySJFXLwKie5aIXSZLaw8ConmcPoyRJ1TIwqmc5h1GSpPYwMKpn+VvSkiS1R9cExoiYERFXRMTDEXFfRJwWEQN1x18VEbdGxOMR8ZOI2KpJXRtGxKUR8VhE3BURb2u4TkbEorrtuLrjEREnR8Tfy+1zEUaSbub/OpIkVatrAiPwZeABYDNgF2A2cDRARGwMXAIcB2wIDALfalLX6cASYBPg7cAZETGzocz6mTml3E6s238EcACwM7AT8HrgyNW5MVXDRS+SJLVHNwXG5wAXZeaTmXkfcBVQC3lvBOZl5tzMfBI4Adg5IrZvrCQiJgMHAsdl5qLMvA74LnDIKNsxBzglM+/OzHuAU4DDVuO+VDF7GCVJqlY3BcZTgYMiYlJETAdeRxEaoQiON9UKZuZjwJ94JlDW2w5Ynpm31e27aYiyd0XE3RFxVtmDWbPCtYY592kRcUREDEbE4Pz585vfoVrKHkZJktqjmwLjTymC2aPA3RTDzt8pj00BFjSUXwCsO0Q9I5V9EHgxsBWwa7n//CbnLwCmDDePMTPPzMxZmTlr2rRpw92bKuAqaUmS2qMtgTEirikXmgy1XRcR44AfUMxTnAxsDGwAnFxWsQiY2lDtVGDhEJdrWrYcph7MzGWZeT/wLuC1ETF1mPOnAosy7c/qNnPmwAEHwMc/3umWSJLU39oSGDNzz8yMYbbdKRaybAGclpmLM/PvwFnAPmUV8ygWoQBPz1Pcptzf6DZgICK2rdu38zBlAWpBsNZPtcK1RjhXHTR1Klx6KWy6aadbIklSf+uKIenMfBC4AzgqIgYiYn2KxSe1uYSXAjtGxIERMQE4Hrg5M28doq7HKHoqPxURkyPi5cD+wDcAIuKlEfG8iBgXERsBXwSuyczaMPS5wPsjYnpEbA58ADi7mjuXJEnqfl0RGEtvBPYG5gO3A8uAYwAycz7FyudPAw8DLwUOqp0YER+NiCvr6joamEjxmJ4LgaMys9ZLuDXFYpqFwC3AYuDgunO/CnwP+G15/PvlPkmSpDVSODWvdWbNmpWDg4OdboYkSdKIIuLGzJw1mrLd1MMoSZKkLmRglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDUVmdnpNvSNiFgI/KHT7VjDbAw82OlGrGH8ztvP77z9/M7bz++8/Z6XmeuOpuBA1S1Zw/whM2d1uhFrkogY9DtvL7/z9vM7bz+/8/bzO2+/iBgcbVmHpCVJktSUgVGSJElNGRhb68xON2AN5Hfefn7n7ed33n5+5+3nd95+o/7OXfQiSZKkpuxhlCRJUlMGRkmSJDVlYGyBiNgwIi6NiMci4q6IeFun29TvIuJdETEYEYsj4uxOt6ffRcQ6EfH18p/vhRHx64h4Xafb1e8i4ryIuDciHo2I2yLi8E63aU0REdtGxJMRcV6n29LvIuKa8rteVG4+z7gNIuKgiPh9mV3+FBH/2Ky8z2FsjdOBJcAmwC7A9yPipsyc19FW9be/Af8O7AVM7HBb1gQDwF+B2cBfgH2AiyLiBZl5Zycb1uc+A/yfzFwcEdsD10TErzPzxk43bA1wOvDLTjdiDfKuzPxapxuxpoiI1wAnA28FbgA2G+kcexhXU0RMBg4EjsvMRZl5HfBd4JDOtqy/ZeYlmfkd4O+dbsuaIDMfy8wTMvPOzHwqMy8H7gB27XTb+llmzsvMxbWP5bZNB5u0RoiIg4BHgB91uClSVT4JfCoz/7f8m35PZt7T7AQD4+rbDliembfV7bsJmNmh9kiVi4hNKP7Ztxe9YhHx5Yh4HLgVuBe4osNN6msRMRX4FPCBTrdlDfOZiHgwIq6PiD073Zh+FhFrAbOAaRFxe0TcHRGnRUTT0ToD4+qbAixo2LcAGNVvM0q9JiLGA+cD52TmrZ1uT7/LzKMp/p78I3AJsLj5GVpNJwJfz8y/droha5D/C2wNTKd4LuD3IsKe9OpsAowH3kTxd2UX4IXAx5udZGBcfYuAqQ37pgILO9AWqVIRMQ74BsWc3Xd1uDlrjMxcXk53eTZwVKfb068iYhfg1cDnO9yUNUpm/iIzF2bm4sw8B7ieYp60qvFE+fqlzLw3Mx8E/osRvnMXvay+24CBiNg2M/9Y7tsZh+rUZyIigK9T/NfpPpm5tMNNWhMN4BzGKu0JzAD+UvzjzhRgrYh4fma+qIPtWtMkEJ1uRL/KzIcj4m6K73nU7GFcTZn5GMUw0aciYnJEvBzYn6IXRhWJiIGImACsRfEHfUJE+B9A1ToD2AHYLzOfGKmwVk9EPKt87MWUiFgrIvYCDgZ+3Om29bEzKQL5LuX2FeD7FE9jUAUiYv2I2Kv2Nzwi3g7sAfyg023rc2cB7y7/zmwAvA+4vNkJ/gu2NY4G/ht4gGLV7lE+UqdyHwc+Uff5HRSrvk7oSGv6XERsBRxJMX/uvrL3BeDIzDy/Yw3rb0kx/PwViv+4vwt4X2Ze1tFW9bHMfBx4vPY5IhYBT2bm/M61qu+Np3hE2vbAcorFXQdkps9irNaJwMYUo6RPAhcBn252gr8lLUmSpKYckpYkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJSkFomIeRGxZ5uu9fyIGKyg3ksiYu9W1yupt/kcRkkapfJBzjWTKB5kvrz83NaHmEfExcDczPxmi+t9CXBGZu7aynol9TYDoyStgoi4Ezg8M6/uwLU3o/i9+s0z88kK6v8jcHBmtrwHU1JvckhaklokIu6MiFeX70+IiLkRcV5ELIyI30bEdhHxkYh4ICL+GhGvrTt3vYj4ekTcGxH3RMS/R8Raw1zqNcCv6sNiee1jI+LmiHisrGuTiLiyvP7V5W/GUv5u73kR8feIeCQifhkRm9TVfw2wb8u/IEk9y8AoSdXZD/gGsAHwa+AHFH93pwOfAr5aV/YcYBnwXOCFwGuBw4ep9wXAUL+1eyBFmNyuvPaVwEcpfjN2HPCestwcYD1gC2Aj4F+BJ+rq+T2w86jvUlLfMzBKUnWuzcwfZOYyYC4wDfhsZi4FvgnMiIj1y9691wHvy8zHMvMB4PPAQcPUuz6wcIj9X8rM+zPzHuBa4BeZ+evMXAxcShFEAZZSBMXnZubyzLwxMx+tq2dheQ1JAmCg0w2QpD52f937J4AHM3N53WeAKcDmwHjg3oiolR8H/HWYeh8G1h3F9Ro/Tynff4Oid/GbEbE+cB7wsTLIUtb9yHA3JWnNYw+jJHXeXylWXG+cmeuX29TMnDlM+Zsphp1XSWYuzcxPZubzgd2A1wOH1hXZAbhpVeuX1H8MjJLUYZl5L/D/AadExNSIGBcR20TE7GFO+SHwooiYsCrXi4hXRMQLykU1j1IMUS+vKzKbYv6jJAEGRknqFocCawO/oxhy/jaw2VAFM/N+4MfA/qt4rU3L+h+lWODyU4phaSLixcBjmXnDKtYtqQ/5HEZJ6kER8XyKldUvyRb+IS8fCP71zLyiVXVK6n0GRkmSJDXlkLQkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpqf8fx4yNQEmvh50AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCMElEQVR4nO3debgcZZ33//c3OZFshDWyRCAQ2QwCSkQHGYLjhigDAy6gAs4MwsDjhog/RwVRRhTmYRQFUUaHRRAlA4isPqLiADpicASJMogsyh6WhCSEbHx/f1S1dJpzOuckXb3l/bquuvp01V133d0Jh0/upSoyE0mSJGkoozrdAEmSJHU3A6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEpaq0TEDRHxzbr350XE9Z1skyR1OwOjpJ4QERtFxGkR8b8R8WxEPBYR/xURh0XEQBuu//KI+EFEzIuIZyLi9oj4qxHWcV5EZLktj4j7I+LrEbFRVe0epA1nRsSKiPhQu645RDtGR8Qnyj/PJeWf5793sk2Shlb5L1lJWlMR8RLgZmA5cCLwP8AyYA/gY8DtwG8qvP4uwI3AfwCfBZ4EtgWeWI3qbgTeSfH7dzfgm8AWwFtb0tgmImI88F7gFOBI4CtVX7OJcyn+/D5O8We3LrBNB9sjqQl7GCX1grOBdYBXZuZFmfm7zPxDZp5PEbr+UCsYER+MiDvLXsg/RMSnWtAD+RXg6sz8SGbempn3Zub/y8y7VqOupZn5SGY+kJlXAF8G9omIcVH4WETcExFLI+KPEfGR+pMj4r6I+HxEfDMino6IxyPi1IgYzu/zdwF/BP4F2Dwi9mio++yy/vXr9p1bfo/rlu/3jYhb63oFvxYRE+rKnxcR10fEkWUP6tMRcUVETK4r8zrg3cD+mXlZZt6Tmbdl5uUj/C4ltYmBUVJXi4gNgX2BMzNzfuPxzFyWmYvKsidR9Dj+M7Aj8GHgKOAza3D9jYG9gDsi4pqImFsGpiNXt84Giyl+Fw8AxwAnA18EpgP/CnwxIv6x4ZwPAg8BrwKOBT4AfGQY1zoKOD8zlwDfpehlrHcs8DTw7wAR8W6KYHdwZi6IiJ2BHwD/BewKHA68Dfh6Qz2vAl5H0Wu6T1n2/9YdPwi4B3hDRNwdEX+OiEsiYsthfAZJnZCZbm5ubl27AbsDCRy4inLjgWeAfRr2HwbMq3t/A/DNuvfnAdc3qffV5fWfAY6nCD/HAM8C7x/hZ1npWsDLKHr8/rt8/2fgtIZzvgTcU/f+PuDGhjKnAA+s4tq7AEuByXXf6zPA+g3ldgQWAV+gCI/H1h37NnBLQ/n9geeAreo+41xgnboynwAernt/bfn9/QrYm2Jo+qfA3cDYTv+dc3Nze+FmD6Okbhfla66i3HRgHHBpRCysbcA3gPXqh0RHaHT5elVm/mtm/iYzv0Yx9/CDq1Hf3mXbFgN3UPS0vTsiJgEvoei9q/czYGo5/7DmFw1lbgamlHUM5SjgmsycC5CZtwD3Usxp/IvM/D1FL+0ngJsohsxrpg/RvqAIvzW/z6IXs+ZBYJO696Mpphgcnpk3ZObPKYbLt6boTZbUZVz0Iqnb/YGiB2s60GyOW+0fwO8ABptb+ORqXv+h8vV3DfvnAIeuRn2/pBjKXU7R67YEoC7sNQbjYNWalinnGL4HWDciltcdGkUxLH1mwyl7ASuALYGxFMPmNUMF9/r9Swc5Vt/Gh8p9d/6lQOZjEfE4sFWzzyKpM+xhlNTVMvNJiiHMD0TEeo3HI2JMGYjmUAxzbpOZdw+yrVjNJtxPMVS8fcP+7SmGh0dqcdme++p74TLzaeABYGZD+b2AezPzmbp9r2ko81fAQ2UdgzmYIgDuQjGkXtv+GpgeEX+pr5wveUDZjvEUQ+I1cwZp30yK8NcYqJu5kSJAblt33Y2AjVm971RSxQyMknrBMRS30bk1It4dES+LiJdGxHuB2cC2mbmQYi7fKRHxgYjYPiKmR8TBEXHq6l44M5NiPt87IuLoiJgWEYdR9Mx9eY0/2cq+AHwwIt4fEdtGxFHA0RSfq96uEXFSRGxXLkz5MCsHu0ZHAZdn5m8z84667WaK4ewjASJie+AMinmLNwOHAP8YEQeV9fwr8MqI+LeI2CEi9gG+ClyUmX8awee8mGI4/FsRsVu5mOZCijmM146gHklt4pC0pK6XmX+KiFdSzKs7iWKo9Gng9xQh5o6y3MkR8RDF3ML/SzGUehfFQow1uf7Z5a15PkYRzO4GPpSZ59bKlCu0P5OZwxlCHsrZwATgk8DXKHo2P5GZ32oo91WKodvZFEPbZzNEYIyIXSlWLZ8wxDW/B5wWEcdSrJz+YWZ+HSAzfxkRJwLfjIjZmXl7RPwtxUru/0PxZ/CfFN/LsGXmMxHxBorAfQNFz/ANwBsy89mR1CWpPaL4x7MkaU1ExAXAppn5poqvcx/FKu9/qfI6klTPHkZJWkPlTbNfT3HvQUnqOwZGSVpDmfkcMKXT7ZCkqjgkLUmSpKZcJS1JkqSmDIySJElqyjmMLbTxxhvn1KlTO90MSZKkVbr11lsfz8xhPTbVwNhCU6dOZfbs2Z1uhiRJ0ipFxP3DLeuQtCRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwque9+MUwc2anWyFJUv8a6HQDpDU1d26xSZKkanRND2NELGzYVkTEV+uOHxERd5fHrouIzZvUNTUiromIpyLikYg4MyIG6o5lw7VOqDs3IuLUiHii3E6LiKj200uSJHWvrgmMmTmxtgGbAIuBWQARMRM4Bdgf2BC4F7i4SXVfAx4DNgN2BWYCxzSUWb/umifX7T8SOADYBdgZeBtw1Bp9OEmSpB7WNYGxwdspAt+N5fv9gFmZOSczlwInA3tFxLQhzt8auCQzn83MR4DrgOnDvPbhwOmZ+UBmPgicDrxvNT+HJElSz+vWwHg4cEFmZvk+yo269wA7DXH+GcDBETE+IqYAb6EIjfXuj4gHIuLciNi4bv904La697cx/LApSZLUd7ouMEbElhRDyOfX7b4GeGdE7BwR44ATgQTGD1HNzyhC3tPAA8Bs4PvlsceBVwFbAbsB6wIX1Z07EZhf934+MHGoeYwRcWREzI6I2XNdeSFJkvpQWwJjRNxQLjQZbLupofhhwE2ZeW9tR2b+GPgMcClwP3AfsIAiDDZeaxTwQ+AyYAKwMbABcGpZ18LMnJ2ZyzPzUeADwJsiYlJZxUJgUl2Vk4CFdb2dK8nMczJzRmbOmDx58oi+F0mSpF7QlsCYmXtnZgyx7dlQ/DBW7l2s1XFWZm6bmS+mCI4DwB2DXG5DYAvgzMxckplPAOcC+w7VvPK11oM4h2LBS80u5T5JkqS1UlcNSUfEHsAUytXRdfvHRsRO5S1vtgTOAc7IzKca68jMxylWUR8dEQMRsT7FnMjbyrpeHRHbR8SoiNgI+ApwQ2bWhqEvAD4aEVPKW/ccB5xXxeeVJEnqBV0VGCmC3WWZuaBh/1jgOxTDxbcAvwDq7534yYi4tq78gcA+wFzgbmA5cGx5bBuKBTALKHoolwCH1J37DeBK4Lfl8avLfZIkSWulGGJqnlbDjBkzcvbs2Z1uxlqnthzJv8qSJA1fRNyamTOGU7bbehglSZLUZQyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjOobPulFkqRqGBjVN1as6HQLJEnqTwZG9Y3lyzvdAkmS+pOBUX3DwChJUjUMjOobBkZJkqphYFTfMDBKklQNA6P6hoFRkqRqGBjVNwyMkiRVw8CovmFglCSpGgZG9Y1lyzrdAkmS+pOBUX3DHkZJkqphYFTfWLq00y2QJKk/GRjVN5Ys6XQLJEnqTwZG9Q17GCVJqoaBUX3DwChJUjUMjOobDklLklQNA6P6hj2MkiRVw8CovmFglCSpGgZG9Q2HpCVJqoaBUX3DHkZJkqphYFTfMDBKklQNA6P6hkPSkiRVw8Conjeq/FtsD6MkSdUwMKrnvehFxauBUZKkahgY1fMGBopXh6QlSaqGgVE9L7N4tYdRkqRqGBjV8wyMkiRVy8CovuGQtCRJ1TAwqufVehgNjJIkVcPAqJ5XC4wrVnS2HZIk9auuCYwRsbBhWxERX607fkRE3F0euy4iNm9S19SIuCYinoqIRyLizIgYKI+9p+E6z0RERsRu5fGTImJZQ5ltqv8GtLpqgXH58s62Q5KkftU1gTEzJ9Y2YBNgMTALICJmAqcA+wMbAvcCFzep7mvAY8BmwK7ATOCY8joXNVzrGOAe4Nd153+vvkxm3tPCj6qK2MMoSVI1uiYwNng7ReC7sXy/HzArM+dk5lLgZGCviJg2xPlbA5dk5rOZ+QhwHTB9iLKHAxdk1vqp1GvsYZQkqVrdGhgbQ1yUG3XvAXYa4vwzgIMjYnxETAHeQhEaVxIRWwF7ARc0HNovIp6MiDkRcXSzhkbEkRExOyJmz507t/mnUiUMjJIkVavrAmNEbEkxhHx+3e5rgHdGxM4RMQ44EUhg/BDV/IyiR/Fp4AFgNvD9QcodBtyYmffW7bsE2BGYDLwfODEiDhmqvZl5TmbOyMwZkydPHsYnVKu56EWSpGq1JTBGxA3lwpLBtpsaih8G3FQf4jLzx8BngEuB+4H7gAUUYbDxWqOAHwKXAROAjYENgFMHadphrBxMyczfZeZDmbkiM39O0Vv59tX64GorexglSapGWwJjZu6dmTHEtmdD8ReEuLKOszJz28x8MUVwHADuGORyGwJbAGdm5pLMfAI4F9i3vlBEvBbYHPjPVTWflYfD1WXsYZQkqVpdNSQdEXsAUyhXR9ftHxsRO0VhS+Ac4IzMfKqxjsx8nGIV9dERMRAR61PMibytoejhwKWZuaDhWvtHxAbltXYHPgRc0aKPqAo4h1GSpGp1VWCkCHGXNYY4YCzwHWAhcAvwC+CE2sGI+GREXFtX/kBgH2AucDewHDi2rvxY4J0M0pMJHFyes4BiMcypmTlYOXUJexglSarWQKcbUC8zjxpi/zxg5ybnndLw/jfA3k3KPwusP8SxIRe4qLvZwyhJUjW6rYdRGjF7GCVJqpaBUX3DHkZJkqphYFRPq38+jz2MkiRVw8CovmEPoyRJ1TAwqqfV9zAaGCVJqoaBUT3NIWlJkqpnYFRPs4dRkqTqGRjVN+xhlCSpGgZG9TR7GCVJqp6BUT3NOYySJFXPwKieZg+jJEnVMzCqb9jDKElSNQyM6mn2MEqSVD0Do3qacxglSaqegVF9wx5GSZKqYWBUT6v1MI4ebQ+jJElVMTCqp9UC45gxRQ9j/RC1JElqDQOjelotIA4MFK/PPde5tkiS1K8MjOoLY8YUrw5LS5LUegZG9bTGHkYXvkiS1HoGRvW0xsBoD6MkSa1nYFRPq1/0AvYwSpJUBQOj+sLo0cWrPYySJLWegVE9zSFpSZKqZ2BUTzMwSpJUPQOjepqBUZKk6hkY1RecwyhJUnUMjOpp9jBKklQ9A6N6moFRkqTqGRjV0wyMkiRVz8CovlCbw/jcc51thyRJ/cjAqJ5W62F00YskSdUxMKqnOSQtSVL1DIzqaQZGSZKqZ2BUX3BIWpKk6hgY1dPsYZQkqXoGRvU0A6MkSdUzMKqnGRglSape1wTGiFjYsK2IiK/WHT8iIu4uj10XEZs3qWvHiPhJRMwvz/m7huOvj4g7I+KZiPhpRGxVdywi4tSIeKLcTouIqOZTq1WcwyhJUnW6JjBm5sTaBmwCLAZmAUTETOAUYH9gQ+Be4OLB6omIAeAK4Kqy7JHAhRGxXXl8Y+Ay4ITy+Gzge3VVHAkcAOwC7Ay8DTiqhR9VLdR4H0Zv3C1JUut1TWBs8HbgMeDG8v1+wKzMnJOZS4GTgb0iYtog5+4AbA58KTNXZOZPgJuBQ8vjBwJzMnNWZj4LnATsEhE7lMcPB07PzAcy80HgdOB9Lf+EagmHpCVJql63BsbDgQsya3GAKDfq3gPsNMi5gw0fR13Z6cBttQOZuQj4Y7n/BcfLn6ejrmRglCSpel0XGCNiS2AmcH7d7muAd0bEzhExDjgRSGD8IFXcSdE7eXxEjImIN5X11cpOBOY3nDMfWHeI4/OBiUPNY4yIIyNidkTMnjt37nA/plrMOYySJFWnLYExIm6IiBxiu6mh+GHATZl5b21HZv4Y+AxwKXA/cB+wAHig8VqZuYxiDuJbgUeA44BL6souBCY1nDaprG+w45OAhXW9nY3XOyczZ2TmjMmTJzf7GlQBexglSapeWwJjZu6dmTHEtmdD8cNYuXexVsdZmbltZr6YIjgOAHcMcb3bM3NmZm6UmW8GtgFuKQ/PoVjQAkBETACmlftfcLz8eQ7qSgZGSZKq11VD0hGxBzCFcnV03f6xEbFTecubLYFzgDMy86kh6tm5PGd8RHwM2Aw4rzx8ObBTRBwUEWMphrdvz8w7y+MXAB+NiCnlrXuOqztXXcbAKElS9boqMFIsdrksMxc07B8LfIdiuPgW4BcUt8UBICI+GRHX1pU/FHiYYi7j64E3ZuYSgMycCxwEfB54Cng1cHDdud8ArgR+S9GDeXW5T13MOYySJFVnoNMNqJeZg97vMDPnUdwTcajzTml4fzxwfJPy11PcfmewYwl8vNzU5Rrvw2hglCSp9bqth1EakcYhaW/cLUlS6xkY1RfsYZQkqToGRvU0F71IklQ9A6N6moFRkqTqGRjV0wyMkiRVz8CovuAcRkmSqmNgVE+zh1GSpOoZGNXTDIySJFXPwKie5o27JUmqnoFRfaEWGL1xtyRJrWdgVE9zSFqSpOoZGNXTDIySJFXPwKieVguMo8q/yQZGSZJaz8CovhBRzGM0MEqS1HoGRvW0Wg8jGBglSaqKgVE9rRYY7WGUJKk6Bkb1NAOjJEnVMzCqL9QCo/dhlCSp9QyM6mn1cxhHjbKHUZKkKhgY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zfswSpJUPQOjeppD0pIkVc/AqJ5mYJQkqXoGRvUFA6MkSdUxMKqnNc5h9MbdkiS1noFRPa1+SNobd0uSVA0Do3qacxglSaqegVF9wcAoSVJ1DIzqad6HUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zTmMkiRVz8ContY4JO2NuyVJaj0Do3qaN+6WJKl6Bkb1BecwSpJUHQOjeppzGCVJql7XBMaIWNiwrYiIr9YdPyIi7i6PXRcRmzepa8eI+ElEzC/P+bu6Y6+JiB9FxJMRMTciZkXEZnXHT4qIZQ1t2aa6T6414W11JEmqXtcExsycWNuATYDFwCyAiJgJnALsD2wI3AtcPFg9ETEAXAFcVZY9ErgwIrYri2wAnANMBbYCFgDnNlTzvfr2ZOY9LfugqoSBUZKk6nRNYGzwduAx4Mby/X7ArMyck5lLgZOBvSJi2iDn7gBsDnwpM1dk5k+Am4FDATLz2syclZlPZ+YzwJnAayv+PKqIQ9KSJFWvWwPj4cAFmX+JA1Fu1L0H2GmQc2OIfYOVBdgLmNOwb79yyHpORBw9zDarAxySliSpel0XGCNiS2AmcH7d7muAd0bEzhExDjgRSGD8IFXcSdE7eXxEjImIN5X1vaBsROxc1nV83e5LgB2BycD7gRMj4pAm7T0yImZHxOy5c+eO4JOqFQyMkiRVry2BMSJuiIgcYrupofhhwE2ZeW9tR2b+GPgMcClwP3AfxdzDBxqvlZnLgAOAtwKPAMdRhMCVykbES4FrgQ9n5o115/8uMx8qh7N/DpxBMUQ+qMw8JzNnZOaMyZMnD/crUYvV7sPojbslSWq9tgTGzNw7M2OIbc+G4oexcu9irY6zMnPbzHwxRXAcAO4Y4nq3Z+bMzNwoM98MbAPcUjseEVsB1wMnZ+a3V9V8Bh/mVhdwDqMkSdXrqiHpiNgDmEK5Orpu/9iI2CkKW1Kscj4jM58aop6dy3PGR8THgM2A88pjU4CfAGdl5tcHOXf/iNigvNbuwIcoVl2rCzkkLUlS9boqMFIsdrksMxc07B8LfAdYSNFT+AvghNrBiPhkRFxbV/5Q4GGKuYyvB96YmUvKY0dQ9Dh+pv5ei3XnHgzcTTHkfQFwama+oMdT3cHAKElS9QY63YB6mXnUEPvnATs3Oe+UhvfHs/JClvpjnwU+26SuIRe4qHsZGCVJqk639TBKI+IcRkmSqmdgVE9zSFqSpOoZGNXTDIySJFXPwKi+YGCUJKk6Bkb1tPo5jN64W5KkahgY1dMckpYkqXoGRvU0A6MkSdUzMKov1AJj5srD1JIkac0ZGNXT6sPhQHkb+uXLO9MWSZL6lYFRPa1+SHrMmOLnZcs61x5JkvqRgVE9zcAoSVL1DIzqCwZGSZKqY2BUT6ufw2hglCSpGgZG9bT6IekXvaj4eenSzrVHkqR+ZGBUT3MOoyRJ1RsYTqGIeBPwPmA6sC6wAJgDnJuZP6qsddIwGRglSarOKgNjRBwLfBz4d+BSYD4wCdgFOD8iTs3MMyptpTQE5zBKklS94fQwHg+8LjPvbNh/WURcDPwUMDCqIxySliSpesOZwzgBeGiIY48A41vXHGlkDIySJFVvOIHxUuDKiHh9REyOiBdFxMYR8XrgcuA/q22itGoGRkmSqjOcwPhPwM+B84FHgcXl6/nAfwNHV9Y6aRXq5zB6Wx1JkqqxyjmMmbkU+GfgnyNifWAisDAz5zWWjYjXZubNrW6kNBSHpCVJqt6wbqtTU4bEeU2KXEuxglpqCwOjJEnVa/WNu6PF9UnDYmCUJKk6rQ6MueoiUut4H0ZJkqrnowHV0xySliSpegZG9TQDoyRJ1XMOo/qGt9WRJKkaIwqMEbFRRBwaER8v328eES+pHc/MdVvdQKkZexglSaresANjRMwE/hd4D3BCuXtb4OwK2iUNi4FRkqTqjaSH8cvAuzJzH2B5ue+XwO6tbpQ0UgZGSZKqM5LAODUzf1z+XLuZyVJGePNvqZV8NKAkSdUbSWD8XUS8uWHfG4DftrA90og0DkmPHg2LF3e2TZIk9ZuR9A4eB1wVEVcD4yLiG8B+wP6VtEwahvrACDBunIFRkqRWG3YPY2b+N7ALMAf4D+BeYPfM/FVFbZOGzcAoSVJ1RjT/MDMfBE6rqC3SiGXDwygNjJIktV7TwBgR32YYz4fOzMNa1iJpBBySliSpeqsakr4b+GO5zQcOAEYDD5Tn7g/Mq655UnMGRkmSqtc0MGbmZ2sbsB3w1sx8T2Z+MjPfC7wV2L4VDYmIhQ3bioj4at3xIyLi7vLYdRGxeZO6doyIn0TE/PKcv6s7NjUisuFaJ9Qdj4g4NSKeKLfTIsJHHnY5A6MkSdUZyW11XgP8d8O+XwJ/1YqGZObE2gZsAiwGZsFfnjJzCkWP5oYUC24uHqyeiBgArgCuKsseCVwYEds1FF2/7pon1+0/kqIndRdgZ+BtwFGt+IxqPecwSpJUvZEExv8BTomIcQDl6+eB31TQrrcDjwE3lu/3A2Zl5pzMXAqcDOwVEdMGOXcHYHPgS5m5IjN/AtwMHDrMax8OnJ6ZD5SLfE4H3rf6H0VVckhakqTqjSQwvg94LTA/Ih6lmNO4J1DFgpfDgQsy/9J/FOVG3XuAnQY5d7Dh4xik7P0R8UBEnBsRG9ftnw7cVvf+tnKfupCBUZKk6o3kPoz3ZeYewDTgb4GXZuYemXlfKxsUEVsCM4Hz63ZfA7wzInYuezZPpFi9PX6QKu6k6J08PiLGRMSbyvpqZR8HXgVsBewGrAtcVHf+RIowXDMfmDjUPMaIODIiZkfE7Llz547sw6plDIySJFVnJD2MRMQGwOuAvwH2Lt8P57wbyoUmg203NRQ/DLgpM++t7SifYf0Z4FLgfuA+YAHFau2VZOYyijmIbwUeoXhCzSW1spm5MDNnZ+byzHwU+ADwpoiYVFaxEJhUV+UkYGFdb2fj9c7JzBmZOWPy5MnD+TrUQs5hlCSpesMOjBHxVxS31/knisUgRwF/LPc3lZl7Z2YMse3ZUPwwVu5drNVxVmZum5kvpgiOA8AdQ1zv9sycmZkbZeabgW2AW4ZqXu0jlq9zKBa81NSebqMu1DgkPX48PPNM59ojSVI/GsmTXr4MHJOZ363tiIh3AV+hGOJdYxGxBzCFcnV03f6xwEspgtsWwDnAGZn51BD17AzcRRGIjwE2A84rj72a4t6RfwA2KNt/Q2bWhqEvAD4aEddQhMnjgK+irtQYGCdNgoUL4bnnYNSI+s8lSdJQRvK/1O0ohnbr/SdFkGuVw4HLMnNBw/6xwHcohotvAX4B1N878ZMRcW1d+UOBhynmMr4eeGNmLimPbQNcRzGkfQewBDik7txvAFcCvy2PX13uUxerBcb11itC5MKFnW2PJEn9ZCQ9jH8ADqYIbjXvoBimbonMHPR+h5k5j2IYfKjzTml4fzxw/BBlL2aIeziWxxP4eLmpyzXOYZxUzj6dP//5nyVJ0poZSWD8CHBVRHyIYuHJVGBbihtbSx3ROCS93nrF6/z5sMUWnWmTJEn9ZtiBMTN/Xt4o+60UN8a+ErgmM5+sqnHSqgw2hxHg6ac70x5JkvrRSHoYKReZXFhRW6TVNlgPoyRJao1hB8aI2JriUYC7Utzc+i8yc8vWNksanqHmMNrDKElS64ykh/E7FAtcjgO80526QrM5jJIkqTVGEhinA6/NzOeqaow0UgZGSZKqN5L7MP4X8IqqGiKtiVpgnDChuGG3Q9KSJLXOSHoY7wN+GBGXUTyj+S8y88RWNkoarsY5jBHFPEZ7GCVJap2RBMYJFLfSGUPxeL6aHLy4VL3GIWkoAqM9jJIktc5I7sP496sqExGHlE9SkdpisMC43nr2MEqS1EojmcM4HD5zWR3R2MNoYJQkqXVaHRhj1UWk1mmcwwhFD6ND0pIktU6rA6PzGdVWQw1Jz5vXkeZIktSXWh0YpbYaLDBuvDE8/nhn2iNJUj9aZWCMCEOlul59YNx002IO47PPdq49kiT1k+GEwQcj4rSI2GkYZf+0pg2SRmKwOYybbFK8Pvpoe9siSVK/Gk5g/Cdga+BXEfHriPhwREwerGBmDidUSi0z2JC0gVGSpNZaZWDMzCsy8x3AZhS3zXkH8OeI+EFEHBQRY6pupLQqjUPSAA8/3Jm2SJLUb4Y9PzEz52XmNzJzT2BHYDbwJcD/LatjBhuS3nrr4vWee9rbFkmS+tVIHg0IQESsA7wKeDWwCfDzVjdKGq7BhqQ32qhYKf3733emTZIkrY5MWLYMFi8eenvmmebHR1JuJIYdGCNiT+Aw4J3AY8C3gWMy8/6RXVJqncECI8AOO8CcOe1vjySp/2TCkiXPh7Bnnll5a9y3Ju9XrFi9No4eDePGPb+NH7/y+w03XPn9uHHw5S8Pv/5VBsaIOAk4FNgQmAW8NTNvXr2PI1WjMTDusQf8278VT3yZNKkzbZIkVeu554pbqA03mK1JmBtsCtSqjBlTBLfaVgty48fD5MmDHxss7A22NZYZsxorSloaGIHXAJ8Cvp+Z3tlOXWWo/4D33RdOOw2uvx4OPLC9bZIkFZYtg0WLisC1aNHzW/37Zsfq3w8W5lb3frtjx74wwNXeb7DB4AFvpO/HjYOBEU/8616r/CiZuU87GiKtjqGGpPfYo3hE4FVXGRglaSgrVow8uI0k9C1bNrL2DAzAhAnFNn788z9PmAAvfvGaBbj6HrlRPpJkxPoo+2ptNFRgHDMG9tsPLr8cvva14l+TktSLMosAtnDhytuiRS/cV9s/3NC3dOnI2jJq1NCBbsMNV37feHw471/0omq+Q605A6P6QmNgBPiHf4ALL4SvfAU+/vH2t0nS2iWzCGCrCnOD7W92bKTz5xqDWC2Mbb750GFtuIFunXUG/32r/mdgVE9r9kt0773hgAPgE58oflG+973tapWkbpdZzH9bsGDlbaRhrnH/8uXDb8M668DEic9vEyYUrxttNPj+xm2w/Q63qioGRvW0oYaka/u+8x1429vg8MNh3jw45hh/mUq9avnyFwa8+u3pp5sfb9yGe/uSUaMGD2ybbDJ0mFtV0JswYfVWtUqdYmBUT2sWGKH41/YPfgDveAd88INw6aXwzW/CtGnta6O0tsoseuBGGuSG2oa7InZgANZdd+Vt0iSYMuWF+wfbGgOew7CSgVF9otkv8wkT4Oqr4dxz4aMfhZe/HE45pQiQo0e3r41Sr6gtsnj6aZg/v3hdnZ+ffnp4c+8iimDWGNy22mp4Aa9xM+BJrWdgVE8b7kTwiGIRzJvfDEcdBcceC9/9Lnz967DrrpU2UWqb2ry84Ya6ZkFvOMO148cXt6+aNKnY1lsPNt30+Z8nTXq+d69ZwBs/3qkiUrczMKqnjfTO+1OmwJVXwkUXFb2Nu+0GH/oQfO5zxf+4pE5avrwIbvPmrbw17qt/3xj2hnPfu7FjXxj0pk1bOeit6ud11+2vmxJLas7/3NXTMkc+9BRRrJh+61vhn/8ZzjgDZs0qHpF00EEOZWn1LVky/KA32L5Fi5rXH1GEtfXXL7b11oMttxx50PNed5JGysConre6AW+DDYoh6fe9D44+ulgY85a3wJlnwjbbtLSJ6hHPPVcEuKeegiefXPn1qadWHQZXtShj9Ojnw14t8G266Qv31b+v37/uug7dSuoMA6N62uo8DL7Ra14Dv/pVERRPOAGmT4dPfQqOP76YPK/eUluwMVjoG+q19vO8ec3/Tr3oRS8McltuOXi4G2zfhAn2YEvqTQZG9bTVGZIezMAAfOQjRS/jsccWwfHCC+Hss+F1r1vz+jVyy5aNLPTVh79mjzsbPbroXd5gg+JRZhtvDNtuW/xc21f/Wv/zuHHt+/yS1E0MjOpprQqMNVOmwCWXwHXXwf/5P/A3fwPvehd8+tOw006tu87a4rnnioUYqxP6Fi5sXvekSSuHuZ12WnXg23DDYljXXj5JGhkDo3peFf/z32cfuOMO+MIX4PTT4Xvfg/32K3ofZ85cu+aRZcLixasX+ubNK0LjUMaOXTnMTZ0Kr3zl4EGv/nX99V2hK0nt5K9c9bRWzGEcyrhxxe12PvxhOOss+MpXilvybLklvPvdsO++xfzHbn68V2axcrfxvnvDea2f2zfSId7tthu6t88hXknqPV0TGCOicQBqHPC1zPxgefwI4BPApsBNwD9k5kND1LUjcBawGzAXOD4zLy+PvQf4Rl3xUeW1ZmTmrRFxEvApYEldmZ0z8541+4SqQquHpAez0UZw4onwsY/BFVfABRfAv/4rfPGLxdMpXvEK2GWXYkh0yhTYbLMiNI0dW2y1hTPLlr1wW7Kk6L1bvLhYYVv7eahtdco06+GrGTfuhbdgmT69eS+fQ7yStPbomsCYmRNrP0fEBOBRYFb5fiZwCvA64A/AGcDFwMzGeiJiALgC+DrwxrLMlRHxisy8KzMvAi6qK/8+4ATg13XVfC8z39vKz6dqtCMw1owfD4ccUmzz5sFPfwrXXw+/+Q2cd96q59ytqXXWKYJd4zZ2bBHwNtlk8OO1p3HUwmD9q/flkyQNR9cExgZvBx4Dbizf7wfMysw5ABFxMvBgREzLzD82nLsDsDnwpcxM4CcRcTNwKEUwbHQ4cEFZVj2oE71b668Pf/d3xQZFL96DD8JDD8HDD8Pjjxe9h7UNiqHrxm2ddYrAN1jQqw+EY8euXfMmJUndpVsDY2OIi3Kj7j3ATkBjYBwsPkRZduWdEVsBewH/0HBov4h4EngYODMzzx5Z89Uu3RLzR42CLbYoNkmS+k3X9VlExJYUw8jn1+2+BnhnROwcEeOAE4EExg9SxZ0UvZPHR8SYiHhTWd9gZQ8DbszMe+v2XQLsCEwG3g+cGBGHNGnvkRExOyJmz507d9ifU63RziFpSZLWVm0JjBFxQ0TkENtNDcUPA26qD3GZ+WPgM8ClwP3AfcAC4IHGa2XmMuAA4K3AI8BxFCHwBWXLa9UHUzLzd5n5UGauyMyfU8yXfPtQny0zz8nMGZk5Y/Lkyc2/CLWcgVGSpOq1JTBm5t6ZGUNsezYUf0GIK+s4KzO3zcwXUwTHAeCOIa53e2bOzMyNMvPNwDbALfVlIuK1FHMd/3NVzWfwYW51CQOjJEnV6qoh6YjYA5hCuTq6bv/YiNgpClsC5wBnZOZTQ9Szc3nO+Ij4GLAZcF5DscOBSzNzQcO5+0fEBuW1dgc+RLHqWl2oW+YwSpLUz7pt0cvhwGWNIQ4YC3wHmEYxFH0udSueI+KTwF9n5lvKXYcCRwBjKFZavzEzl9SVHwu8EzhokDYcDPwHsA7FMPapmfmCHk+119Kl8Kc/wX33Fdu99xavl13mEz8kSapaeDeZ1pkxY0bOnj27083oSZkwdy7cfTf88Y/Fds89zwfDBx9cuTdx9OhiW7q0uI/g0093rOmSJPWkiLg1M2cMp6x9M2qbFSvggQeeD4S1cFh7rb/xdQS85CWw9dbwN39TPGN4662L16lTi2MHHwyXXuocRkmSqmZgVEtlFjetvvPOYvvf/y1e77676C2sfybxmDGwzTYwbRrstRe89KXFz9OmFeGw9kg9SZLUWQZGrZZly4oh4/pQWPv5ySefLzd2LGy7bfGc5f33L8JgLRi+5CXFsPLqqvUs2sMoSVK1DIxq6rnn4P774be/XXm76y5Yvvz5cptuCjvsAO94R/Fa27bcsrpH2hkYJUlqDwOj/mL+fPjNb4pAePvtxesdd6w8t3DqVHj5y+Fv/xZ23LEIhdtvD+ut1/72GhQlSWoPA+Naat48+PWv4dZbn9/uvvv54xtuWATD972veH35y2H6dJg0qVMtfiF7GCVJag8D41pg2TK47Ta4+Wb4xS9eGA633BJ22w3+/u/hla+EnXeGzTbr/iBmYJQkqT0MjH1o/nz4+c+LgHjzzXDLLfDMM8Wxl7wEXvWqIhzutlsREHv9EdgGRkmSqmVg7ANLlhQ9h9dfX2y/+lWxWGX0aNh1VzjiCNhjj2LbYotOt7Z1DIqSJLWHgbFH/fnPcMUVcNVV8F//BYsXFwHx1a+GT38a9t4bdt8dJkzodEur45C0JEntYWDsIb//ffHs5O9/H2pPINxuu6IH8Q1vKEJiNy1KqZqBUZKk9jAwdrm5c+Hii+H884tVzQCveQ188YvFjbB32KGz7eskA6MkSe1hYOxCmcVilS9/uRh2Xr68WJzy5S8XN8befPNOt7A7GBQlSWoPA2MXWbECZs2C008vhpw32AA+/OHiXog77dTp1nUvg6MkSdUyMHaBTLjySvjUp4onq2y/PZx9Nhx6aH8vWllTDklLktQeBsYOmzMHjj4abrwRtt0WvvvdYti5qucv9xMDoyRJ7WEs6ZClS4vb3+y6axEav/GN4vVd7zIsDpdBUZKk9rCHsQPuv78Ihr/8ZTHsfPrpvf+0lU6wh1GSpPYwMLbZj35UhMXaApe3v73TLepdBkZJktrDwc82uugi2Hff4vF8v/61YbFVDIySJFXLwNgm//Ef8N73wp57Fo/ymzat0y3qfQZFSZLaw8DYBpdfDu9/P7z5zXDttbDeep1uUX9wSFqSpPYwMFbsl7+Egw+G3XeHSy+FsWM73aL+YWCUJKk9DIwVevzx4p6Km20GV13lTbhbzcAoSVJ7uEq6QkcdBY8+WjwXeqONOt2a/mNQlCSpPQyMFbn8crjsMvjCF2DGjE63pr8ZHCVJqpZD0hVYvBg++EHYZRc47rhOt6Z/OSQtSVJ72MNYgbPPhgcfhO98B8aM6XRr+peBUZKk9rCHscWWLYPTToM3vAH22qvTrelvBkVJktrDHsYWu/rqYqHLN7/Z6Zb0P3sYJUlqD3sYW+zcc4vb6OyzT6db0v8MjJIktYeBsYUy4frr4cADYcC+28oZGCVJag8DYws980yx7b13p1siSZLUOgbGFlqwoHj967/ubDvWFvYwSpLUHgbGFlq4ELbfHjbZpNMtWTsYGCVJag8DYwstXgyveEWnW7H2MDBKktQeBsYWWroUdtih061YexgUJUlqDwNji22/fadbsPawh1GSpPbomsAYEVMj4pqIeCoiHomIMyNioO746yPizoh4JiJ+GhFbNalrw4i4PCIWRcT9EfHuhuND1hWFUyPiiXI7LWL4kWTq1BF+cK0xA6MkSdXqmsAIfA14DNgM2BWYCRwDEBEbA5cBJwAbArOB7zWp6yxgKbAJ8B7g7IiYPsy6jgQOAHYBdgbeBhw13A8xZcpwS2pN2cMoSVJ7dFNg3Bq4JDOfzcxHgOuA6eWxA4E5mTkrM58FTgJ2iYgXzBiMiAnAQcAJmbkwM28CfgAcOsy6DgdOz8wHMvNB4HTgfcP9EJtuOpKPrDVhUJQkqT26KTCeARwcEeMjYgrwForQCEVwvK1WMDMXAX/k+UBZbztgRWbeVbfvtrqyq6prpeMN5zY1MABjxgynpFrBHkZJktqjmwLjzyiC2dPAAxRDxd8vj00E5jeUnw+sO0g9qyo70uPzgYlDzWOMiCMjYnZEzB41avlgRVQRA6MkSe3RlsAYETdERA6x3RQRo4AfUswtnABsDGwAnFpWsRCY1FDtJGDBIJdbVdmRHp8ELMzMHOyzZeY5mTkjM2e8/OU+QLqdDIqSJLVHWwJjZu6dmTHEtifF4pMtgDMzc0lmPgGcC+xbVjGHYhEK8Jd5itPK/Y3uAgYiYtu6fbvUlV1VXSsdbzhXXcjgKElStbpiSDozHwfuBY6OiIGIWJ9i8UltLuHlwE4RcVBEjAVOBG7PzDsHqWsRRU/l5yJiQkS8Ftgf+PYw67oA+GhETImIzYHjgPNa/6m1phySliSpPboiMJYOBPYB5gJ3A8uBYwEycy7FyufPA08BrwYOrp0YEZ+MiGvr6joGGEdxm56LgaMzc85w6gK+AVwJ/Ba4A7i63KcuY2CUJKk9umbSXWb+Bti7yfHrgUEfvJeZpzS8f5LiXoqrU1cCHy83dTGDoiRJ7dFNPYzSiNjDKElSexgY1bMMjJIktYeBUT3PwChJUrUMjOpZBkVJktrDwKie5ZC0JEntYWBUzzIwSpLUHgZG9SyDoiRJ7WFgVM8yMEqS1B4GRkmSJDVlYFTPsodRkqT2MDCqZ9UCY2Zn2yFJUr8zMKpn2cMoSVJ7GBjVswyMkiS1h4FRPcv7MEqS1B4GRvU85zBKklQtA6N6lj2LkiS1h4FRPcvAKElSexgY1bO8rY4kSe1hYFTPctGLJEntYWBUzzIwSpLUHgZG9TwDoyRJ1TIwqmcZFCVJag8Do3qWQ9KSJLWHgVE9y8AoSVJ7GBjVswyMkiS1h4FRPcvAKElSexgYJUmS1JSBUT3LHkZJktrDwKieZWCUJKk9DIzqWQZFSZLaw8ConmUPoyRJ7WFgVM8yMEqS1B4GRvU8A6MkSdUyMKpnGRQlSWoPA6N6lkPSkiS1h4FRPcvAKElSexgY1bMMipIktYeBUT3LHkZJktrDwKieZ2CUJKlaXRMYI2JqRFwTEU9FxCMRcWZEDNQdf31E3BkRz0TETyNiqyZ1bRgRl0fEooi4PyLeXXfsNRHxo4h4MiLmRsSsiNis7vhJEbEsIhbWbdtU98m1uuxhlCSpPbomMAJfAx4DNgN2BWYCxwBExMbAZcAJwIbAbOB7Teo6C1gKbAK8Bzg7IqaXxzYAzgGmAlsBC4BzG87/XmZOrNvuWdMPp9YzMEqS1B4Dqy7SNlsDZ2bms8AjEXEdUAt5BwJzMnMWFL2AwOMRsUNm3llfSURMAA4CdsrMhcBNEfED4FDgE5l5bUP5M4GfVfi5VBGDoiRJ7dFNPYxnAAdHxPiImAK8BbiuPDYduK1WMDMXAX/k+UBZbztgRWbeVbfvtiHKAuwFzGnYt185ZD0nIo4e+UdRO9jDKElSe3RTYPwZRah7GniAYtj5++WxicD8hvLzgXUHqWfYZSNiZ+BE4Pi63ZcAOwKTgfcDJ0bEIUM1OiKOjIjZETF77ty5QxVTBQyMkiS1R1sCY0TcEBE5xHZTRIwCfkgxT3ECsDHFXMNTyyoWApMaqp1EMf+w0bDKRsRLgWuBD2fmjbX9mfm7zHwoM1dk5s8pej7fPtRny8xzMnNGZs6YPHly8y9CLWVglCSpPdoSGDNz78yMIbY9KRaybEExh3FJZj5BsRBl37KKOcAutfrKeYrTeOFQMsBdwEBEbFu3b5f6suUK6+uBkzPz26tqPmAkkSRJa62uGJLOzMeBe4GjI2IgItYHDuf5eYuXAztFxEERMZZiGPn2xgUvZV2LKHoqPxcREyLitcD+wLcByvmRPwHOysyvN54fEftHxAZR2B34EHBFiz+yWsAeRkmS2qMrAmPpQGAfYC5wN7AcOBYgM+dSrHz+PPAU8Grg4NqJEfHJiKhf/XwMMI7iNj0XA0dnZq2H8QhgG+Az9fdarDv34PL6C4ALgFMz8/wWf1a1gIFRkqT26Jrb6mTmb4C9mxy/HthhiGOnNLx/EjhgiLKfBT7b5DpDLnBRdzEoSpLUHt3UwyiNiD2MkiS1h4FRPcvAKElSexgY1fMMjJIkVcvAqJ5lD6MkSe1hYFTPMihKktQeBkb1LHsYJUlqDwOjepaBUZKk9jAwqmcZGCVJag8DoyRJkpoyMKpn2cMoSVJ7GBjV8wyMkiRVy8ConpXZ6RZIkrR2MDCq59nDKElStQyM6lm1HkYDoyRJ1TIwqmc991zxamCUJKlaBkb1PAOjJEnVMjCqZ7noRZKk9jAwqufZwyhJUrUMjOpZ9jBKktQeBkb1LFdJS5LUHgZG9SwDoyRJ7WFgVM8yMEqS1B4GRvU8A6MkSdUyMKpnuehFkqT2MDCq59nDKElStQyM6lnOYZQkqT0MjOpZPktakqT2MDCq5xkYJUmqloFRPctFL5IktYeBUT3PHkZJkqplYFTPsodRkqT2MDCqZ7lKWpKk9jAwqmcZGCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y0UvkiS1h4FRPc8eRkmSqmVgVM9yDqMkSe1hYFTP8lnSkiS1R9cExoiYGhHXRMRTEfFIRJwZEQN1x18fEXdGxDMR8dOI2KpJXRtGxOURsSgi7o+IdzdcJyNiYd12Qt3xiIhTI+KJcjstwkjSzfzTkSSpWl0TGIGvAY8BmwG7AjOBYwAiYmPgMuAEYENgNvC9JnWdBSwFNgHeA5wdEdMbyqyfmRPL7eS6/UcCBwC7ADsDbwOOWpMPpmq46EWSpPbopsC4NXBJZj6bmY8A1wG1kHcgMCczZ2Xms8BJwC4RsUNjJRExATgIOCEzF2bmTcAPgEOH2Y7DgdMz84HMfBA4HXjfGnwuVcweRkmSqtVNgfEM4OCIGB8RU4C3UIRGKILjbbWCmbkI+CPPB8p62wErMvOuun23DVL2/oh4ICLOLXswa1a61hDn/kVEHBkRsyNi9ty5c5t/QrWUPYySJLVHNwXGn1EEs6eBByiGnb9fHpsIzG8oPx9Yd5B6VlX2ceBVwFbAbuX+i5qcPx+YONQ8xsw8JzNnZOaMyZMnD/XZVAFXSUuS1B5tCYwRcUO50GSw7aaIGAX8kGKe4gRgY2AD4NSyioXApIZqJwELBrlc07LlMPXszFyemY8CHwDeFBGThjh/ErAw0/6sbnP44XDAAfDpT3e6JZIk9be2BMbM3DszY4htT4qFLFsAZ2bmksx8AjgX2LesYg7FIhTgL/MUp5X7G90FDETEtnX7dhmiLEAtCNb6qVa61irOVQdNmgSXXw6bbtrplkiS1N+6Ykg6Mx8H7gWOjoiBiFifYvFJbS7h5cBOEXFQRIwFTgRuz8w7B6lrEUVP5eciYkJEvBbYH/g2QES8OiK2j4hREbER8BXghsysDUNfAHw0IqZExObAccB51XxySZKk7tcVgbF0ILAPMBe4G1gOHAuQmXMpVj5/HngKeDVwcO3EiPhkRFxbV9cxwDiK2/RcDBydmbVewm0oFtMsAO4AlgCH1J37DeBK4Lfl8avLfZIkSWulcGpe68yYMSNnz57d6WZIkiStUkTcmpkzhlO2m3oYJUmS1IUMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmIjM73Ya+ERELgP/tdDvWMhsDj3e6EWsZv/P28ztvP7/z9vM7b7/tM3Pd4RQcqLola5n/zcwZnW7E2iQiZvudt5ffefv5nbef33n7+Z23X0TMHm5Zh6QlSZLUlIFRkiRJTRkYW+ucTjdgLeR33n5+5+3nd95+fuft53fefsP+zl30IkmSpKbsYZQkSVJTBkZJkiQ1ZWBsgYjYMCIuj4hFEXF/RLy7023qdxHxgYiYHRFLIuK8Tren30XEOhHxrfLv94KI+J+IeEun29XvIuLCiHg4Ip6OiLsi4ohOt2ltERHbRsSzEXFhp9vS7yLihvK7Xlhu3s+4DSLi4Ij4fZld/hgRf92svPdhbI2zgKXAJsCuwNURcVtmzuloq/rbQ8C/AG8GxnW4LWuDAeDPwEzgT8C+wCUR8fLMvK+TDetzXwD+MTOXRMQOwA0R8T+ZeWunG7YWOAv4VacbsRb5QGZ+s9ONWFtExBuBU4F3AbcAm63qHHsY11BETAAOAk7IzIWZeRPwA+DQzrasv2XmZZn5feCJTrdlbZCZizLzpMy8LzOfy8yrgHuB3Trdtn6WmXMyc0ntbblN62CT1goRcTAwD/hxh5siVeWzwOcy87/L3+kPZuaDzU4wMK657YAVmXlX3b7bgOkdao9UuYjYhOLvvr3oFYuIr0XEM8CdwMPANR1uUl+LiEnA54DjOt2WtcwXIuLxiLg5IvbudGP6WUSMBmYAkyPi7oh4ICLOjIimo3UGxjU3EZjfsG8+MKxnM0q9JiLGABcB52fmnZ1uT7/LzGMofp/8NXAZsKT5GVpDJwPfysw/d7oha5H/D9gGmEJxX8ArI8Ke9OpsAowB3k7xe2VX4BXAp5udZGBccwuBSQ37JgELOtAWqVIRMQr4NsWc3Q90uDlrjcxcUU53eQlwdKfb068iYlfgDcCXOtyUtUpm/jIzF2Tmksw8H7iZYp60qrG4fP1qZj6cmY8D/8YqvnMXvay5u4CBiNg2M/9Q7tsFh+rUZyIigG9R/Ot038xc1uEmrY0GcA5jlfYGpgJ/Kv66MxEYHREvy8xXdrBda5sEotON6FeZ+VREPEDxPQ+bPYxrKDMXUQwTfS4iJkTEa4H9KXphVJGIGIiIscBoil/oYyPCfwBV62xgR2C/zFy8qsJaMxHx4vK2FxMjYnREvBk4BPhJp9vWx86hCOS7ltvXgasp7sagCkTE+hHx5trv8Ih4D7AX8MNOt63PnQt8sPw9swHwEeCqZif4P9jWOAb4D+AxilW7R3tLncp9GvhM3fv3Uqz6OqkjrelzEbEVcBTF/LlHyt4XgKMy86KONay/JcXw89cp/nF/P/CRzLyio63qY5n5DPBM7X1ELASezcy5nWtV3xtDcYu0HYAVFIu7DshM78VYrZOBjSlGSZ8FLgE+3+wEnyUtSZKkphySliRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglKQWiYg5EbF3m671soiYXUG9l0XEPq2uV1Jv8z6MkjRM5Y2ca8ZT3Mh8Rfm+rTcxj4hLgVmZ+d0W17s7cHZm7tbKeiX1NgOjJK2GiLgPOCIzr+/AtTejeF795pn5bAX1/wE4JDNb3oMpqTc5JC1JLRIR90XEG8qfT4qIWRFxYUQsiIjfRsR2EfHPEfFYRPw5It5Ud+56EfGtiHg4Ih6MiH+JiNFDXOqNwK/rw2J57eMj4vaIWFTWtUlEXFte//rymbGUz+29MCKeiIh5EfGriNikrv4bgLe2/AuS1LMMjJJUnf2AbwMbAP8D/JDi9+4U4HPAN+rKng8sB14KvAJ4E3DEEPW+HBjsWbsHUYTJ7cprXwt8kuKZsaOAD5XlDgfWA7YANgL+CVhcV8/vgV2G/Skl9T0DoyRV58bM/GFmLgdmAZOBL2bmMuC7wNSIWL/s3XsL8JHMXJSZjwFfAg4eot71gQWD7P9qZj6amQ8CNwK/zMz/ycwlwOUUQRRgGUVQfGlmrsjMWzPz6bp6FpTXkCQABjrdAEnqY4/W/bwYeDwzV9S9B5gIbA6MAR6OiFr5UcCfh6j3KWDdYVyv8f3E8udvU/Qufjci1gcuBD5VBlnKuucN9aEkrX3sYZSkzvszxYrrjTNz/XKblJnThyh/O8Ww82rJzGWZ+dnMfBmwB/A24LC6IjsCt61u/ZL6j4FRkjosMx8G/h9wekRMiohRETEtImYOccqPgFdGxNjVuV5EvC4iXl4uqnmaYoh6RV2RmRTzHyUJMDBKUrc4DHgR8DuKIef/BDYbrGBmPgr8BNh/Na+1aVn/0xQLXH5GMSxNRLwKWJSZt6xm3ZL6kPdhlKQeFBEvo1hZvXu28Bd5eUPwb2XmNa2qU1LvMzBKkiSpKYekJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU39///kYT0HtwwTAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBtUlEQVR4nO3debwcdZ3v/9cnnEg2whpZIhBAEAYElLhcZAgzjIgoFwZQQWX5OQwI1w0Rr6OCKCOK82MUBVFGL4sgSoZNVq+oOIALExxBoggoMIIgYQsJS9bP/aOqpdOc7nNO0tVbXs/Hox7dXfWtb327xcOb71IVmYkkSZLUzLhuN0CSJEm9zcAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySVisRcWNEfKPu83kRcUM32yRJvc7AKKkvRMT6EfGFiPhdRDwfEY9GxH9ExGERMVThdWdERDbZzhpjXefVnbs0Ih6IiK9FxPpVtX+YNpwZEcsi4gOduuYwbTivye+5PCJe2q12SWqusj+yktQuEfEy4BZgKXAS8F/AEmBX4CPAHcCvKrr8H4GNG/btBswGvrMS9d0EvJ3i7+8uwDeATYG3rEIbRyUiJgHvBk4FjgK+XPU1m/gg8LGGfVcAz2Tmo51vjqSR2MMoqR+cDawJvDozL8rM32TmPZl5PkXouqdWMCLeHxF3lb2Q90TEJ1alBzIzl2XmI/Ub8PfAbzLzppWocnFZz4OZeSXwJWDviJgYhY9ExB8iYnFE/D4iPlR/ckTcHxGfjYhvRMTTEfFYRJwWEaP5e/4O4PfAPwObRMSuDXWfXda/Tt2+c8vfca3y8z4RcVtELCp7eb8aEZPryp8XETdExFFlD+rTEXFlREyrlcnM+Q2/51TgdcDXxvZTSuoUA6OknhYR6wH7AGdm5vzG45m5JDOfKcueTNHj+E/AdhQ9WUcDn2pjezYADgS+3qYqn6P4WzwEHAucAnwe2B74F+DzEfEPDee8H/gT8BrgOOB9wIdGca2jgfMzcxFF7+hRDcePA54G/g0gIt4JvBM4ODMXRMSOwPeA/wB2Bg4H3sqLg95rgL+h6DXduyz7/4/Qrkcpehkl9SCHpCX1updTBKrftCpUDrd+FDggM68vd98XEZ+kGHo9sU3tOQJYDnxrVSuKiL8C/hfwizKQfQz4SmaeUxa5JyJeAXwC+Gbdqbdn5knl+99FxHbAh4F/bXGtnYBXA/uWu84DboyID2XmUwCZ+XxEvAOYExGfK9v2scy8rTznBOCXmXlc+fm3EfF+4PKI+GRmPlDuXwwcUQZTIuJsivA+XLvWpAie/5aZS5r/WpK6yR5GSb0uytccodz2wETg0ohYWNsoegLXrh8SXemGRARFr9wlmfnkSlazR9m254A7gT8A74yIqcDLKHrv6v0EmFEG4pqfNZS5BZhe1tHM0cC1mTkPIDNvBe6jmNP4F5n5W4pe2o8BN1MMmdds36R9AfxV3b7f1sJi6SFgwybtOghYj7JXU1JvsodRUq+7h6JHb3vg8hblav8B/Dbg7mGOP9GGtvwtsDVw2CrU8QuKHrWlwMN1vXC1sNcYjIORtSxTzjF8F7BWRCytOzSOIgCf2XDK7sAyYDNgAsWweU2z4F6/f/Ewx5q18b3A/83MPzT9ApK6zh5GST0tM58ArgPeFxFrNx6PiPFlIJoLPA9smZn3DrMta0NzjgbuyMyfr0Idz5Xtub++Fy4znwYeBGY1lN8duC8zn63b9/qGMv8D+FNZx3AOpgiAO1HMJ6xtfw1sHxF/qa+cL7l/2Y5JwBfr6pk7TPtmUQTCllMGhlMOye9G++aDSqqIPYyS+sGxFMOut0XESRS30FlMEZxOAA7PzF9FxKnAqcXIMT+g+Bv3SuBVmfm/V6UB5f0B92d0i0tW1ueA0yPiHuBGih7NYyjmEtbbuVzg821gJsX8wJNb1Hs0cHlm/rrxQETcQtHL+PNyvuQZwHGZeUtEHALcHBE/yMxLKRbh/DIi/hU4B5gBfAW4KDP/eyW+79HAw8BVK3GupA6yh1FSzyvDyKuBKymC0S+BnwL/SBFi7izLnUKx0vdI4HaKOXjHAfe3oRnvoQipFw53MCJOjoiR5lmO5GyK+0x+nKLH7n9TLDr5ZkO5rwCbA3MohpPPZsWewPp27UyxavmSJtf8LvCOsvf2O8D3M/NrAJn5i7I934iIzTPzDuB/UvQq3k6x8OcaimHlMYmIiRRD+9/MzKUjlZfUXZG5qn/fJEkRcQGwUWbuVfF17ge+kZn/XOV1JKmeQ9KStIrKm2bvSXHvQUkaOAZGSVpFmbkcmN7tdkhSVRySliRJUksuepEkSVJLBkZJkiS15BzGNtpggw1yxowZ3W6GJEnSiG677bbHMnNUj001MLbRjBkzmDNnTrebIUmSNKKIeGC0ZR2SliRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZG9b2XvhRmzep2KyRJGlxD3W6AtKrmzSs2SZJUjZ7pYYyIhQ3bsoj4St3xIyPi3vLY9RGxSYu6ZkTEtRHxZEQ8EhFnRsRQ3bFsuNaJdedGRJwWEY+X2xciIqr99pIkSb2rZwJjZk6pbcCGwHPAbICImAWcCuwHrAfcB1zcorqvAo8CGwM7A7OAYxvKrFN3zVPq9h8F7A/sBOwIvBU4epW+nCRJUh/rmcDY4CCKwHdT+XlfYHZmzs3MxcApwO4RsVWT87cALsnM5zPzEeB6YPtRXvtw4PTMfDAzHwJOB45Yye8hSZLU93o1MB4OXJCZWX6OcqPuM8AOTc4/Azg4IiZFxHTgzRShsd4DEfFgRJwbERvU7d8euL3u8+2MPmxKkiQNnJ4LjBGxGcUQ8vl1u68F3h4RO0bEROAkIIFJTar5CUXIexp4EJgDXFEeewx4DbA5sAuwFnBR3blTgPl1n+cDU5rNY4yIoyJiTkTMmefKC0mSNIA6Ehgj4sZyoclw280NxQ8Dbs7M+2o7MvOHwKeAS4EHgPuBBRRhsPFa44DvA5cBk4ENgHWB08q6FmbmnMxcmpl/Bt4H7BURU8sqFgJT66qcCiys6+1cQWaek5kzM3PmtGnTxvS7SJIk9YOOBMbM3CMzo8m2W0Pxw1ixd7FWx1mZuXVmvpQiOA4Bdw5zufWATYEzM3NRZj4OnAvs06x55WutB3EuxYKXmp3KfZIkSaulnhqSjohdgemUq6Pr9k+IiB3KW95sBpwDnJGZTzbWkZmPUayiPiYihiJiHYo5kbeXdb0uIl4REeMiYn3gy8CNmVkbhr4A+HBETC9v3XM8cF4V31eSJKkf9FRgpAh2l2Xmgob9E4BvUwwX3wr8DKi/d+LHI+K6uvIHAHsD84B7gaXAceWxLSkWwCyg6KFcBBxSd+7XgauAX5fHryn3SZIkrZaiydQ8rYSZM2fmnDlzut2M1U5tOZL/KEuSNHoRcVtmzhxN2V7rYZQkSVKPMTBKkiSpJQOjJEmSWjIwSpIkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWjIwamD4pBdJkqphYNTAWLas2y2QJGkwGRg1MJYu7XYLJEkaTAZGDQwDoyRJ1TAwamAYGCVJqoaBUQPDwChJUjUMjBoYBkZJkqphYNTAMDBKklQNA6MGhoFRkqRqGBg1MJYs6XYLJEkaTAZGDQx7GCVJqoaBUQNj8eJut0CSpMFkYNTAWLSo2y2QJGkwGRg1MOxhlCSpGgZGDQwDoyRJ1TAwamA4JC1JUjUMjBoY9jBKklQNA6MGhoFRkqRqGBg1MBySliSpGgZGDQx7GCVJqoaBUQPDwChJUjUMjBoYDklLklQNA6P63rjyn2J7GCVJqoaBUX3vJS8pXg2MkiRVw8Covjc0VLw6JC1JUjUMjOp7mcWrPYySJFXDwKi+Z2CUJKlaBkYNDIekJUmqhoFRfa/Ww2hglCSpGgZG9b1aYFy2rLvtkCRpUPVMYIyIhQ3bsoj4St3xIyPi3vLY9RGxSYu6ZkTEtRHxZEQ8EhFnRsRQeexdDdd5NiIyInYpj58cEUsaymxZ/S+glVULjEuXdrcdkiQNqp4JjJk5pbYBGwLPAbMBImIWcCqwH7AecB9wcYvqvgo8CmwM7AzMAo4tr3NRw7WOBf4A/LLu/O/Wl8nMP7Txq6oi9jBKklSNngmMDQ6iCHw3lZ/3BWZn5tzMXAycAuweEVs1OX8L4JLMfD4zHwGuB7ZvUvZw4ILMWj+V+o09jJIkVatXA2NjiItyo+4zwA5Nzj8DODgiJkXEdODNFKFxBRGxObA7cEHDoX0j4omImBsRx7RqaEQcFRFzImLOvHnzWn8rVcLAKElStXouMEbEZhRDyOfX7b4WeHtE7BgRE4GTgAQmNanmJxQ9ik8DDwJzgCuGKXcYcFNm3le37xJgO2Aa8I/ASRFxSLP2ZuY5mTkzM2dOmzZtFN9Q7eaiF0mSqtWRwBgRN5YLS4bbbm4ofhhwc32Iy8wfAp8CLgUeAO4HFlCEwcZrjQO+D1wGTAY2ANYFThumaYexYjAlM3+TmX/KzGWZ+VOK3sqDVuqLq6PsYZQkqRodCYyZuUdmRpNtt4biLwpxZR1nZebWmflSiuA4BNw5zOXWAzYFzszMRZn5OHAusE99oYh4A7AJ8O8jNZ8Vh8PVY+xhlCSpWj01JB0RuwLTKVdH1+2fEBE7RGEz4BzgjMx8srGOzHyMYhX1MRExFBHrUMyJvL2h6OHApZm5oOFa+0XEuuW1Xgt8ALiyTV9RFXAOoyRJ1eqpwEgR4i5rDHHABODbwELgVuBnwIm1gxHx8Yi4rq78AcDewDzgXmApcFxd+QnA2xmmJxM4uDxnAcVimNMyc7hy6hH2MEqSVK2hbjegXmYe3WT/U8COLc47teHzr4A9WpR/HlinybGmC1zU2+xhlCSpGr3WwyiNmT2MkiRVy8CogWEPoyRJ1TAwqq/VP5/HHkZJkqphYNTAsIdRkqRqGBjV1+p7GA2MkiRVw8CovuaQtCRJ1TMwqq/ZwyhJUvUMjBoY9jBKklQNA6P6mj2MkiRVz8CovuYcRkmSqmdgVF+zh1GSpOoZGDUw7GGUJKkaBkb1NXsYJUmqnoFRfc05jJIkVc/AqIFhD6MkSdUwMKqv1XoY11jDHkZJkqpiYFRfqwXG8eOLHsb6IWpJktQeBkb1tVpAHBoqXpcv715bJEkaVAZGDYTx44tXh6UlSWo/A6P6WmMPowtfJElqPwOj+lpjYLSHUZKk9jMwqq/VL3oBexglSaqCgVEDYY01ild7GCVJaj8Do/qaQ9KSJFXPwKi+ZmCUJKl6Bkb1NQOjJEnVMzBqIDiHUZKk6hgY1dfsYZQkqXoGRvU1A6MkSdUzMKqvGRglSaqegVEDoTaHcfny7rZDkqRBZGBUX6v1MLroRZKk6hgY1dcckpYkqXoGRvU1A6MkSdUzMGogOCQtSVJ1DIzqa/YwSpJUPQOj+pqBUZKk6hkY1dcMjJIkVa9nAmNELGzYlkXEV+qOHxkR95bHro+ITVrUtV1E/Cgi5pfn/H3D8T0j4q6IeDYifhwRm9cdi4g4LSIeL7cvRERU863VLs5hlCSpOj0TGDNzSm0DNgSeA2YDRMQs4FRgP2A94D7g4uHqiYgh4Erg6rLsUcCFEbFNeXwD4DLgxPL4HOC7dVUcBewP7ATsCLwVOLqNX1Vt1HgfRm/cLUlS+/VMYGxwEPAocFP5eV9gdmbOzczFwCnA7hGx1TDnbgtsAnwxM5dl5o+AW4BDy+MHAHMzc3ZmPg+cDOwUEduWxw8HTs/MBzPzIeB04Ii2f0O1hUPSkiRVr1cD4+HABZm1OECUG3WfAXYY5tzhho+jruz2wO21A5n5DPD7cv+Ljpfvt0c9ycAoSVL1ei4wRsRmwCzg/Lrd1wJvj4gdI2IicBKQwKRhqriLonfyhIgYHxF7lfXVyk4B5jecMx9Yq8nx+cCUZvMYI+KoiJgTEXPmzZs32q+pNnMOoyRJ1elIYIyIGyMim2w3NxQ/DLg5M++r7cjMHwKfAi4FHgDuBxYADzZeKzOXUMxBfAvwCHA8cEld2YXA1IbTppb1DXd8KrCwrrez8XrnZObMzJw5bdq0Vj+DKmAPoyRJ1etIYMzMPTIzmmy7NRQ/jBV7F2t1nJWZW2fmSymC4xBwZ5Pr3ZGZszJz/cx8E7AlcGt5eC7FghYAImIysFW5/0XHy/dzUU8yMEqSVL2eGpKOiF2B6ZSro+v2T4iIHcpb3mwGnAOckZlPNqlnx/KcSRHxEWBj4Lzy8OXADhFxYERMoBjeviMz7yqPXwB8OCKml7fuOb7uXPUYA6MkSdXrqcBIsdjlssxc0LB/AvBtiuHiW4GfUdwWB4CI+HhEXFdX/lDgYYq5jHsCb8zMRQCZOQ84EPgs8CTwOuDgunO/DlwF/JqiB/Oacp96mHMYJUmqzlC3G1AvM4e932FmPkVxT8Rm553a8PkE4IQW5W+guP3OcMcS+Gi5qcc13ofRwChJUvv1Wg+jNCaNQ9LeuFuSpPYzMGog2MMoSVJ1DIzqay56kSSpegZG9TUDoyRJ1TMwqq8ZGCVJqp6BUQPBOYySJFXHwKi+Zg+jJEnVMzCqrxkYJUmqnoFRfc0bd0uSVD0DowZCLTB6425JktrPwKi+5pC0JEnVMzCqrxkYJUmqnoFRfa0WGMeV/yQbGCVJaj8DowZCRDGP0cAoSVL7GRjV12o9jGBglCSpKgZG9bVaYLSHUZKk6hgY1dcMjJIkVc/AqIFQC4zeh1GSpPYzMKqv1c9hHDfOHkZJkqpgYFRfc0hakqTqGRjV1wyMkiRVz8CogWBglCSpOgZG9TXvwyhJUvUMjOprDklLklQ9A6P6moFRkqTqGRg1EAyMkiRVx8CovtY4h9Ebd0uS1H4GRvW1+iFpb9wtSVI1DIzqa85hlCSpegZGDQQDoyRJ1TEwqq95H0ZJkqpnYFRfc0hakqTqGRjV1wyMkiRVz8CogWBglCSpOgZG9TXnMEqSVD0Do/pa45C0N+6WJKn9DIzqa964W5Kk6hkYNRCcwyhJUnUMjOprzmGUJKl6PRMYI2Jhw7YsIr5Sd/zIiLi3PHZ9RGzSoq7tIuJHETG/POfv6469PiJ+EBFPRMS8iJgdERvXHT85IpY0tGXL6r65VoW31ZEkqXo9Exgzc0ptAzYEngNmA0TELOBUYD9gPeA+4OLh6omIIeBK4Oqy7FHAhRGxTVlkXeAcYAawObAAOLehmu/Wtycz/9C2L6pKGBglSapOzwTGBgcBjwI3lZ/3BWZn5tzMXAycAuweEVsNc+62wCbAFzNzWWb+CLgFOBQgM6/LzNmZ+XRmPgucCbyh4u+jijgkLUlS9Xo1MB4OXJD5lzgQ5UbdZ4Adhjk3muwbrizA7sDchn37lkPWcyPimFG2WV3gkLQkSdXrucAYEZsBs4Dz63ZfC7w9InaMiInASUACk4ap4i6K3skTImJ8ROxV1veishGxY1nXCXW7LwG2A6YB/wicFBGHtGjvURExJyLmzJs3bwzfVO1gYJQkqXodCYwRcWNEZJPt5obihwE3Z+Z9tR2Z+UPgU8ClwAPA/RRzDx9svFZmLgH2B94CPAIcTxECVygbES8HrgM+mJk31Z3/m8z8Uzmc/VPgDIoh8mFl5jmZOTMzZ06bNm20P4narHYfRm/cLUlS+3UkMGbmHpkZTbbdGoofxoq9i7U6zsrMrTPzpRTBcQi4s8n17sjMWZm5fma+CdgSuLV2PCI2B24ATsnMb43UfIYf5lYPcA6jJEnV66kh6YjYFZhOuTq6bv+EiNghCptRrHI+IzOfbFLPjuU5kyLiI8DGwHnlsenAj4CzMvNrw5y7X0SsW17rtcAHKFZdqwc5JC1JUvV6KjBSLHa5LDMXNOyfAHwbWEjRU/gz4MTawYj4eERcV1f+UOBhirmMewJvzMxF5bEjKXocP1V/r8W6cw8G7qUY8r4AOC0zX9Tjqd5gYJQkqXpD3W5Avcw8usn+p4AdW5x3asPnE1hxIUv9sU8Dn25RV9MFLupdBkZJkqrTaz2M0pg4h1GSpOoZGNXXHJKWJKl6Bkb1NQOjJEnVMzBqIBgYJUmqjoFRfa1+DqM37pYkqRoGRvU1h6QlSaqegVF9zcAoSVL1DIwaCLXAmLniMLUkSVp1Bkb1tfpwOFTehn7p0u60RZKkQWVgVF+rH5IeP754v2RJ99ojSdIgMjCqrxkYJUmqnoFRA8HAKElSdQyM6mv1cxgNjJIkVcPAqL5WPyT9kpcU7xcv7l57JEkaRAZG9TXnMEqSVL2h0RSKiL2AI4DtgbWABcBc4NzM/EFlrZNGycAoSVJ1RgyMEXEc8FHg34BLgfnAVGAn4PyIOC0zz6i0lVITzmGUJKl6o+lhPAH4m8y8q2H/ZRFxMfBjwMCornBIWpKk6o1mDuNk4E9Njj0CTGpfc6SxMTBKklS90QTGS4GrImLPiJgWES+JiA0iYk/gcuDfq22iNDIDoyRJ1RlNYHwv8FPgfODPwHPl6/nAz4FjKmudNIL6OYzeVkeSpGqMOIcxMxcD/wT8U0SsA0wBFmbmU41lI+INmXlLuxspNeOQtCRJ1RvVbXVqypD4VIsi11GsoJY6wsAoSVL12n3j7mhzfdKoGBglSapOuwNjjlxEah/vwyhJUvV8NKD6mkPSkiRVz8CogWBglCSpOs5hVF/ztjqSJFVvTIExItaPiEMj4qPl500i4mW145m5VrsbKLXikLQkSdUbdWCMiFnA74B3ASeWu7cGzq6gXdKoGBglSareWHoYvwS8IzP3BpaW+34BvLbdjZLGysAoSVJ1xhIYZ2TmD8v3tZljixnjzb+ldnIOoyRJ1RtLYPxNRLypYd/fAb9uY3ukMWkckl5jDXjuue62SZKkQTOW3sHjgasj4hpgYkR8HdgX2K+SlkmjUB8YASZONDBKktRuo+5hzMyfAzsBc4H/A9wHvDYz/7OitkmjZmCUJKk6Y5p/mJkPAV+oqC3SmGXDwygNjJIktV/LwBgR32IUz4fOzMPa1iJpDBySliSpeiMNSd8L/L7c5gP7A2sAD5bn7gc8VV3zpNYMjJIkVa9lYMzMT9c2YBvgLZn5rsz8eGa+G3gL8Ip2NCQiFjZsyyLiK3XHj4yIe8tj10fEJi3q2i4ifhQR88tz/r7u2IyIyIZrnVh3PCLitIh4vNy+EBE+8rDHGRglSarOWG6r83rg5w37fgH8j3Y0JDOn1DZgQ+A5YDb85Skzp1L0aK5HseDm4uHqiYgh4Erg6rLsUcCFEbFNQ9F16q55St3+oyh6UncCdgTeChzdju+o9nMOoyRJ1RtLYPwv4NSImAhQvn4W+FUF7ToIeBS4qfy8LzA7M+dm5mLgFGD3iNhqmHO3BTYBvpiZyzLzR8AtwKGjvPbhwOmZ+WC5yOd04IiV/yqqkkPSkiRVbyyB8QjgDcD8iPgzxZzG3YAqFrwcDlyQ+Zf+oyg36j4D7DDMucMNH8cwZR+IiAcj4tyI2KBu//bA7XWfby/3qQcZGCVJqt5Y7sN4f2buCmwF/E/g5Zm5a2be384GRcRmwCzg/Lrd1wJvj4gdy57NkyhWb08apoq7KHonT4iI8RGxV1lfrexjwGuAzYFdgLWAi+rOn0IRhmvmA1OazWOMiKMiYk5EzJk3b97YvqzaxsAoSVJ1xtLDSESsC/wN8LfAHuXn0Zx3Y7nQZLjt5obihwE3Z+Z9tR3lM6w/BVwKPADcDyygWK29gsxcQjEH8S3AIxRPqLmkVjYzF2bmnMxcmpl/Bt4H7BURU8sqFgJT66qcCiys6+1svN45mTkzM2dOmzZtND+H2sg5jJIkVW/UgTEi/gfF7XXeS7EY5Gjg9+X+ljJzj8yMJttuDcUPY8XexVodZ2Xm1pn5UorgOATc2eR6d2TmrMxcPzPfBGwJ3NqsebWvWL7OpVjwUlN7uo16UOOQ9KRJ8Oyz3WuPJEmDaCxPevkScGxmfqe2IyLeAXyZYoh3lUXErsB0ytXRdfsnAC+nCG6bAucAZ2Tmk03q2RG4myIQHwtsDJxXHnsdxb0j7wHWLdt/Y2bWhqEvAD4cEddShMnjga+gntQYGKdOhYULYflyGDem/nNJktTMWP6Vug3F0G69f6cIcu1yOHBZZi5o2D8B+DbFcPGtwM+A+nsnfjwirqsrfyjwMMVcxj2BN2bmovLYlsD1FEPadwKLgEPqzv06cBXw6/L4NeU+9bBaYFx77SJELlzY3fZIkjRIxtLDeA9wMEVwq3kbxTB1W2TmsPc7zMynKIbBm513asPnE4ATmpS9mCb3cCyPJ/DRclOPa5zDOLWcfTp//gvvJUnSqhlLYPwQcHVEfIBi4ckMYGuKG1tLXdE4JL322sXr/Pmw6abdaZMkSYNm1IExM39a3ij7LRQ3xr4KuDYzn6iqcdJIhpvDCPD0091pjyRJg2gsPYyUi0wurKgt0kobrodRkiS1x6gDY0RsQfEowJ0pbm79F5m5WXubJY1OszmM9jBKktQ+Y+lh/DbFApfjAe90p57Qag6jJElqj7EExu2BN2Tm8qoaI42VgVGSpOqN5T6M/wG8qqqGSKuiFhgnTy5u2O2QtCRJ7TOWHsb7ge9HxGUUz2j+i8w8qZ2NkkarcQ5jRDGP0R5GSZLaZyyBcTLFrXTGUzyeryaHLy5Vr3FIGorAaA+jJEntM5b7MP5/I5WJiEPKJ6lIHTFcYFx7bXsYJUlqp7HMYRwNn7msrmjsYTQwSpLUPu0OjDFyEal9GucwQtHD6JC0JEnt0+7A6HxGdVSzIemnnupKcyRJGkjtDoxSRw0XGDfYAB57rDvtkSRpEI0YGCPCUKmeVx8YN9qomMP4/PPda48kSYNkNGHwoYj4QkTsMIqy/72qDZLGYrg5jBtuWLz++c+dbYskSYNqNIHxvcAWwH9GxC8j4oMRMW24gpk5mlAptc1wQ9IGRkmS2mvEwJiZV2bm24CNKW6b8zbgjxHxvYg4MCLGV91IaSSNQ9IADz/cnbZIkjRoRj0/MTOfysyvZ+ZuwHbAHOCLgP9aVtcMNyS9xRbF6x/+0Nm2SJI0qMbyaEAAImJN4DXA64ANgZ+2u1HSaA03JL3++sVK6d/+tjttkiRpZWTCkiXw3HMvbM8+u+Lnxm1Vjo/FqANjROwGHAa8HXgU+BZwbGY+MLZLSu0zXGAE2HZbmDu38+2RJA2eTFi0qAhf9VstkLXr87PPwvLlK9fGoSGYOLHYJk164f3EiTB5ctGRUr9v4kT44hfHUP9IBSLiZOBQYD1gNvCWzLxl5b6OVI3GwLjrrvCv/1o88WXq1O60SZJUreXLV+xJaxXEViXMPffc8FOgRvKSlxThrX6rBbqNNlrxc/37xmBXvzU7PjTmMeM2B0bg9cAngCsy0zvbqac0+z/wPvvAF74AN9wABxzQ2TZJkgqLFxeB65lnXthW5nOz8Ley99udMOHFIa22rbfei/c1fh7NvokTYY012vt7dtOIgTEz9+5EQ6SV0WxIetddi0cEXn21gVGSmlm2bGzhbayBb+nSsbVnaKgYPp08uQhdtfeTJ8O0aWMPccOVmTABxvlIkjFbiQ5MqXc0C4zjx8O++8Lll8NXv1r8gZCkfrR8+QshbOHC4bf6Y2MJd4sXj60t48Y1D3Trr7/i58bjo/n8kpdU8xtq1RkYNRAaAyPAe94DF14IX/4yfPSjnW+TpNVLZhHAmgW50ewf7tgzz4ytHc3C2CabNA9row10a645/N9bDT4Do/paq0nIe+wB++8PH/tY8Yfy3e/uVKsk9brMYv7bggUrbqMNcc2OjWUIdsIEmDKlCGNTprywTZs2/P7aNtz+2r6JEx1uVTUMjOprzYaka/u+/W1461vh8MPhqafg2GP9Yyr1qyVLXhzwVmVbtmx0111jjeGD24YbwlZbjS7QNe6fPHnlVrVK3eI/ruprrQIjFP+1/b3vwdveBu9/P1x6KXzjG8UfeUnVWr686H17+un2BLxFi0Z33fHjYa21VtzWXhte9rIX7x9uawx6L3mJw7CSgVEDodUf88mT4Zpr4Nxz4cMfhle+Ek49tQiQg3TLA6ldMovFEfPnF2Hv6adfeD/cvmbvFywY3b3rIopg1hjcZswYOdxNnfrifWuuWflPJK12DIzqa6O9kWpEsQjmTW+Co4+G446D73wHvvY12HnnSpsodUxtXt5owtxIx0fztIlJk4qeu6lTi23ttWHjjV94Xwtzw4W6+m3SJKeKSL3OwKi+NtY770+fDlddBRddVPQ27rILfOAD8JnPFP/ikrpp6dIisD311Ipb4776z42Bb8mSka8zYcKLg95WW60Y9EZ6v9ZazsGTVif+3119LXPsc4siihXTb3kL/NM/wRlnwCWXFK8HHuhcJa28RYtGH/SG2zfS7VMiirC2zjrFtvbasNlmYw963utO0lgZGNX3VjbgrbtuMSR9xBFwzDHFwpi994Yzz3RRzOpq+fIiwD35JDzxxIqvTz45chgc6TFlQ0MvBL1a6Nt44xU/14fBxs9rreXQraTuMDCqr63Mw+Abvf718J//WQTFE0+EHXaAT3wCTjjByfP9qLZgozHw1Qe/Zseeeqr1P1NrrvniELf55iMHvdr7SZPswZbUnwyM6msrMyQ9nKEh+NCHil7G444rguOFFxaPFfzbv131+jV2ixePPfDV3reax7fGGkXv8nrrFa/TpsE227zwufG1/r2PmJS0ujIwqq+1KzDWTJ9ezGe8/nr4X/8L9twT3vEO+OQni55HjU1tiLdZwGsVBkeazzd16orhbvr05qGvPvyttZa9fJI0VgZG9b0q/uW/995w553wuc/B6afDd78L++5b9D7OmrV6zSOrDfGOJvCNdYh3woQVQ92MGfDqV48c+tZZxxW6ktRJ/slVX2vHHMZmJk4sbrfzwQ/CWWfBl79c3JJns83gne+EffYp5j+OH19dG1ZVZrFyt/Hee6N5re/xW7y4+TVqQ7y1ULfBBsUQb7OwV/954sTO/RaSpJXXM4ExIhY27JoIfDUz318ePxL4GLARcDPwnsz8U5O6tgPOAnYB5gEnZObl5bF3AV+vKz6uvNbMzLwtIk4GPgHUP4Rqx8z8w6p9Q1Wh3UPSw1l/fTjpJPjIR+DKK+GCC+Bf/gU+//ni6RSvehXstFMxZD19erHqdYMNit6zCRNeWDizZMmLt0WL4Lnniu35519432xbmTKjuQHzxIkvvgXL9tuP3NO33noO8UrS6qBnAmNmTqm9j4jJwJ+B2eXnWcCpwN8A9wBnABcDsxrriYgh4Erga8AbyzJXRcSrMvPuzLwIuKiu/BHAicAv66r5bma+u53fT9XoRGCsmTQJDjmk2J56Cn78Y/jhD+FXv4Lzzy8eg1alCROKYDdx4orvJ04sgt5GG624r7bVnsZRC4ONr96XT5I0kp4JjA0OAh4Fbio/7wvMzsy5ABFxCvBQRGyVmb9vOHdbYBPgi5mZwI8i4hbgUIpg2Ohw4IKyrPpQN3q31lkH/v7viw2KXryHHoI//Qkefhgef7zoPVy06IV7840f/+JtzTVfHP6G29Zcc/WaNylJ6i29GhgbQ1yUG3WfAXYAGgPjcPEhyrIr7ozYHNgdeE/DoX0j4gngYeDMzDx7bM1Xp/RKzB83DjbdtNgkSRo0PddnERGbUQwjn1+3+1rg7RGxY0RMBE4CEpg0TBV3UfROnhAR4yNir7K+4coeBtyUmffV7bsE2A6YBvwjcFJEHNKivUdFxJyImDNv3rxRf0+1RyeHpCVJWl11JDBGxI0RkU22mxuKHwbcXB/iMvOHwKeAS4EHgPuBBcCDjdfKzCXA/sBbgEeA4ylC4IvKlteqD6Zk5m8y80+ZuSwzf0oxX/KgZt8tM8/JzJmZOXPatGmtfwi1nYFRkqTqdSQwZuYemRlNtt0air8oxJV1nJWZW2fmSymC4xBwZ5Pr3ZGZszJz/cx8E7AlcGt9mYh4A8Vcx38fqfkMP8ytHmFglCSpWj01JB0RuwLTKVdH1+2fEBE7RGEz4BzgjMx8skk9O5bnTIqIjwAbA+c1FDscuDQzFzScu19ErFte67XAByhWXasH9cocRkmSBlmvLXo5HLisMcQBE4BvA1tRDEWfS92K54j4OPDXmfnmctehwJHAeIqV1m/MzEV15ScAbwcOHKYNBwP/B1iTYhj7tMx8UY+nOmvxYvjv/4b77y+2++4rXi+7zCd+SJJUtfBuMu0zc+bMnDNnTreb0ZcyYd48uPde+P3vi+0Pf3ghGD700Iq9iWusUWyLFxf3EXz66a41XZKkvhQRt2XmzNGUtW9GHbNsGTz44AuBsBYOa68L6571EwEvexlssQX87d8WzxjeYovidcaM4tjBB8OllzqHUZKkqhkY1VaZ8NhjcNdd8LvfFa933VWEwvvuW/GZxOPHw5ZbwlZbwe67w8tfXrzfaqsiHNYeqSdJkrrLwKiVsnRpMWRcC4T14fCJJ14oN2ECbL118Zzl/fYrwmAtGL7sZcWw8sqq9SzawyhJUrUMjGopEx54AH796xW3u++GJUteKLfRRrDttvC2txWvtW2zzap7pJ2BUZKkzjAw6i/mz4df/WrFYHjnnbCgbs36jBnwylfCvvvCdtsVofAVr4C11+58ew2KkiR1hoFxNTV/Pvzyl3DbbS9s99zzwvH11iuC4eGHF6+vfCVsvz1Mndq9Njeyh1GSpM4wMK4Gli6F22+HW26Bn/3sxeFws81gl13giCPg1a+GHXeEjTfu/SBmYJQkqTMMjANo/nz46U+L7ZZb4Be/gGefLY697GXwmtcU4XCXXYqA2O+PwDYwSpJULQPjAFi0CH7+c7jhhmK79VZYvrxYgbzzzvAP/wBveAPsuitsumm3W9s+BkVJkjrDwNinHnwQrrwSrr4a/uM/ih7ENdaA174WPvEJ2GOP4v2UKd1uaXUckpYkqTMMjH3kt78tnp18xRVQewLh1lvDe94Df/d3RUjsxmrlbjEwSpLUGQbGHjdvHlx8MZx/frGqGeD1r4fPf764Efa223a3fd1kYJQkqTMMjD0os1is8qUvFcPOS5cWi1O+9KXixtibbNLtFvYGg6IkSZ1hYOwhy5bB7Nlw+unFkPO668IHP1isaN5hh263rncZHCVJqpaBsQdkwlVXFYtV7ryzeHLK2WfDoYfC5Mndbl3vckhakqTOMDB22dy5cMwxcNNNxQKW73ynGHau6vnLg8TAKElSZxhLumTxYvjkJ4v7JM6dC1//evH6jncYFkfLoChJUmfYw9gFDzxQBMNf/KIYdj799P5/2ko32MMoSVJnGBg77Ac/KMJibYHLQQd1u0X9y8AoSVJnOPjZQRddBPvsUzye75e/NCy2i4FRkqRqGRg75Nxz4d3vht12Kx7lt9VW3W5R/zMoSpLUGQ5Jd8AVV8CRR8JeexU34p4wodstGgwOSUuS1Bn2MFbs1lvh4IPhta8tngNtWGwfA6MkSZ1hYKzQY48V91TcaCO4+mpvwt1uBkZJkjrDIekKvfe98MgjxXOh11+/260ZPAZFSZI6w8BYkSuugEsvhc99DmbO7HZrBpvBUZKkajkkXYHnnoP3vQ922gmOP77brRlcDklLktQZ9jBW4Oyz4aGH4NvfhvHju92awWVglCSpM+xhbLMlS+Bf/gX23BN2373brRlsBkVJkjrDHsY2u+aaYqHLOed0uyWDzx5GSZI6wx7GNjv3XNh4Y3jzm7vdksFnYJQkqTMMjG2UCTfcAAccAEP23VbOwChJUmcYGNvo2WeLbY89ut0SSZKk9jEwttGCBcXrX/91d9uxurCHUZKkzjAwttHChfCKV8CGG3a7JasHA6MkSZ1hYGyj556DV72q261YfRgYJUnqDANjGy1eDNtu2+1WrD4MipIkdYaBsc1e8Yput2D1YQ+jJEmd0TOBMSJmRMS1EfFkRDwSEWdGxFDd8T0j4q6IeDYifhwRm7eoa72IuDwinomIByLinQ3Hm9YVhdMi4vFy+0LE6CPJjBlj/OJaZQZGSZKq1TOBEfgq8CiwMbAzMAs4FiAiNgAuA04E1gPmAN9tUddZwGJgQ+BdwNkRsf0o6zoK2B/YCdgReCtw9Gi/xPTpoy2pVWUPoyRJndFLgXEL4JLMfD4zHwGuB7Yvjx0AzM3M2Zn5PHAysFNEvGjGYERMBg4ETszMhZl5M/A94NBR1nU4cHpmPpiZDwGnA0eM9ktstNFYvrJWhUFRkqTO6KXAeAZwcERMiojpwJspQiMUwfH2WsHMfAb4PS8EynrbAMsy8+66fbfXlR2prhWON5zb0tAQjB8/mpJqB3sYJUnqjF4KjD+hCGZPAw9SDBVfUR6bAsxvKD8fWGuYekYqO9bj84EpzeYxRsRRETEnIuaMG7d0uCKqiIFRkqTO6EhgjIgbIyKbbDdHxDjg+xRzCycDGwDrAqeVVSwEpjZUOxVYMMzlRio71uNTgYWZmcN9t8w8JzNnZubMV77SB0h3kkFRkqTO6EhgzMw9MjOabLtRLD7ZFDgzMxdl5uPAucA+ZRVzKRahAH+Zp7hVub/R3cBQRGxdt2+nurIj1bXC8YZz1YMMjpIkVasnhqQz8zHgPuCYiBiKiHUoFp/U5hJeDuwQEQdGxATgJOCOzLxrmLqeoeip/ExETI6INwD7Ad8aZV0XAB+OiOkRsQlwPHBe+7+1VpVD0pIkdUZPBMbSAcDewDzgXmApcBxAZs6jWPn8WeBJ4HXAwbUTI+LjEXFdXV3HAhMpbtNzMXBMZs4dTV3A14GrgF8DdwLXlPvUYwyMkiR1Rs9MusvMXwF7tDh+AzDsg/cy89SGz09Q3EtxZepK4KPlph5mUJQkqTN6qYdRGhN7GCVJ6gwDo/qWgVGSpM4wMKrvGRglSaqWgVF9y6AoSVJnGBjVtxySliSpMwyM6lsGRkmSOsPAqL5lUJQkqTMMjOpbBkZJkjrDwChJkqSWDIzqW/YwSpLUGQZG9a1aYMzsbjskSRp0Bkb1LXsYJUnqDAOj+paBUZKkzjAwqm95H0ZJkjrDwKi+5xxGSZKqZWBU37JnUZKkzjAwqm8ZGCVJ6gwDo/qWt9WRJKkzDIzqWy56kSSpMwyM6lsGRkmSOsPAqL5nYJQkqVoGRvUtg6IkSZ1hYFTfckhakqTOMDCqbxkYJUnqDAOj+paBUZKkzjAwqm8ZGCVJ6gwDoyRJkloyMKpv2cMoSVJnGBjVtwyMkiR1hoFRfcugKElSZxgY1bfsYZQkqTMMjOpbBkZJkjrDwKi+Z2CUJKlaBkb1LYOiJEmdYWBU33JIWpKkzjAwqm8ZGCVJ6gwDo/qWQVGSpM4wMKpv2cMoSVJnGBjV9wyMkiRVq2cCY0TMiIhrI+LJiHgkIs6MiKG643tGxF0R8WxE/DgiNm9R13oRcXlEPBMRD0TEO+uOvT4ifhART0TEvIiYHREb1x0/OSKWRMTCum3L6r65VpY9jJIkdUbPBEbgq8CjwMbAzsAs4FiAiNgAuAw4EVgPmAN8t0VdZwGLgQ2BdwFnR8T25bF1gXOAGcDmwALg3Ibzv5uZU+q2P6zql1P7GRglSeqMoZGLdMwWwJmZ+TzwSERcD9RC3gHA3MycDUUvIPBYRGybmXfVVxIRk4EDgR0ycyFwc0R8DzgU+FhmXtdQ/kzgJxV+L1XEoChJUmf0Ug/jGcDBETEpIqYDbwauL49tD9xeK5iZzwC/54VAWW8bYFlm3l237/YmZQF2B+Y27Nu3HLKeGxHHjP2rqBPsYZQkqTN6KTD+hCLUPQ08SDHsfEV5bAowv6H8fGCtYeoZddmI2BE4CTihbvclwHbANOAfgZMi4pBmjY6IoyJiTkTMmTdvXrNiqoCBUZKkzuhIYIyIGyMim2w3R8Q44PsU8xQnAxtQzDU8raxiITC1odqpFPMPG42qbES8HLgO+GBm3lTbn5m/ycw/ZeayzPwpRc/nQc2+W2aek5kzM3PmtGnTWv8QaisDoyRJndGRwJiZe2RmNNl2o1jIsinFHMZFmfk4xUKUfcoq5gI71eor5yluxYuHkgHuBoYiYuu6fTvVly1XWN8AnJKZ3xqp+YCRRJIkrbZ6Ykg6Mx8D7gOOiYihiFgHOJwX5i1eDuwQEQdGxASKYeQ7Ghe8lHU9Q9FT+ZmImBwRbwD2A74FUM6P/BFwVmZ+rfH8iNgvItaNwmuBDwBXtvkrqw3sYZQkqTN6IjCWDgD2BuYB9wJLgeMAMnMexcrnzwJPAq8DDq6dGBEfj4j61c/HAhMpbtNzMXBMZtZ6GI8EtgQ+VX+vxbpzDy6vvwC4ADgtM89v83dVGxgYJUnqjJ65rU5m/grYo8XxG4Btmxw7teHzE8D+Tcp+Gvh0i+s0XeCi3mJQlCSpM3qph1EaE3sYJUnqDAOj+paBUZKkzjAwqu8ZGCVJqpaBUX3LHkZJkjrDwKi+ZVCUJKkzDIzqW/YwSpLUGQZG9S0DoyRJnWFgVN8yMEqS1BkGRkmSJLVkYFTfsodRkqTOMDCq7xkYJUmqloFRfSuz2y2QJGn1YGBU37OHUZKkahkY1bdqPYwGRkmSqmVgVN9avrx4NTBKklQtA6P6noFRkqRqGRjVt1z0IklSZxgY1ffsYZQkqVoGRvUtexglSeoMA6P6lqukJUnqDAOj+paBUZKkzjAwqm8ZGCVJ6gwDo/qegVGSpGoZGNW3XPQiSVJnGBjV9+xhlCSpWgZG9S3nMEqS1BkGRvUtnyUtSVJnGBjV9wyMkiRVy8CovuWiF0mSOsPAqL5nD6MkSdUyMKpv2cMoSVJnGBjVt1wlLUlSZxgY1bcMjJIkdYaBUX3LwChJUmcYGNX3DIySJFXLwKi+5aIXSZI6w8CovmcPoyRJ1TIwqm85h1GSpM4wMKpv+SxpSZI6o2cCY0TMiIhrI+LJiHgkIs6MiKG643tGxF0R8WxE/DgiNm9R13oRcXlEPBMRD0TEOxuukxGxsG47se54RMRpEfF4uX0hwkjSy/xfR5KkavVMYAS+CjwKbAzsDMwCjgWIiA2Ay4ATgfWAOcB3W9R1FrAY2BB4F3B2RGzfUGadzJxSbqfU7T8K2B/YCdgReCtw9Kp8MVXDRS+SJHVGLwXGLYBLMvP5zHwEuB6ohbwDgLmZOTsznwdOBnaKiG0bK4mIycCBwImZuTAzbwa+Bxw6ynYcDpyemQ9m5kPA6cARq/C9VDF7GCVJqlYvBcYzgIMjYlJETAfeTBEaoQiOt9cKZuYzwO95IVDW2wZYlpl31+27fZiyD0TEgxFxbtmDWbPCtZqc+xcRcVREzImIOfPmzWv9DdVW9jBKktQZvRQYf0IRzJ4GHqQYdr6iPDYFmN9Qfj6w1jD1jFT2MeA1wObALuX+i1qcPx+Y0mweY2aek5kzM3PmtGnTmn03VcBV0pIkdUZHAmNE3FguNBluuzkixgHfp5inOBnYAFgXOK2sYiEwtaHaqcCCYS7Xsmw5TD0nM5dm5p+B9wF7RcTUJudPBRZm2p/Vaw4/HPbfHz75yW63RJKkwdaRwJiZe2RmNNl2o1jIsilwZmYuyszHgXOBfcoq5lIsQgH+Mk9xq3J/o7uBoYjYum7fTk3KAtSCYK2faoVrjXCuumjqVLj8cthoo263RJKkwdYTQ9KZ+RhwH3BMRAxFxDoUi09qcwkvB3aIiAMjYgJwEnBHZt41TF3PUPRUfiYiJkfEG4D9gG8BRMTrIuIVETEuItYHvgzcmJm1YegLgA9HxPSI2AQ4Hjivmm8uSZLU+3oiMJYOAPYG5gH3AkuB4wAycx7FyufPAk8CrwMOrp0YER+PiOvq6joWmEhxm56LgWMys9ZLuCXFYpoFwJ3AIuCQunO/DlwF/Lo8fk25T5IkabUUTs1rn5kzZ+acOXO63QxJkqQRRcRtmTlzNGV7qYdRkiRJPcjAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWopMrPbbRgYEbEA+F2327Ga2QB4rNuNWM34m3eev3nn+Zt3nr95570iM9caTcGhqluymvldZs7sdiNWJxExx9+8s/zNO8/fvPP8zTvP37zzImLOaMs6JC1JkqSWDIySJElqycDYXud0uwGrIX/zzvM37zx/887zN+88f/POG/Vv7qIXSZIktWQPoyRJkloyMEqSJKklA2MbRMR6EXF5RDwTEQ9ExDu73aZBFxHvi4g5EbEoIs7rdnsGXUSsGRHfLP/5XhAR/xURb+52uwZdRFwYEQ9HxNMRcXdEHNntNq0uImLriHg+Ii7sdlsGXUTcWP7WC8vN+xl3QEQcHBG/LbPL7yPir1uV9z6M7XEWsBjYENgZuCYibs/MuV1t1WD7E/DPwJuAiV1uy+pgCPgjMAv4b2Af4JKIeGVm3t/Nhg24zwH/kJmLImJb4MaI+K/MvK3bDVsNnAX8Z7cbsRp5X2Z+o9uNWF1ExBuB04B3ALcCG490jj2MqygiJgMHAidm5sLMvBn4HnBod1s22DLzssy8Ani8221ZHWTmM5l5cmben5nLM/Nq4D5gl263bZBl5tzMXFT7WG5bdbFJq4WIOBh4Cvhhl5siVeXTwGcy8+fl3/SHMvOhVicYGFfdNsCyzLy7bt/twPZdao9UuYjYkOKffXvRKxYRX42IZ4G7gIeBa7vcpIEWEVOBzwDHd7stq5nPRcRjEXFLROzR7cYMsohYA5gJTIuIeyPiwYg4MyJajtYZGFfdFGB+w775wKiezSj1m4gYD1wEnJ+Zd3W7PYMuM4+l+Hvy18BlwKLWZ2gVnQJ8MzP/2O2GrEb+N7AlMJ3ivoBXRYQ96dXZEBgPHETxd2Vn4FXAJ1udZGBcdQuBqQ37pgILutAWqVIRMQ74FsWc3fd1uTmrjcxcVk53eRlwTLfbM6giYmfg74Avdrkpq5XM/EVmLsjMRZl5PnALxTxpVeO58vUrmflwZj4G/Csj/OYuell1dwNDEbF1Zt5T7tsJh+o0YCIigG9S/NfpPpm5pMtNWh0N4RzGKu0BzAD+u/jHnSnAGhHxV5n56i62a3WTQHS7EYMqM5+MiAcpfudRs4dxFWXmMxTDRJ+JiMkR8QZgP4peGFUkIoYiYgKwBsUf9AkR4X8AVetsYDtg38x8bqTCWjUR8dLythdTImKNiHgTcAjwo263bYCdQxHIdy63rwHXUNyNQRWIiHUi4k21v+ER8S5gd+D73W7bgDsXeH/5d2Zd4EPA1a1O8F+w7XEs8H+ARylW7R7jLXUq90ngU3Wf302x6uvkrrRmwEXE5sDRFPPnHil7XwCOzsyLutawwZYUw89fo/iP+weAD2XmlV1t1QDLzGeBZ2ufI2Ih8HxmzuteqwbeeIpbpG0LLKNY3LV/ZnovxmqdAmxAMUr6PHAJ8NlWJ/gsaUmSJLXkkLQkSZJaMjBKkiSpJQOjJEmSWjIwSpIkqSUDoyRJkloyMEqSJKklA6MktUlEzI2IPTp0rb+KiDkV1HtZROzd7nol9TfvwyhJo1TeyLlmEsWNzJeVnzt6E/OIuBSYnZnfaXO9rwXOzsxd2lmvpP5mYJSklRAR9wNHZuYNXbj2xhTPq98kM5+voP57gEMys+09mJL6k0PSktQmEXF/RPxd+f7kiJgdERdGxIKI+HVEbBMR/xQRj0bEHyNir7pz146Ib0bEwxHxUET8c0Ss0eRSbwR+WR8Wy2ufEBF3RMQzZV0bRsR15fVvKJ8ZS/nc3gsj4vGIeCoi/jMiNqyr/0bgLW3/gST1LQOjJFVnX+BbwLrAfwHfp/i7Ox34DPD1urLnA0uBlwOvAvYCjmxS7yuB4Z61eyBFmNymvPZ1wMcpnhk7DvhAWe5wYG1gU2B94L3Ac3X1/BbYadTfUtLAMzBKUnVuyszvZ+ZSYDYwDfh8Zi4BvgPMiIh1yt69NwMfysxnMvNR4IvAwU3qXQdYMMz+r2TmnzPzIeAm4BeZ+V+ZuQi4nCKIAiyhCIovz8xlmXlbZj5dV8+C8hqSBMBQtxsgSQPsz3XvnwMey8xldZ8BpgCbAOOBhyOiVn4c8Mcm9T4JrDWK6zV+nlK+/xZF7+J3ImId4ELgE2WQpaz7qWZfStLqxx5GSeq+P1KsuN4gM9cpt6mZuX2T8ndQDDuvlMxckpmfzsy/AnYF3gocVldkO+D2la1f0uAxMEpSl2Xmw8D/BU6PiKkRMS4itoqIWU1O+QHw6oiYsDLXi4i/iYhXlotqnqYYol5WV2QWxfxHSQIMjJLUKw4DXgL8hmLI+d+BjYcrmJl/Bn4E7LeS19qorP9pigUuP6EYliYiXgM8k5m3rmTdkgaQ92GUpD4UEX9FsbL6tdnGP+TlDcG/mZnXtqtOSf3PwChJkqSWHJKWJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktfT/AGGccV+GJs7tAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCLElEQVR4nO3debgcZZ33//c3nEg2whpZIhCIbBMElIgOMARXEGRgwAVUwJkHYWDcEPHnqCDKiMIMoyiI8uiwCKJEQGT1N6g4gI4YHEGiDLIqe9hCEkI2vs8fVS2d5pzOOUlXb3m/rquuPl111113N+Hkk3upisxEkiRJGsqoTjdAkiRJ3c3AKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMklYrEXFDRHyr7v15EXF9J9skSd3OwCipJ0TE+hFxWkT8b0Q8HxGPR8R/RcRhETFQ8bUnRcR/RMTDEbEwIv4QER9aiXrOi4gst6UR8UBEfCMi1q+i3UO04cyIWBYRH27XNYdoxzsj4taImF/+t7wsIl7ZyTZJGpqBUVLXi4hXAL8BDgI+D7wG2A34NvBxYPuKm3Ae8FrgncBfAV8GvhwRh6xEXTcCGwNTgA9TfKYLWtLKFYiIccD7gFOAI9txzSHa8Trge8ClwA7APsD6wNWdapOk5gyMknrB2cCawGsy86LM/H1m/jEzzwd2Bv5YKxgRH4qIO8teyD9GxKdb0AO5G3BOZt6cmfdl5jnAbcAuK1HX4sx8NDMfzMwrgK8Ae0fE2Ch8PCLujYjFEXFPRHy0/uSIuD8ivhAR34qIZyPiiYg4NSKG8/v83cA9wL8Am0TErg11n13Wv07dvnPL73Gt8v0+Zc/gorJn8OsRMb6u/HkRcX1EHFn2oD4bEVdExKS6S/018ExmnpKZ92bmLODfgK0jYu0RfJeS2sTAKKmrRcR6FD1QZ2bm3MbjmbkkMxeUZU+i6HH8Z2A74CPAUcBnV7EZNwEHRcSGZah7I7ANcO0q1guwkOJ38QBwDHAy8CVgGvCvwJci4v80nPMh4GGKXs9jgQ8CHx3GtY4Czs/MRRQ9fI29jMcCzwL/FyAi3gO8Bzg4M+dFxA7Aj4D/AnYCDgfeDnyjoZ7XAm8A9gX2Lsv+W93xXwDrRMS7ImJUGVAPBW4e7L+xpC6QmW5ubm5du1H04iVw4ArKjQOeA/Zu2H8YRW9W7f0NwLfq3p8HXL+CutcCLivbsQRYBPzDSnyW5a5FMbx9D/Df5fs/A6c1nPNl4N669/cDNzaUOQV4cAXX3hFYDEyq+16fA9ZpKLcdsAD4IkV4PLbu2HeAWxrK7w+8AGxe9xnnAGvWlfkk8EjDefsBT5XfZwL/Dazf6T9vbm5ug2/2MErqdlG+5grKTQPGApeWCynmR8R84JvA2g1DoiN1ErAl8DaKIfDjga9FxL4rUdeeZdsWAncA9wLviYiJwCsoeu/q/RyYUs4/rPllQ5mbgcllHUM5CrgmM+cAZOYtwH0Ucxr/IjP/QNFL+0mKntWv1B2eNkT7giL81vwhi17MmoeADWtvImJbimkGX6bojXwjRXC8PCLWaPIZJHVIpSsLJakF/kjRgzUNuLxJudo/gN8J3DXI8adW5uIRMRX4GPD6zPxVufv2iNiRYuh7pAs1fkUxlLuUotdtUXmdWthrDMbBijUtU84xfC+wVkQsrTs0imJY+syGU/YAlgGbAWMohs1rhgru9fsXD3Ksvo2fAn6XmSfXtfE9wJ8ohrK9zZHUZexhlNTVMvMpirmCHxxsQUREjC4D0WzgeWDLzLx7kG3ZSjah1rP3QsP+ZQwvzDVaWLbn/vpeuMx8FngQmNFQfg/gvsx8rm7f6xvK/DXwcFnHYA4u27sjxXzC2vY3wLSI+Et95XzJA8p2jKPoBayZPUj7ZlAEwt8Pce3BjGfw7xNW7juVVDEDo6RecAzFkOWtEfGeiPiriHhlRLwPmAVslZnzKebynRIRH4yIbSJiWkQcHBGnrsK1/0DRY3lmROwWEVtExD9QzI28bBU/V6MvAh+KiA9ExFYRcRRwNMXnqrdTRJwUEVuXPXMfYflg1+go4PLM/F1m3lG33UwxnH0kQERsA5xBMW/xZuAQ4P9ExEFlPf8KvCYi/j0ito2IvYGvARdl5p9G8Dl/SLEy/NiImBoR0ynmPj5M0QMrqcs4JC2p62XmnyLiNRTz6k6iGCp9liLM/SvFXEAy8+SIeJhiFfG/UQyl3kURRlb22ksj4m0Uoe0HwDrAA8AJ1IW0coX2ZzNzVXrIzqboffsU8HWKRTCfzMxvN5T7GrA5RVheyovzAV8iInaimCd4whDX/D5wWkQcS7Fy+seZ+Q2AzPxVRJwIfCsiZmXm7RHxtxQruf+J4r/BDyjmPA5bZn6nnJP5TxS3+FlAsehlrya9pJI6KDJXNI9ckrQiEXEBsFFmvrXi69xPscr7X6q8jiTVs4dRklZRedPsN1Es2JCkvmNglKRVlJkvAJM73Q5JqopD0pIkSWrKVdKSJElqysAoSZKkppzD2EIbbLBBTpkypdPNkCRJWqFbb731icwc1mNTDYwtNGXKFGbNmtXpZkiSJK1QRDww3LIOSUuSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDo3rey18OM2Z0uhWSJPWvgU43QFpVc+YUmyRJqkbX9DBGxPyGbVlEfK3u+BERcXd57LqI2KRJXVMi4pqIeDoiHo2IMyNioO5YNlzrhLpzIyJOjYgny+20iIhqP70kSVL36prAmJkTahuwIbAQmAkQETOAU4D9gfWA+4CLm1T3deBxYGNgJ2AGcExDmXXqrnly3f4jgQOAHYEdgLcDR63Sh5MkSephXRMYG7yDIvDdWL7fD5iZmbMzczFwMrBHREwd4vwtgEsy8/nMfBS4Dpg2zGsfDpyemQ9m5kPA6cD7V/JzSJIk9bxuDYyHAxdkZpbvo9yoew+w/RDnnwEcHBHjImIy8DaK0FjvgYh4MCLOjYgN6vZPA26re38bww+bkiRJfafrAmNEbEYxhHx+3e5rgHdFxA4RMRY4EUhg3BDV/Jwi5D0LPAjMAn5YHnsCeC2wObAzsBZwUd25E4C5de/nAhOGmscYEUdGxKyImDXHlReSJKkPtSUwRsQN5UKTwbabGoofBtyUmffVdmTmT4DPApcCDwD3A/MowmDjtUYBPwYuA8YDGwDrAqeWdc3PzFmZuTQzHwM+CLw1IiaWVcwHJtZVORGYX9fbuZzMPCczp2fm9EmTJo3oe5EkSeoFbQmMmblnZsYQ2+4NxQ9j+d7FWh1nZeZWmflyiuA4ANwxyOXWAzYFzszMRZn5JHAusM9QzStfaz2IsykWvNTsWO6TJElaLXXVkHRE7ApMplwdXbd/TERsX97yZjPgHOCMzHy6sY7MfIJiFfXRETEQEetQzIm8razrdRGxTUSMioj1ga8CN2RmbRj6AuBjETG5vHXPccB5VXxeSZKkXtBVgZEi2F2WmfMa9o8BvksxXHwL8Eug/t6Jn4qIa+vKHwjsDcwB7gaWAseWx7akWAAzj6KHchFwSN253wSuBH5XHr+63CdJkrRaiiGm5mklTJ8+PWfNmtXpZqx2asuR/KMsSdLwRcStmTl9OGW7rYdRkiRJXcbAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwKi+4ZNeJEmqhoFRfWPZsk63QJKk/mRgVN9YurTTLZAkqT8ZGNU3DIySJFXDwKi+YWCUJKkaBkb1DQOjJEnVMDCqbxgYJUmqhoFRfcPAKElSNQyM6hsGRkmSqmFgVN9YsqTTLZAkqT8ZGNU37GGUJKkaBkb1jcWLO90CSZL6k4FRfWPRok63QJKk/mRgVN+wh1GSpGoYGNU3DIySJFXDwKi+4ZC0JEnVMDCqb9jDKElSNQyM6hsGRkmSqmFgVN9wSFqSpGoYGNU37GGUJKkaBkb1DQOjJEnVMDCqbzgkLUlSNQyM6nmjyj/F9jBKklQNA6N63steVrwaGCVJqoaBUT1vYKB4dUhakqRqGBjV8zKLV3sYJUmqhoFRPc/AKElStQyM6hsOSUuSVA0Do3perYfRwChJUjUMjOp5tcC4bFln2yFJUr/qmsAYEfMbtmUR8bW640dExN3lsesiYpMmdU2JiGsi4umIeDQizoyIgfLYexuu81xEZETsXB4/KSKWNJTZsvpvQCurFhiXLu1sOyRJ6lddExgzc0JtAzYEFgIzASJiBnAKsD+wHnAfcHGT6r4OPA5sDOwEzACOKa9zUcO1jgHuBX5Td/7368tk5r0t/KiqiD2MkiRVo2sCY4N3UAS+G8v3+wEzM3N2Zi4GTgb2iIipQ5y/BXBJZj6fmY8C1wHThih7OHBBZq2fSr3GHkZJkqrVrYGxMcRFuVH3HmD7Ic4/Azg4IsZFxGTgbRShcTkRsTmwB3BBw6H9IuKpiJgdEUc3a2hEHBkRsyJi1pw5c5p/KlXCwChJUrW6LjBGxGYUQ8jn1+2+BnhXROwQEWOBE4EExg1Rzc8pehSfBR4EZgE/HKTcYcCNmXlf3b5LgO2AScAHgBMj4pCh2puZ52Tm9MycPmnSpGF8QrWai14kSapWWwJjRNxQLiwZbLupofhhwE31IS4zfwJ8FrgUeAC4H5hHEQYbrzUK+DFwGTAe2ABYFzh1kKYdxvLBlMz8fWY+nJnLMvMXFL2V71ipD662sodRkqRqtCUwZuaemRlDbLs3FH9JiCvrOCszt8rMl1MExwHgjkEutx6wKXBmZi7KzCeBc4F96gtFxG7AJsAPVtR8lh8OV5exh1GSpGp11ZB0ROwKTKZcHV23f0xEbB+FzYBzgDMy8+nGOjLzCYpV1EdHxEBErEMxJ/K2hqKHA5dm5ryGa+0fEeuW19oF+DBwRYs+oirgHEZJkqrVVYGRIsRd1hjigDHAd4H5wC3AL4ETagcj4lMRcW1d+QOBvYE5wN3AUuDYuvJjgHcxSE8mcHB5zjyKxTCnZuZg5dQl7GGUJKlaA51uQL3MPGqI/c8AOzQ575SG978F9mxS/nlgnSGODbnARd3NHkZJkqrRbT2M0ojZwyhJUrUMjOob9jBKklQNA6N6Wv3zeexhlCSpGgZG9Q17GCVJqoaBUT2tvofRwChJUjUMjOppDklLklQ9A6N6mj2MkiRVz8CovmEPoyRJ1TAwqqfZwyhJUvUMjOppzmGUJKl6Bkb1NHsYJUmqnoFRfcMeRkmSqmFgVE+zh1GSpOoZGNXTnMMoSVL1DIzqG/YwSpJUDQOjelqth3GNNexhlCSpKgZG9bRaYBw9uuhhrB+iliRJrWFgVE+rBcSBgeL1hRc61xZJkvqVgVF9YfTo4tVhaUmSWs/AqJ7W2MPowhdJklrPwKie1hgY7WGUJKn1DIzqafWLXsAeRkmSqmBgVF9YY43i1R5GSZJaz8ConuaQtCRJ1TMwqqcZGCVJqp6BUT3NwChJUvUMjOoLzmGUJKk6Bkb1NHsYJUmqnoFRPc3AKElS9QyM6mkGRkmSqmdgVF+ozWF84YXOtkOSpH5kYFRPq/UwuuhFkqTqGBjV0xySliSpegZG9TQDoyRJ1TMwqi84JC1JUnUMjOpp9jBKklQ9A6N6moFRkqTqGRjV0wyMkiRVr2sCY0TMb9iWRcTX6o4fERF3l8eui4hNmtS1XUT8NCLmluf8XcPxN0XEnRHxXET8LCI2rzsWEXFqRDxZbqdFRFTzqdUqzmGUJKk6XRMYM3NCbQM2BBYCMwEiYgZwCrA/sB5wH3DxYPVExABwBXBVWfZI4MKI2Lo8vgFwGXBCeXwW8P26Ko4EDgB2BHYA3g4c1cKPqhZqvA+jN+6WJKn1uiYwNngH8DhwY/l+P2BmZs7OzMXAycAeETF1kHO3BTYBvpyZyzLzp8DNwKHl8QOB2Zk5MzOfB04CdoyIbcvjhwOnZ+aDmfkQcDrw/pZ/QrWEQ9KSJFWvWwPj4cAFmbU4QJQbde8Bth/k3MGGj6Ou7DTgttqBzFwA3FPuf8nx8udpqCsZGCVJql7XBcaI2AyYAZxft/sa4F0RsUNEjAVOBBIYN0gVd1L0Th4fEaMj4q1lfbWyE4C5DefMBdYa4vhcYMJQ8xgj4siImBURs+bMmTPcj6kWcw6jJEnVaUtgjIgbIiKH2G5qKH4YcFNm3lfbkZk/AT4LXAo8ANwPzAMebLxWZi6hmIO4L/AocBxwSV3Z+cDEhtMmlvUNdnwiML+ut7Pxeudk5vTMnD5p0qRmX4MqYA+jJEnVa0tgzMw9MzOG2HZvKH4Yy/cu1uo4KzO3ysyXUwTHAeCOIa53e2bOyMz1M3MvYEvglvLwbIoFLQBExHhgarn/JcfLn2ejrmRglCSpel01JB0RuwKTKVdH1+0fExHbl7e82Qw4BzgjM58eop4dynPGRcTHgY2B88rDlwPbR8RBETGGYnj79sy8szx+AfCxiJhc3rrnuLpz1WUMjJIkVa+rAiPFYpfLMnNew/4xwHcphotvAX5JcVscACLiUxFxbV35Q4FHKOYyvgl4S2YuAsjMOcBBwBeAp4HXAQfXnftN4ErgdxQ9mFeX+9TFnMMoSVJ1BjrdgHqZOej9DjPzGYp7Ig513ikN748Hjm9S/nqK2+8MdiyBT5SbulzjfRgNjJIktV639TBKI9I4JO2NuyVJaj0Do/qCPYySJFXHwKie5qIXSZKqZ2BUTzMwSpJUPQOjepqBUZKk6hkY1RecwyhJUnUMjOpp9jBKklQ9A6N6moFRkqTqGRjV07xxtyRJ1TMwqi/UAqM37pYkqfUMjOppDklLklQ9A6N6moFRkqTqGRjV02qBcVT5J9nAKElS6xkY1RciinmMBkZJklrPwKieVuthBAOjJElVMTCqp9UCoz2MkiRVx8ConmZglCSpegZG9YVaYPQ+jJIktZ6BUT2tfg7jqFH2MEqSVAUDo3qaQ9KSJFXPwKieZmCUJKl6Bkb1BQOjJEnVMTCqp3kfRkmSqmdgVE9zSFqSpOoZGNXTDIySJFXPwKi+YGCUJKk6Bkb1tMY5jN64W5Kk1jMwqqfVD0l7425JkqphYFRPcw6jJEnVMzCqLxgYJUmqjoFRPc37MEqSVD0Do3qaQ9KSJFXPwKieZmCUJKl6Bkb1BQOjJEnVMTCqpzmHUZKk6hkY1dMah6S9cbckSa1nYFRP88bdkiRVz8CovuAcRkmSqmNgVE9zDqMkSdXrmsAYEfMbtmUR8bW640dExN3lsesiYpMmdW0XET+NiLnlOX9Xd+z1EfGfEfFURMyJiJkRsXHd8ZMiYklDW7as7pNrVXhbHUmSqtc1gTEzJ9Q2YENgITATICJmAKcA+wPrAfcBFw9WT0QMAFcAV5VljwQujIityyLrAucAU4DNgXnAuQ3VfL++PZl5b8s+qCphYJQkqTpdExgbvAN4HLixfL8fMDMzZ2fmYuBkYI+ImDrIudsCmwBfzsxlmflT4GbgUIDMvDYzZ2bms5n5HHAmsFvFn0cVcUhakqTqdWtgPBy4IPMvcSDKjbr3ANsPcm4MsW+wsgB7ALMb9u1XDlnPjoijh9lmdYBD0pIkVa/rAmNEbAbMAM6v230N8K6I2CEixgInAgmMG6SKOyl6J4+PiNER8dayvpeUjYgdyrqOr9t9CbAdMAn4AHBiRBzSpL1HRsSsiJg1Z86cEXxStYKBUZKk6rUlMEbEDRGRQ2w3NRQ/DLgpM++r7cjMnwCfBS4FHgDup5h7+GDjtTJzCXAAsC/wKHAcRQhcrmxEvBK4FvhIZt5Yd/7vM/Phcjj7F8AZFEPkg8rMczJzemZOnzRp0nC/ErVY7T6M3rhbkqTWa0tgzMw9MzOG2HZvKH4Yy/cu1uo4KzO3ysyXUwTHAeCOIa53e2bOyMz1M3MvYEvgltrxiNgcuB44OTO/s6LmM/gwt7qAcxglSapeVw1JR8SuwGTK1dF1+8dExPZR2IxilfMZmfn0EPXsUJ4zLiI+DmwMnFcemwz8FDgrM78xyLn7R8S65bV2AT5MsepaXcghaUmSqtdVgZFisctlmTmvYf8Y4LvAfIqewl8CJ9QORsSnIuLauvKHAo9QzGV8E/CWzFxUHjuCosfxs/X3Wqw792Dgbooh7wuAUzPzJT2e6g4GRkmSqjfQ6QbUy8yjhtj/DLBDk/NOaXh/PMsvZKk/9jngc03qGnKBi7qXgVGSpOp0Ww+jNCLOYZQkqXoGRvU0h6QlSaqegVE9zcAoSVL1DIzqCwZGSZKqY2BUT6ufw+iNuyVJqoaBUT3NIWlJkqpnYFRPMzBKklQ9A6P6Qi0wZi4/TC1JkladgVE9rT4cDpS3oV+6tDNtkSSpXxkY1dPqh6RHjy5+XrKkc+2RJKkfGRjV0wyMkiRVz8CovmBglCSpOgZG9bT6OYwGRkmSqmFgVE+rH5J+2cuKnxcv7lx7JEnqRwZG9TTnMEqSVL2B4RSKiLcC7wemAWsB84DZwLmZ+Z+VtU4aJgOjJEnVWWFgjIhjgU8A/xe4FJgLTAR2BM6PiFMz84xKWykNwTmMkiRVbzg9jMcDb8jMOxv2XxYRFwM/AwyM6giHpCVJqt5w5jCOBx4e4tijwLjWNUcaGQOjJEnVG05gvBS4MiLeFBGTIuJlEbFBRLwJuBz4QbVNlFbMwChJUnWGExj/EfgFcD7wGLCwfD0f+G/g6MpaJ61A/RxGb6sjSVI1VjiHMTMXA/8M/HNErANMAOZn5jONZSNit8y8udWNlIbikLQkSdUb1m11asqQ+EyTItdSrKCW2sLAKElS9Vp94+5ocX3SsBgYJUmqTqsDY664iNQ63odRkqTq+WhA9TSHpCVJqp6BUT3NwChJUvWcw6i+4W11JEmqxogCY0SsHxGHRsQnyvebRMQrasczc61WN1Bqxh5GSZKqN+zAGBEzgP8F3gucUO7eCji7gnZJw2JglCSpeiPpYfwK8O7M3BtYWu77FbBLqxsljZSBUZKk6owkME7JzJ+UP9duZrKYEd78W2olHw0oSVL1RhIYfx8RezXsezPwuxa2RxqRxiHpNdaAhQs72yZJkvrNSHoHjwOuioirgbER8U1gP2D/SlomDUN9YAQYO9bAKElSqw27hzEz/xvYEZgN/AdwH7BLZv66orZJw2ZglCSpOiOaf5iZDwGnVdQWacSy4WGUBkZJklqvaWCMiO8wjOdDZ+ZhLWuRNAIOSUuSVL0VDUnfDdxTbnOBA4A1gAfLc/cHnqmueVJzBkZJkqrXNDBm5udqG7A1sG9mvjczP5WZ7wP2BbZpRUMiYn7DtiwivlZ3/IiIuLs8dl1EbNKkru0i4qcRMbc85+/qjk2JiGy41gl1xyMiTo2IJ8vttIjwkYddzsAoSVJ1RnJbndcD/92w71fAX7eiIZk5obYBGwILgZnwl6fMnELRo7kexYKbiwerJyIGgCuAq8qyRwIXRsTWDUXXqbvmyXX7j6ToSd0R2AF4O3BUKz6jWs85jJIkVW8kgfF/gFMiYixA+foF4LcVtOsdwOPAjeX7/YCZmTk7MxcDJwN7RMTUQc7dFtgE+HJmLsvMnwI3A4cO89qHA6dn5oPlIp/Tgfev/EdRlRySliSpeiMJjO8HdgPmRsRjFHMadweqWPByOHBB5l/6j6LcqHsPsP0g5w42fByDlH0gIh6MiHMjYoO6/dOA2+re31buUxcyMEqSVL2R3Ifx/szcFZgK/C3wyszcNTPvb2WDImIzYAZwft3ua4B3RcQOZc/miRSrt8cNUsWdFL2Tx0fE6Ih4a1lfrewTwGuBzYGdgbWAi+rOn0ARhmvmAhOGmscYEUdGxKyImDVnzpyRfVi1jIFRkqTqjKSHkYhYF3gD8EZgz/L9cM67oVxoMth2U0Pxw4CbMvO+2o7yGdafBS4FHgDuB+ZRrNZeTmYuoZiDuC/wKMUTai6plc3M+Zk5KzOXZuZjwAeBt0bExLKK+cDEuionAvPrejsbr3dOZk7PzOmTJk0aztehFnIOoyRJ1Rt2YIyIv6a4vc4/UiwGOQq4p9zfVGbumZkxxLZ7Q/HDWL53sVbHWZm5VWa+nCI4DgB3DHG92zNzRmaun5l7AVsCtwzVvNpHLF9nUyx4qak93UZdqHFIetw4eO65zrVHkqR+NJInvXwFOCYzv1fbERHvBr5KMcS7yiJiV2Ay5erouv1jgFdSBLdNgXOAMzLz6SHq2QG4iyIQHwNsDJxXHnsdxb0j/wisW7b/hsysDUNfAHwsIq6hCJPHAV9DXakxME6cCPPnwwsvwKgR9Z9LkqShjOSv1K0phnbr/YAiyLXK4cBlmTmvYf8Y4LsUw8W3AL8E6u+d+KmIuLau/KHAIxRzGd8EvCUzF5XHtgSuoxjSvgNYBBxSd+43gSuB35XHry73qYvVAuPaaxchcv78zrZHkqR+MpIexj8CB1MEt5p3UgxTt0RmDnq/w8x8hmIYfKjzTml4fzxw/BBlL2aIeziWxxP4RLmpyzXOYZxYzj6dO/fFnyVJ0qoZSWD8KHBVRHyYYuHJFGArihtbSx3ROCS99trF69y5sOmmnWmTJEn9ZtiBMTN/Ud4oe1+KG2NfCVyTmU9V1ThpRQabwwjw7LOdaY8kSf1oJD2MlItMLqyoLdJKG6yHUZIktcawA2NEbEHxKMCdKG5u/ReZuVlrmyUNz1BzGO1hlCSpdUbSw/hdigUuxwHe6U5dodkcRkmS1BojCYzTgN0y84WqGiONlIFRkqTqjeQ+jP8FvLqqhkirohYYx48vbtjtkLQkSa0zkh7G+4EfR8RlFM9o/ovMPLGVjZKGq3EOY0Qxj9EeRkmSWmckgXE8xa10RlM8nq8mBy8uVa9xSBqKwGgPoyRJrTOS+zD+/YrKRMQh5ZNUpLYYLDCuvbY9jJIktdJI5jAOh89cVkc09jAaGCVJap1WB8ZYcRGpdRrnMELRw+iQtCRJrdPqwOh8RrXVUEPSzzzTkeZIktSXWh0YpbYaLDBusAE88URn2iNJUj9aYWCMCEOlul59YNxoo2IO4/PPd649kiT1k+GEwYci4rSI2H4YZf+0qg2SRmKwOYwbbli8PvZYe9siSVK/Gk5g/EdgC+DXEfGbiPhIREwarGBmDidUSi0z2JC0gVGSpNZaYWDMzCsy853AxhS3zXkn8OeI+FFEHBQRo6tupLQijUPSAI880pm2SJLUb4Y9PzEzn8nMb2bm7sB2wCzgy4B/LatjBhuS3mKL4vXee9vbFkmS+tVIHg0IQESsCbwWeB2wIfCLVjdKGq7BhqTXX79YKf2HP3SmTZIkrYxMWLIEFi4cenvuuebHR1JuJIYdGCNid+Aw4F3A48B3gGMy84GRXVJqncECI8C228Ls2e1vjySp/2TCokUvhrDnnlt+a9y3Ku+XLVu5Nq6xBowd++I2btzy79dbb/n3Y8fCV74y/PpXGBgj4iTgUGA9YCawb2bevHIfR6pGY2DcdVf4938vnvgycWJn2iRJqtYLLxS3UBtuMFuVMDfYFKgVGT26CG61rRbkxo2DSZMGPzZY2BtsaywzeiVWlLQ0MAKvBz4N/DAzvbOduspQ/wPvsw+cdhpcfz0ceGB72yRJKixZAgsWFIFrwYIXt/r3zY7Vvx8szK3s/XbHjHlpgKu9X3fdwQPeSN+PHQsDI574171W+FEyc+92NERaGUMNSe+6a/GIwKuuMjBK0lCWLRt5cBtJ6FuyZGTtGRiA8eOLbdy4F38ePx5e/vJVC3D1PXKjfCTJiPVR9tXqaKjAOHo07LcfXH45fP3rxb8mJakXZRYBbP785bcFC166r7Z/uKFv8eKRtWXUqKED3XrrLf++8fhw3r/sZdV8h1p1Bkb1hcbACPAP/wAXXghf/Sp84hPtb5Ok1UtmEcBWFOYG29/s2EjnzzUGsVoY22STocPacAPdmmsO/vtW/c/AqJ7W7JfonnvCAQfAJz9Z/KJ83/va1SpJ3S6zmP82b97y20jDXOP+pUuH34Y114QJE17cxo8vXtdff/D9jdtg+x1uVVUMjOppQw1J1/Z997vw9rfD4YfDM8/AMcf4y1TqVUuXvjTg1W/PPtv8eOM23NuXjBo1eGDbcMOhw9yKgt748Su3qlXqFAOjelqzwAjFv7Z/9CN45zvhQx+CSy+Fb30Lpk5tXxul1VVm0QM30iA31DbcFbEDA7DWWstvEyfC5Mkv3T/Y1hjwHIaVDIzqE81+mY8fD1dfDeeeCx/7GLzqVXDKKUWAXGON9rVR6hW1RRbPPgtz5xavK/Pzs88Ob+5dRBHMGoPb5psPL+A1bgY8qfUMjOppw50IHlEsgtlrLzjqKDj2WPje9+Ab34Cddqq0iVLb1OblDTfUNQt6wxmuHTeuuH3VxInFtvbasNFGL/48ceKLvXvNAt64cU4VkbqdgVE9baR33p88Ga68Ei66qOht3Hln+PCH4fOfL/7ikjpp6dIiuD3zzPJb4776941hbzj3vRsz5qVBb+rU5YPein5ea63+uimxpOb83109LXPkQ08RxYrpffeFf/5nOOMMmDmzeETSQQc5lKWVt2jR8IPeYPsWLGhef0QR1tZZp9jWXhs222zkQc973UkaKQOjet7KBrx11y2GpN//fjj66GJhzNveBmeeCVtu2dImqke88EIR4J5+Gp56avnXp59ecRhc0aKMNdZ4MezVAt9GG710X/37+v1rreXQraTOMDCqp63Mw+Abvf718OtfF0HxhBNg2jT49Kfh+OOLyfPqLbUFG4OFvqFeaz8/80zzP1Mve9lLg9xmmw0e7gbbN368PdiSepOBUT1tZYakBzMwAB/9aNHLeOyxRXC88EI4+2x4wxtWvX6N3JIlIwt99eGv2ePO1lij6F1ed93iUWYbbABbbVX8XNtX/1r/89ix7fv8ktRNDIzqaa0KjDWTJ8Mll8B118E//RO88Y3w7nfDZz4D22/fuuusLl54oViIsTKhb/785nVPnLh8mNt++xUHvvXWK4Z17eWTpJExMKrnVfGX/957wx13wBe/CKefDt//Puy3X9H7OGPG6jWPLBMWLly50PfMM0VoHMqYMcuHuSlT4DWvGTzo1b+us44rdCWpnfyVq57WijmMQxk7trjdzkc+AmedBV/9anFLns02g/e8B/bZp5j/2M2P98osVu423ndvOK/1c/tGOsS79dZD9/Y5xCtJvadrAmNENA5AjQW+npkfKo8fAXwS2Ai4CfiHzHx4iLq2A84CdgbmAMdn5uXlsfcC36wrPqq81vTMvDUiTgI+DSyqK7NDZt67ap9QVWj1kPRg1l8fTjwRPv5xuOIKuOAC+Nd/hS99qXg6xatfDTvuWAyJTp4MG29chKYxY4qttnBmyZKXbosWFb13CxcWK2xrPw+1rUyZZj18NWPHvvQWLNOmNe/lc4hXklYfXRMYM3NC7eeIGA88Bsws388ATgHeAPwROAO4GJjRWE9EDABXAN8A3lKWuTIiXp2Zd2XmRcBFdeXfD5wA/Kaumu9n5vta+flUjXYExppx4+CQQ4rtmWfgZz+D66+H3/4WzjtvxXPuVtWYMUWwGzt2+Z/Hjn3x9iz1+2pb7WkctTDY+Op9+SRJK9I1gbHBO4DHgRvL9/sBMzNzNkBEnAw8FBFTM/OehnO3BTYBvpyZCfw0Im4GDqUIho0OBy4oy6oHdaJ3a5114O/+rtig6MV76CF4+GF45BF48smi93DRohfvzTd69Eu3Ndd8afgbbFtzzdVr3qQkqbt0a2BsDHFRbtS9B9geaAyMg8WHKMsuvzNic2AP4B8aDu0XEU8BjwBnZubZI2u+2qVbYv6oUbDppsUmSVK/6bo+i4jYjGIY+fy63dcA74qIHSJiLHAikMC4Qaq4k6J38viIGB0Rby3rG6zsYcCNmXlf3b5LgO2AScAHgBMj4pAm7T0yImZFxKw5c+YM+3OqNdo5JC1J0uqqLYExIm6IiBxiu6mh+GHATfUhLjN/AnwWuBR4ALgfmAc82HitzFwCHADsCzwKHEcRAl9StrxWfTAlM3+fmQ9n5rLM/AXFfMl3DPXZMvOczJyemdMnTZrU/ItQyxkYJUmqXlsCY2bumZkxxLZ7Q/GXhLiyjrMyc6vMfDlFcBwA7hjierdn5ozMXD8z9wK2BG6pLxMRu1HMdfzBiprP4MPc6hIGRkmSqtVVQ9IRsSswmXJ1dN3+MRGxfRQ2A84BzsjMp4eoZ4fynHER8XFgY+C8hmKHA5dm5ryGc/ePiHXLa+0CfJhi1bW6ULfMYZQkqZ9126KXw4HLGkMcMAb4LjCVYij6XOpWPEfEp4C/ycy3lbsOBY4ARlOstH5LZi6qKz8GeBdw0CBtOBj4D2BNimHsUzPzJT2eaq/Fi+FPf4L77y+2++4rXi+7zCd+SJJUtfBuMq0zffr0nDVrVqeb0ZMyYc4cuPtuuOeeYrv33heD4UMPLd+buMYaxbZ4cXEfwWef7VjTJUnqSRFxa2ZOH05Z+2bUNsuWwYMPvhgIa+Gw9lp/4+sIeMUrYIst4I1vLJ4xvMUWxeuUKcWxgw+GSy91DqMkSVUzMKqlMuGJJ+DOO4vtf/+3eL377qK3sP6ZxKNHw5ZbwtSpsMce8MpXFj9PnVqEw9oj9SRJUmcZGLVSliwphozrQ2Ht56eeerHcmDGw1VbFc5b3378Ig7Vg+IpXFMPKK6vWs2gPoyRJ1TIwqqkXXoAHHoDf/W757a67YOnSF8tttBFsuy28853Fa23bbLPqHmlnYJQkqT0MjPqLuXPht78tAuHttxevd9yx/NzCKVPgVa+Cv/1b2G67IhRusw2svXb722tQlCSpPQyMq6lnnoHf/AZuvfXF7e67Xzy+3npFMHz/+4vXV70Kpk2DiRM71eKXsodRkqT2MDCuBpYsgdtug5tvhl/+8qXhcLPNYOed4e//Hl7zGthhB9h44+4PYgZGSZLaw8DYh+bOhV/8ogiIN98Mt9wCzz1XHHvFK+C1ry3C4c47FwGx1x+BbWCUJKlaBsY+sGhR0XN4/fXF9utfF4tV1lgDdtoJjjgCdt212DbdtNOtbR2DoiRJ7WFg7FF//jNccQVcdRX813/BwoVFQHzd6+Azn4E994RddoHx4zvd0uo4JC1JUnsYGHvIH/5QPDv5hz+E2hMIt9666EF885uLkNhNi1KqZmCUJKk9DIxdbs4cuPhiOP/8YlUzwOtfD1/6UnEj7G237Wz7OsnAKElSexgYu1BmsVjlK18php2XLi0Wp3zlK8WNsTfZpNMt7A4GRUmS2sPA2EWWLYOZM+H004sh53XXhY98pLgX4vbbd7p13cvgKElStQyMXSATrrwSPv3p4skq22wDZ58Nhx7a34tWVpVD0pIktYeBscNmz4ajj4Ybb4SttoLvfa8Ydq7q+cv9xMAoSVJ7GEs6ZPHi4vY3O+1UhMZvfrN4ffe7DYvDZVCUJKk97GHsgAceKILhr35VDDuffnrvP22lE+xhlCSpPQyMbfaf/1mExdoCl3e8o9Mt6l0GRkmS2sPBzza66CLYZ5/i8Xy/+Y1hsVUMjJIkVcvA2Cb/8R/wvvfB7rsXj/KbOrXTLep9BkVJktrDwNgGl18OH/gA7LUXXHstrL12p1vUHxySliSpPQyMFbvlFjjkENhlF7j0UhgzptMt6h8GRkmS2sPAWKEnnijmKW60EVx1lTfhbjUDoyRJ7eEq6QoddRQ89ljxXOj11+90a/qPQVGSpPYwMFbk8svhssvgi1+E6dM73Zr+ZnCUJKlaDklXYOFC+NCHYMcd4bjjOt2a/uWQtCRJ7WEPYwXOPhseegi++10YPbrTrelfBkZJktrDHsYWW7IETjsN3vxm2GOPTremvxkUJUlqD3sYW+zqq4uFLt/6Vqdb0v/sYZQkqT3sYWyxc8+FjTeGvffudEv6n4FRkqT2MDC2UCZcfz0ceCAM2HdbOQOjJEntYWBsoeeeK7Y99+x0SyRJklrHwNhC8+YVr3/zN51tx+rCHkZJktrDwNhC8+fDNtvAhht2uiWrBwOjJEntYWBsoYUL4dWv7nQrVh8GRkmS2sPA2EKLF8O223a6FasPg6IkSe1hYGyxbbbpdAtWH/YwSpLUHl0TGCNiSkRcExFPR8SjEXFmRAzUHX9TRNwZEc9FxM8iYvMmda0XEZdHxIKIeCAi3tNwfMi6onBqRDxZbqdFDD+STJkywg+uVWZglCSpWl0TGIGvA48DGwM7ATOAYwAiYgPgMuAEYD1gFvD9JnWdBSwGNgTeC5wdEdOGWdeRwAHAjsAOwNuBo4b7ISZPHm5JrSp7GCVJao9uCoxbAJdk5vOZ+ShwHTCtPHYgMDszZ2bm88BJwI4R8ZIZgxExHjgIOCEz52fmTcCPgEOHWdfhwOmZ+WBmPgScDrx/uB9io41G8pG1KgyKkiS1RzcFxjOAgyNiXERMBt5GERqhCI631Qpm5gLgHl4MlPW2BpZl5l11+26rK7uiupY73nBuUwMDMHr0cEqqFexhlCSpPbopMP6cIpg9CzxIMVT8w/LYBGBuQ/m5wFqD1LOisiM9PheYMNQ8xog4MiJmRcSsUaOWDlZEFTEwSpLUHm0JjBFxQ0TkENtNETEK+DHF3MLxwAbAusCpZRXzgYkN1U4E5g1yuRWVHenxicD8zMzBPltmnpOZ0zNz+qte5QOk28mgKElSe7QlMGbmnpkZQ2y7Uyw+2RQ4MzMXZeaTwLnAPmUVsykWoQB/mac4tdzf6C5gICK2qtu3Y13ZFdW13PGGc9WFDI6SJFWrK4akM/MJ4D7g6IgYiIh1KBaf1OYSXg5sHxEHRcQY4ETg9sy8c5C6FlD0VH4+IsZHxG7A/sB3hlnXBcDHImJyRGwCHAec1/pPrVXlkLQkSe3RFYGxdCCwNzAHuBtYChwLkJlzKFY+fwF4GngdcHDtxIj4VERcW1fXMcBYitv0XAwcnZmzh1MX8E3gSuB3wB3A1eU+dRkDoyRJ7dE1k+4y87fAnk2OXw8M+uC9zDyl4f1TFPdSXJm6EvhEuamLGRQlSWqPbuphlEbEHkZJktrDwKieZWCUJKk9DIzqeQZGSZKqZWBUzzIoSpLUHgZG9SyHpCVJag8Do3qWgVGSpPYwMKpnGRQlSWoPA6N6loFRkqT2MDBKkiSpKQOjepY9jJIktYeBUT2rFhgzO9sOSZL6nYFRPcseRkmS2sPAqJ5lYJQkqT0MjOpZ3odRkqT2MDCq5zmHUZKkahkY1bPsWZQkqT0MjOpZBkZJktrDwKie5W11JElqDwOjepaLXiRJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y6AoSVJ7GBjVsxySliSpPQyM6lkGRkmS2sPAqJ5lYJQkqT0MjOpZBkZJktrDwChJkqSmDIzqWfYwSpLUHgZG9SwDoyRJ7WFgVM8yKEqS1B4GRvUsexglSWoPA6N6loFRkqT2MDCq5xkYJUmqloFRPcugKElSexgY1bMckpYkqT0MjOpZBkZJktrDwKieZVCUJKk9DIzqWfYwSpLUHgZG9TwDoyRJ1eqawBgRUyLimoh4OiIejYgzI2Kg7vibIuLOiHguIn4WEZs3qWu9iLg8IhZExAMR8Z66Y6+PiP+MiKciYk5EzIyIjeuOnxQRSyJift22ZXWfXCvLHkZJktqjawIj8HXgcWBjYCdgBnAMQERsAFwGnACsB8wCvt+krrOAxcCGwHuBsyNiWnlsXeAcYAqwOTAPOLfh/O9n5oS67d5V/XBqPQOjJEntMbDiIm2zBXBmZj4PPBoR1wG1kHcgMDszZ0LRCwg8ERHbZuad9ZVExHjgIGD7zJwP3BQRPwIOBT6Zmdc2lD8T+HmFn0sVMShKktQe3dTDeAZwcESMi4jJwNuA68pj04DbagUzcwFwDy8GynpbA8sy8666fbcNURZgD2B2w779yiHr2RFx9Mg/itrBHkZJktqjmwLjzylC3bPAgxTDzj8sj00A5jaUnwusNUg9wy4bETsAJwLH1+2+BNgOmAR8ADgxIg4ZqtERcWREzIqIWXPmzBmqmCpgYJQkqT3aEhgj4oaIyCG2myJiFPBjinmK44ENKOYanlpWMR+Y2FDtRIr5h42GVTYiXglcC3wkM2+s7c/M32fmw5m5LDN/QdHz+Y6hPltmnpOZ0zNz+qRJk5p/EWopA6MkSe3RlsCYmXtmZgyx7U6xkGVTijmMizLzSYqFKPuUVcwGdqzVV85TnMpLh5IB7gIGImKrun071pctV1hfD5ycmd9ZUfMBI4kkSVptdcWQdGY+AdwHHB0RAxGxDnA4L85bvBzYPiIOiogxFMPItzcueCnrWkDRU/n5iBgfEbsB+wPfASjnR/4UOCszv9F4fkTsHxHrRmEX4MPAFS3+yGoBexglSWqPrgiMpQOBvYE5wN3AUuBYgMycQ7Hy+QvA08DrgINrJ0bEpyKifvXzMcBYitv0XAwcnZm1HsYjgC2Bz9bfa7Hu3IPL688DLgBOzczzW/xZ1QIGRkmS2qNrbquTmb8F9mxy/Hpg2yGOndLw/inggCHKfg74XJPrDLnARd3FoChJUnt0Uw+jNCL2MEqS1B4GRvUsA6MkSe1hYFTPMzBKklQtA6N6lj2MkiS1h4FRPcugKElSexgY1bPsYZQkqT0MjOpZBkZJktrDwKieZWCUJKk9DIySJElqysConmUPoyRJ7WFgVM8zMEqSVC0Do3pWZqdbIEnS6sHAqJ5nD6MkSdUyMKpn1XoYDYySJFXLwKie9cILxauBUZKkahkY1fMMjJIkVcvAqJ7lohdJktrDwKieZw+jJEnVMjCqZ9nDKElSexgY1bNcJS1JUnsYGNWzDIySJLWHgVE9y8AoSVJ7GBjV8wyMkiRVy8ConuWiF0mS2sPAqJ5nD6MkSdUyMKpnOYdRkqT2MDCqZ/ksaUmS2sPAqJ5nYJQkqVoGRvUsF71IktQeBkb1PHsYJUmqloFRPcseRkmS2sPAqJ7lKmlJktrDwKieZWCUJKk9DIzqWQZGSZLaw8ConmdglCSpWgZG9SwXvUiS1B4GRvU8exglSaqWgVE9yzmMkiS1h4FRPctnSUuS1B5dExgjYkpEXBMRT0fEoxFxZkQM1B1/U0TcGRHPRcTPImLzJnWtFxGXR8SCiHggIt7TcJ2MiPl12wl1xyMiTo2IJ8vttAgjSTfzv44kSdXqmsAIfB14HNgY2AmYARwDEBEbAJcBJwDrAbOA7zep6yxgMbAh8F7g7IiY1lBmncycUG4n1+0/EjgA2BHYAXg7cNSqfDBVw0UvkiS1RzcFxi2ASzLz+cx8FLgOqIW8A4HZmTkzM58HTgJ2jIhtGyuJiPHAQcAJmTk/M28CfgQcOsx2HA6cnpkPZuZDwOnA+1fhc6li9jBKklStbgqMZwAHR8S4iJgMvI0iNEIRHG+rFczMBcA9vBgo620NLMvMu+r23TZI2Qci4sGIOLfswaxZ7lpDnPsXEXFkRMyKiFlz5sxp/gnVUvYwSpLUHt0UGH9OEcyeBR6kGHb+YXlsAjC3ofxcYK1B6llR2SeA1wKbAzuX+y9qcv5cYMJQ8xgz85zMnJ6Z0ydNmjTUZ1MFXCUtSVJ7tCUwRsQN5UKTwbabImIU8GOKeYrjgQ2AdYFTyyrmAxMbqp0IzBvkck3LlsPUszJzaWY+BnwQeGtETBzi/InA/Ez7s7rN4YfDAQfAZz7T6ZZIktTf2hIYM3PPzIwhtt0pFrJsCpyZmYsy80ngXGCfsorZFItQgL/MU5xa7m90FzAQEVvV7dtxiLIAtSBY66da7lorOFcdNHEiXH45bLRRp1siSVJ/64oh6cx8ArgPODoiBiJiHYrFJ7W5hJcD20fEQRExBjgRuD0z7xykrgUUPZWfj4jxEbEbsD/wHYCIeF1EbBMRoyJifeCrwA2ZWRuGvgD4WERMjohNgOOA86r55JIkSd2vKwJj6UBgb2AOcDewFDgWIDPnUKx8/gLwNPA64ODaiRHxqYi4tq6uY4CxFLfpuRg4OjNrvYRbUiymmQfcASwCDqk795vAlcDvyuNXl/skSZJWS+HUvNaZPn16zpo1q9PNkCRJWqGIuDUzpw+nbDf1MEqSJKkLGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTUVmdroNfSMi5gH/2+l2rGY2AJ7odCNWM37n7ed33n5+5+3nd95+22TmWsMpOFB1S1Yz/5uZ0zvdiNVJRMzyO28vv/P28ztvP7/z9vM7b7+ImDXcsg5JS5IkqSkDoyRJkpoyMLbWOZ1uwGrI77z9/M7bz++8/fzO28/vvP2G/Z276EWSJElN2cMoSZKkpgyMkiRJasrA2AIRsV5EXB4RCyLigYh4T6fb1O8i4oMRMSsiFkXEeZ1uT7+LiDUj4tvln+95EfE/EfG2Trer30XEhRHxSEQ8GxF3RcQRnW7T6iIitoqI5yPiwk63pd9FxA3ldz2/3LyfcRtExMER8Ycyu9wTEX/TrLz3YWyNs4DFwIbATsDVEXFbZs7uaKv628PAvwB7AWM73JbVwQDwZ2AG8CdgH+CSiHhVZt7fyYb1uS8C/yczF0XEtsANEfE/mXlrpxu2GjgL+HWnG7Ea+WBmfqvTjVhdRMRbgFOBdwO3ABuv6Bx7GFdRRIwHDgJOyMz5mXkT8CPg0M62rL9l5mWZ+UPgyU63ZXWQmQsy86TMvD8zX8jMq4D7gJ073bZ+lpmzM3NR7W25Te1gk1YLEXEw8Azwkw43RarK54DPZ+Z/l7/TH8rMh5qdYGBcdVsDyzLzrrp9twHTOtQeqXIRsSHFn3170SsWEV+PiOeAO4FHgGs63KS+FhETgc8Dx3W6LauZL0bEExFxc0Ts2enG9LOIWAOYDkyKiLsj4sGIODMimo7WGRhX3QRgbsO+ucCwns0o9ZqIGA1cBJyfmXd2uj39LjOPofh98jfAZcCi5mdoFZ0MfDsz/9zphqxG/j9gS2AyxX0Br4wIe9KrsyEwGngHxe+VnYBXA59pdpKBcdXNByY27JsIzOtAW6RKRcQo4DsUc3Y/2OHmrDYyc1k53eUVwNGdbk+/ioidgDcDX+5wU1YrmfmrzJyXmYsy83zgZop50qrGwvL1a5n5SGY+Afw7K/jOXfSy6u4CBiJiq8z8Y7lvRxyqU5+JiAC+TfGv030yc0mHm7Q6GsA5jFXaE5gC/Kn4484EYI2I+KvMfE0H27W6SSA63Yh+lZlPR8SDFN/zsNnDuIoycwHFMNHnI2J8ROwG7E/RC6OKRMRARIwB1qD4hT4mIvwHULXOBrYD9svMhSsqrFUTES8vb3sxISLWiIi9gEOAn3a6bX3sHIpAvlO5fQO4muJuDKpARKwTEXvVfodHxHuBPYAfd7ptfe5c4EPl75l1gY8CVzU7wb9gW+MY4D+AxylW7R7tLXUq9xngs3Xv30ex6uukjrSmz0XE5sBRFPPnHi17XwCOysyLOtaw/pYUw8/foPjH/QPARzPzio62qo9l5nPAc7X3ETEfeD4z53SuVX1vNMUt0rYFllEs7jogM70XY7VOBjagGCV9HrgE+EKzE3yWtCRJkppySFqSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSWiQiZkfEnm261l9FxKwK6r0sIvZudb2Sepv3YZSkYSpv5FwzjuJG5svK9229iXlEXArMzMzvtbjeXYCzM3PnVtYrqbcZGCVpJUTE/cARmXl9B669McXz6jfJzOcrqP+PwCGZ2fIeTEm9ySFpSWqRiLg/It5c/nxSRMyMiAsjYl5E/C4ito6If46IxyPizxHx1rpz146Ib0fEIxHxUET8S0SsMcSl3gL8pj4sltc+PiJuj4gFZV0bRsS15fWvL58ZS/nc3gsj4smIeCYifh0RG9bVfwOwb8u/IEk9y8AoSdXZD/gOsC7wP8CPKX7vTgY+D3yzruz5wFLglcCrgbcCRwxR76uAwZ61exBFmNy6vPa1wKconhk7CvhwWe5wYG1gU2B94B+BhXX1/AHYcdifUlLfMzBKUnVuzMwfZ+ZSYCYwCfhSZi4BvgdMiYh1yt69twEfzcwFmfk48GXg4CHqXQeYN8j+r2XmY5n5EHAj8KvM/J/MXARcThFEAZZQBMVXZuayzLw1M5+tq2deeQ1JAmCg0w2QpD72WN3PC4EnMnNZ3XuACcAmwGjgkYiolR8F/HmIep8G1hrG9RrfTyh//g5F7+L3ImId4ELg02WQpaz7maE+lKTVjz2MktR5f6ZYcb1BZq5TbhMzc9oQ5W+nGHZeKZm5JDM/l5l/BewKvB04rK7IdsBtK1u/pP5jYJSkDsvMR4D/Hzg9IiZGxKiImBoRM4Y45T+B10TEmJW5XkS8ISJeVS6qeZZiiHpZXZEZFPMfJQkwMEpStzgMeBnwe4oh5x8AGw9WMDMfA34K7L+S19qorP9ZigUuP6cYliYiXgssyMxbVrJuSX3I+zBKUg+KiL+iWFm9S7bwF3l5Q/BvZ+Y1rapTUu8zMEqSJKkph6QlSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTf0/R+NLYnzAph8AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCFElEQVR4nO3debgcZZ33//c3nEA2QoBElghEEASDgBLRBxmCO6IMDLiAyjIzCMK4oeIzo4IoIyPOMIqCKI8OiyxKBEQR8CcqDqAjBkeQKCKyKMgSloSEJRvf3x9VDZ3OOX3OSbp6y/t1XXX16aq77rqrCSef3Et1ZCaSJEnSUMZ0ugGSJEnqbgZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUtFaJiGsj4ut178+JiGs62SZJ6nYGRkk9ISI2jojPR8QfIuLpiHgoIv47Ig6NiIGKr71VRFwUEQ9ExJMR8eOI2Hk16jknIrLclkfEPRHx1YjYuIp2D9GG0yNiRUR8oF3XHKIdR0TEb8vP888RcWJE+HeS1KX8n1NS14uI5wO/Bg4EPgO8DHgV8A3go8COFV57AvAjYENgH2BX4G7gJxGxyWpUeR2wGTAD+ADFPZ3XirYOp7yXdwMnA0e245pDtOM9wJeB/6D4b/c+4L3ASZ1qk6TmDIySesGZwHrAyzLzgsz8XWb+MTPPpQhwf6wVjIj3R8RtZS/kHyPiE2vYA7k7sC1weGb+OjN/z3Nh65jVqG9pZj6Qmfdm5uXAF4G9I2J8FD4aEXdGxNKI+FNEfKj+5Ii4OyI+GxFfj4jHI+LhiDhlhL1z7wD+BPwrsHlE7N5Q95ll/VPq9p1dfo7rl+/3iYibImJJ2cv7lYiYWFf+nIi4JiKOLHtQH4+IyyNiWt2lDgPOzcxzM/POzPwecArwofq6JHUPA6OkrhYRG1H07J2emQsbj2fmssx8oix7IkWP478AOwAfBI4CPrUGTRhXvj5dd80VwFJgzzWot+Ypit/FAxQB9CTgc8BM4N+Bz0XEPzac837gr8DLgWMpeug+NIJrHUUR1JYA32LVXsZjgceB/wcQEe8E3gkclJmLImIn4HvAfwO7UAS/twBfbajn5cCrgTcDe5dl/6Pu+DjqPs/SU8AEYNYI7kNSu2Wmm5ubW9duwG5AAgcMU24C8CSwd8P+Q4EFde+vBb5e9/4c4Jom9U4FHqMY/p5M0dP5ybJNfxjlvax0LeDFFD1+/1O+/wvw+YZzvgDcWff+buC6hjInA/cOc+2dKULutLrP9UlgSkO5HYAngH+jCI/H1h37JnBjQ/n9gGeArerucT6wXl2Zfwbur3t/EvAoxbSCKK/5h/IzPbjTf+bc3NxW3exhlNTtonzNYcrNBMYDl0TE4toGfA3YoGFIdMQy82HgAGAPYAFFmHolcCWwYjWq3Kts21PArcCdwDsjYjLwfIreu3o/A2aU8w9rftFQ5gZgelnHUI4CrszM+eV93QjcRTGn8VlZDLl/lCLkXU8xZF4zc4j2BUX4rfl9Fr2YNfcB9fM9/xW4GPgpsIxiXuf55bHV+UwlVazSlYWS1AJ/pOjBmglc1qRc7R/AbwNuH+T4o6vbgMz8KfCiiNgQGJOZj0TEjRS9g6P1S4qh3OUUvW5LAOrCXmMwDobXtEw5L/BdwPoRsbzu0BiKYenTG07ZkyK4bUkxfPxU3bGhgnv9/qWDHHu2jeU9vzci3gdsCjwIvL48vDqfqaSK2cMoqatl5qPAVcD7ImKDxuMRMbYMRPMo5sVtnZl3DLKtcc9VZj5WhsUXUSy2uXQ1qnmqbM/d9b1wmfk4cC8wu6H8nsBdmflk3b5XNpT5P8BfyzoGcxBFANyZYj5hbfsbYGZEPFtfOV9y/7IdEyiGxGvmDdK+2RSB8HdDXHtImbk8i8U/yyjmSt4F/O9o65FUPXsYJfWCYyiGXW+KiBOA31D0Yr0SOA44LDN/ExEnAydHBBSPwhkAXgK8NDP/7+pePCIOp+jpvB94KcUw7X/T+sfh/BtwakT8kWKu5WuAo4F/aii3S7nA50KKRSIfBE5sUu9RwGWZ+dvGAxFxA0Uv4/+UQfg0inmLN0TEwcD1EfGjzLyEYhHOryPiP4GzKB4N9GXggsz880hvMiJeSDF/8RfA+sA/Uqzg3jcznxlpPZLax8Aoqetl5p8j4mUU8+pOpBgqfRz4PUWIubUsd1JE/JViFfF/UAyl3k6xEGNNvJBiYclUitB4IfDp+l7LMsB9KjNHMoQ8lDOBicDHga9QLIL558z8RkO5LwNbAXMphrbPZOWewGdFxC4Uq5aPH+Ka3wY+HxHHUqyc/mFmfhUgM39ZBvSvR8TczLwlIv6WYtHKP1H8N/gOxZzH0RhD8d/oKxS9k78CXpuZjfMjJXWJyBxuHrkkaTgRcR6waWa+oeLr3E2xyvtfq7yOJNWzh1GS1lD50OzXUjx7UJL6joFRktZQOe9ueqfbIUlVcUhakiRJTflYHUmSJDVlYJQkSVJTzmFsoalTp+aMGTM63QxJkqRh3XTTTQ9n5oi+NtXA2EIzZsxg7ty5nW6GJEnSsCLinpGWdUhakiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRjV8573PJg9u9OtkCSpfw10ugHSmpo/v9gkSVI1uqaHMSIWN2wrIuLLdcePiIg7ymNXR8TmTeqaERFXRsRjEfFARJweEQN1x7LhWsfXnRsRcUpEPFJun4+IqPbuJUmSulfXBMbMnFTbgE2Ap4A5ABExGzgZ2A/YCLgLuKhJdV8BHgI2A3YBZgPHNJSZUnfNk+r2HwnsD+wM7AS8BThqjW5OkiSph3VNYGzwVorAd135fl9gTmbOy8ylwEnAnhGxzRDnvwC4ODOfzswHgKuBmSO89mHAqZl5b2beB5wKHL6a9yFJktTzujUwHgacl5lZvo9yo+49wI5DnH8acFBETIiI6cCbKEJjvXsi4t6IODsiptbtnwncXPf+ZkYeNiVJkvpO1wXGiNiSYgj53LrdVwJvj4idImI8cAKQwIQhqvkZRch7HLgXmAt8tzz2MPByYCtgV2B94IK6cycBC+veLwQmDTWPMSKOjIi5ETF3visvJElSH2pLYIyIa8uFJoNt1zcUPxS4PjPvqu3IzB8DnwIuAe4B7gYWUYTBxmuNAX4IXApMBKYCGwKnlHUtzsy5mbk8Mx8E3ge8ISIml1UsBibXVTkZWFzX27mSzDwrM2dl5qxp06aN6nORJEnqBW0JjJm5V2bGENseDcUPZeXexVodZ2Tmtpn5PIrgOADcOsjlNgK2AE7PzCWZ+QhwNrDPUM0rX2s9iPMoFrzU7FzukyRJWit11ZB0ROwOTKdcHV23f1xE7Fg+8mZL4CzgtMx8rLGOzHyYYhX10RExEBFTKOZE3lzW9YqIeFFEjImIjYEvAddmZm0Y+jzgwxExvXx0z0eAc6q4X0mSpF7QVYGRIthdmpmLGvaPAy6kGC6+EfgFUP/sxI9HxFV15Q8A9gbmA3cAy4Fjy2NbUyyAWUTRQ7kEOLju3K8B3wd+Wx7/QblPkiRprRRDTM3Tapg1a1bOnTu3081Y69SWI/lHWZKkkYuImzJz1kjKdlsPoyRJkrqMgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRfcNvepEkqRoGRvWNFSs63QJJkvqTgVF9Y/nyTrdAkqT+ZGBU3zAwSpJUDQOj+oaBUZKkahgY1TcMjJIkVcPAqL5hYJQkqRoGRvUNA6MkSdUwMKpvGBglSaqGgVF9Y9myTrdAkqT+ZGBU37CHUZKkahgY1TeWLu10CyRJ6k8GRvWNJUs63QJJkvqTgVF9wx5GSZKqYWBU3zAwSpJUDQOj+oZD0pIkVcPAqL5hD6MkSdUwMKpvGBglSaqGgVF9wyFpSZKqYWBU37CHUZKkahgY1TcMjJIkVcPAqL7hkLQkSdUwMKrnjSn/FNvDKElSNQyM6nnrrlu8GhglSaqGgVE9b2CgeHVIWpKkahgY1fMyi1d7GCVJqoaBUT3PwChJUrUMjOobDklLklQNA6N6Xq2H0cAoSVI1DIzqebXAuGJFZ9shSVK/6prAGBGLG7YVEfHluuNHRMQd5bGrI2LzJnXNiIgrI+KxiHggIk6PiIHy2LsarvNkRGRE7FoePzEiljWU2br6T0CrqxYYly/vbDskSepXXRMYM3NSbQM2AZ4C5gBExGzgZGA/YCPgLuCiJtV9BXgI2AzYBZgNHFNe54KGax0D3An8uu78b9eXycw7W3irqog9jJIkVaNrAmODt1IEvuvK9/sCczJzXmYuBU4C9oyIbYY4/wXAxZn5dGY+AFwNzByi7GHAeZm1fir1GnsYJUmqVrcGxsYQF+VG3XuAHYc4/zTgoIiYEBHTgTdRhMaVRMRWwJ7AeQ2H9o2IRyNiXkQcvbo3ofYwMEqSVK2uC4wRsSXFEPK5dbuvBN4eETtFxHjgBCCBCUNU8zOKHsXHgXuBucB3Byl3KHBdZt5Vt+9iYAdgGvAe4ISIOLhJe4+MiLkRMXf+/PkjuEO1moteJEmqVlsCY0RcWy4sGWy7vqH4ocD19SEuM38MfAq4BLgHuBtYRBEGG681BvghcCkwEZgKbAicMkjTDmXlYEpm/i4z/5qZKzLz5xS9lW8d6t4y86zMnJWZs6ZNmzbMJ6Eq2cMoSVI12hIYM3OvzIwhtj0aiq8S4so6zsjMbTPzeRTBcQC4dZDLbQRsAZyemUsy8xHgbGCf+kIR8Spgc+A7wzWflYfD1WXsYZQkqVpdNSQdEbsD0ylXR9ftHxcRO0ZhS+As4LTMfKyxjsx8mGIV9dERMRARUyjmRN7cUPQw4JLMXNRwrf0iYsPyWrsBHwAub9EtqgLOYZQkqVpdFRgpQtyljSEOGAdcCCwGbgR+ARxfOxgRH4+Iq+rKHwDsDcwH7gCWA8fWlR8HvJ1BejKBg8pzFlEshjklMwcrpy5hD6MkSdUa6HQD6mXmUUPsXwDs1OS8kxve/wbYq0n5p4EpQxwbcoGLups9jJIkVaPbehilUbOHUZKkahkY1TfsYZQkqRoGRvW0+u/nsYdRkqRqGBjVN+xhlCSpGgZG9bT6HkYDoyRJ1TAwqqc5JC1JUvUMjOpp9jBKklQ9A6P6hj2MkiRVw8ConmYPoyRJ1TMwqqc5h1GSpOoZGNXT7GGUJKl6Bkb1DXsYJUmqhoFRPc0eRkmSqmdgVE9zDqMkSdUzMKpv2MMoSVI1DIzqabUexnXWsYdRkqSqGBjV02qBcezYooexfohakiS1hoFRPa0WEAcGitdnnulcWyRJ6lcGRvWFsWOLV4elJUlqPQOjelpjD6MLXyRJaj0Do3paY2C0h1GSpNYzMKqn1S96AXsYJUmqgoFRfWGddYpXexglSWo9A6N6mkPSkiRVz8ConmZglCSpegZG9TQDoyRJ1TMwqi84h1GSpOoYGNXT7GGUJKl6Bkb1NAOjJEnVMzCqpxkYJUmqnoFRfaE2h/GZZzrbDkmS+pGBUT2t1sPoohdJkqpjYFRPc0hakqTqGRjV0wyMkiRVz8CovuCQtCRJ1TEwqqfZwyhJUvUMjOppBkZJkqpnYFRPMzBKklS9rgmMEbG4YVsREV+uO35ERNxRHrs6IjZvUtcOEfGTiFhYnvN3DcdfGxG3RcSTEfHTiNiq7lhExCkR8Ui5fT4iopq7Vqs4h1GSpOp0TWDMzEm1DdgEeAqYAxARs4GTgf2AjYC7gIsGqyciBoDLgSvKskcC50fEduXxqcClwPHl8bnAt+uqOBLYH9gZ2Al4C3BUC29VLdT4HEYf3C1JUut1TWBs8FbgIeC68v2+wJzMnJeZS4GTgD0jYptBzt0e2Bz4QmauyMyfADcAh5THDwDmZeaczHwaOBHYOSK2L48fBpyamfdm5n3AqcDhLb9DtYRD0pIkVa9bA+NhwHmZtThAlBt17wF2HOTcwYaPo67sTODm2oHMfAL4U7l/lePlzzNRVzIwSpJUva4LjBGxJTAbOLdu95XA2yNip4gYD5wAJDBhkCpuo+idPC4ixkbEG8r6amUnAQsbzlkIrD/E8YXApKHmMUbEkRExNyLmzp8/f6S3qRZzDqMkSdVpS2CMiGsjIofYrm8ofihwfWbeVduRmT8GPgVcAtwD3A0sAu5tvFZmLqOYg/hm4AHgI8DFdWUXA5MbTptc1jfY8cnA4rrezsbrnZWZszJz1rRp05p9DKqAPYySJFWvLYExM/fKzBhi26Oh+KGs3LtYq+OMzNw2M59HERwHgFuHuN4tmTk7MzfOzDcCWwM3lofnUSxoASAiJgLblPtXOV7+PA91JQOjJEnV66oh6YjYHZhOuTq6bv+4iNixfOTNlsBZwGmZ+dgQ9exUnjMhIj4KbAacUx6+DNgxIg6MiHEUw9u3ZOZt5fHzgA9HxPTy0T0fqTtXXcbAKElS9boqMFIsdrk0Mxc17B8HXEgxXHwj8AuKx+IAEBEfj4ir6sofAtxPMZfxtcDrM3MJQGbOBw4EPgs8BrwCOKju3K8B3wd+S9GD+YNyn7qYcxglSarOQKcbUC8zB33eYWYuoHgm4lDnndzw/jjguCblr6F4/M5gxxL4WLmpyzU+h9HAKElS63VbD6M0Ko1D0j64W5Kk1jMwqi/YwyhJUnUMjOppLnqRJKl6Bkb1NAOjJEnVMzCqpxkYJUmqnoFRfcE5jJIkVcfAqJ5mD6MkSdUzMKqnGRglSaqegVE9zQd3S5JUPQOj+kItMPrgbkmSWs/AqJ7mkLQkSdUzMKqnGRglSaqegVE9rRYYx5R/kg2MkiS1noFRfSGimMdoYJQkqfUMjOpptR5GMDBKklQVA6N6Wi0w2sMoSVJ1DIzqaQZGSZKqZ2BUX6gFRp/DKElS6xkY1dPq5zCOGWMPoyRJVTAwqqc5JC1JUvUMjOppBkZJkqpnYFRfMDBKklQdA6N6ms9hlCSpegZG9TSHpCVJqp6BUT3NwChJUvUMjOoLBkZJkqpjYFRPa5zD6IO7JUlqPQOjelr9kLQP7pYkqRoGRvU05zBKklQ9A6P6goFRkqTqGBjV03wOoyRJ1TMwqqc5JC1JUvUMjOppBkZJkqpnYFRfMDBKklQdA6N6mnMYJUmqnoFRPa1xSNoHd0uS1HoGRvU0H9wtSVL1DIzqC85hlCSpOgZG9TTnMEqSVL2uCYwRsbhhWxERX647fkRE3FEeuzoiNm9S1w4R8ZOIWFie83d1x14ZET+KiEcjYn5EzImIzeqOnxgRyxrasnV1d6414WN1JEmqXtcExsycVNuATYCngDkAETEbOBnYD9gIuAu4aLB6ImIAuBy4oix7JHB+RGxXFtkQOAuYAWwFLALObqjm2/Xtycw7W3ajqoSBUZKk6nRNYGzwVuAh4Lry/b7AnMycl5lLgZOAPSNim0HO3R7YHPhCZq7IzJ8ANwCHAGTmVZk5JzMfz8wngdOBV1V8P6qIQ9KSJFWvWwPjYcB5mc/GgSg36t4D7DjIuTHEvsHKAuwJzGvYt285ZD0vIo4eYZvVAQ5JS5JUva4LjBGxJTAbOLdu95XA2yNip4gYD5wAJDBhkCpuo+idPC4ixkbEG8r6VikbETuVdR1Xt/tiYAdgGvAe4ISIOLhJe4+MiLkRMXf+/PmjuFO1goFRkqTqtSUwRsS1EZFDbNc3FD8UuD4z76rtyMwfA58CLgHuAe6mmHt4b+O1MnMZsD/wZuAB4CMUIXClshHxQuAq4IOZeV3d+b/LzL+Ww9k/B06jGCIfVGaelZmzMnPWtGnTRvqRqMVqz2H0wd2SJLVeWwJjZu6VmTHEtkdD8UNZuXexVscZmbltZj6PIjgOALcOcb1bMnN2Zm6cmW8EtgZurB2PiK2Aa4CTMvObwzWfwYe51QWcwyhJUvW6akg6InYHplOujq7bPy4idozClhSrnE/LzMeGqGen8pwJEfFRYDPgnPLYdOAnwBmZ+dVBzt0vIjYsr7Ub8AGKVdfqQg5JS5JUva4KjBSLXS7NzEUN+8cBFwKLKXoKfwEcXzsYER+PiKvqyh8C3E8xl/G1wOszc0l57AiKHsdP1T9rse7cg4A7KIa8zwNOycxVejzVHQyMkiRVb6DTDaiXmUcNsX8BsFOT805ueH8cKy9kqT/2aeDTTeoacoGLupeBUZKk6nRbD6M0Ks5hlCSpegZG9TSHpCVJqp6BUT3NwChJUvUMjOoLBkZJkqpjYFRPq5/D6IO7JUmqhoFRPc0haUmSqmdgVE8zMEqSVD0Do/pCLTBmrjxMLUmS1pyBUT2tPhwOlI+hX768M22RJKlfGRjV0+qHpMeOLX5etqxz7ZEkqR8ZGNXTDIySJFXPwKi+YGCUJKk6Bkb1tPo5jAZGSZKqYWBUT6sfkl533eLnpUs71x5JkvqRgVE9zTmMkiRVb2AkhSLiDcDhwExgfWARMA84OzN/VFnrpBEyMEqSVJ1hA2NEHAt8DPh/wCXAQmAysDNwbkSckpmnVdpKaQjOYZQkqXoj6WE8Dnh1Zt7WsP/SiLgI+ClgYFRHOCQtSVL1RjKHcSLw1yGOPQBMaF1zpNExMEqSVL2RBMZLgO9HxGsjYlpErBsRUyPitcBlwHeqbaI0PAOjJEnVGUlgfC/wc+Bc4EHgqfL1XOB/gKMra500jPo5jD5WR5Kkagw7hzEzlwL/AvxLREwBJgGLM3NBY9mIeFVm3tDqRkpDcUhakqTqjeixOjVlSFzQpMhVFCuopbYwMEqSVL1WP7g7WlyfNCIGRkmSqtPqwJjDF5Fax+cwSpJUPb8aUD3NIWlJkqpnYFRPMzBKklQ95zCqb/hYHUmSqjGqwBgRG0fEIRHxsfL95hHx/NrxzFy/1Q2UmrGHUZKk6o04MEbEbOAPwLuA48vd2wJnVtAuaUQMjJIkVW80PYxfBN6RmXsDy8t9vwR2a3WjpNEyMEqSVJ3RBMYZmfnj8ufaw0yWMsqHf0ut5FcDSpJUvdEExt9FxBsb9r0O+G0L2yONSuOQ9DrrwFNPdbZNkiT1m9H0Dn4EuCIifgCMj4ivAfsC+1XSMmkE6gMjwPjxBkZJklptxD2Mmfk/wM7APOC/gLuA3TLzVxW1TRoxA6MkSdUZ1fzDzLwP+HxFbZFGLRu+jNLAKElS6zUNjBHxTUbw/dCZeWjLWiSNgkPSkiRVb7gh6TuAP5XbQmB/YB3g3vLc/YAF1TVPas7AKElS9ZoGxsz8dG0DtgPenJnvysyPZ+a7gTcDL2pFQyJiccO2IiK+XHf8iIi4ozx2dURs3qSuHSLiJxGxsDzn7+qOzYiIbLjW8XXHIyJOiYhHyu3zEeFXHnY5A6MkSdUZzWN1Xgn8T8O+XwL/pxUNycxJtQ3YBHgKmAPPfsvMyRQ9mhtRLLi5aLB6ImIAuBy4oix7JHB+RGzXUHRK3TVPqtt/JEVP6s7ATsBbgKNacY9qPecwSpJUvdEExv8FTo6I8QDl62eB31TQrrcCDwHXle/3BeZk5rzMXAqcBOwZEdsMcu72wObAFzJzRWb+BLgBOGSE1z4MODUz7y0X+ZwKHL76t6IqOSQtSVL1RhMYDwdeBSyMiAcp5jTuAVSx4OUw4LzMZ/uPotyoew+w4yDnDjZ8HIOUvSci7o2IsyNiat3+mcDNde9vLvepCxkYJUmq3miew3h3Zu4ObAP8LfDCzNw9M+9uZYMiYktgNnBu3e4rgbdHxE5lz+YJFKu3JwxSxW0UvZPHRcTYiHhDWV+t7MPAy4GtgF2B9YEL6s6fRBGGaxYCk4aaxxgRR0bE3IiYO3/+/NHdrFrGwChJUnVG08NIRGwIvBp4DbBX+X4k511bLjQZbLu+ofihwPWZeVdtR/kd1p8CLgHuAe4GFlGs1l5JZi6jmIP4ZuABim+oubhWNjMXZ+bczFyemQ8C7wPeEBGTyyoWA5PrqpwMLK7r7Wy83lmZOSszZ02bNm0kH4dayDmMkiRVb8SBMSL+D8Xjdd5LsRjkKOBP5f6mMnOvzIwhtj0aih/Kyr2LtTrOyMxtM/N5FMFxALh1iOvdkpmzM3PjzHwjsDVw41DNq91i+TqPYsFLTe3bbdSFGoekJ0yAJ5/sXHskSepHo/mmly8Cx2Tmt2o7IuIdwJcohnjXWETsDkynXB1dt38c8EKK4LYFcBZwWmY+NkQ9OwG3UwTiY4DNgHPKY6+geHbkH4ENy/Zfm5m1YejzgA9HxJUUYfIjwJdRV2oMjJMnw+LF8MwzMGZU/eeSJGkoo/krdTuKod1636EIcq1yGHBpZi5q2D8OuJBiuPhG4BdA/bMTPx4RV9WVPwS4n2Iu42uB12fmkvLY1sDVFEPatwJLgIPrzv0a8H3gt+XxH5T71MVqgXGDDYoQuXhxZ9sjSVI/GU0P4x+BgyiCW83bKIapWyIzB33eYWYuoBgGH+q8kxveHwccN0TZixjiGY7l8QQ+Vm7qco1zGCeXs08XLnzuZ0mStGZGExg/BFwRER+gWHgyA9iW4sHWUkc0DklvsEHxunAhbLFFZ9okSVK/GXFgzMyflw/KfjPFg7G/D1yZmY9W1ThpOIPNYQR4/PHOtEeSpH40mh5GykUm51fUFmm1DdbDKEmSWmPEgTEiXkDxVYC7UDzc+lmZuWVrmyWNzFBzGO1hlCSpdUbTw3ghxQKXjwA+6U5dodkcRkmS1BqjCYwzgVdl5jNVNUYaLQOjJEnVG81zGP8beGlVDZHWRC0wTpxYPLDbIWlJklpnND2MdwM/jIhLKb6j+VmZeUIrGyWNVOMcxohiHqM9jJIktc5oAuNEikfpjKX4er6aHLy4VL3GIWkoAqM9jJIktc5onsP498OViYiDy29SkdpisMC4wQb2MEqS1EqjmcM4En7nsjqisYfRwChJUuu0OjDG8EWk1mmcwwhFD6ND0pIktU6rA6PzGdVWDklLklS9VgdGqa0GC4xTp8L8+Z1pjyRJ/WjYwBgRhkp1vfrAuOmmRQ/j0093rj2SJPWTkYTB+yLi8xGx4wjK/nlNGySNxmBzGDfZpHh98MH2tkWSpH41ksD4XuAFwK8i4tcR8cGImDZYwcwcSaiUWmawIWkDoyRJrTVsYMzMyzPzbcBmFI/NeRvwl4j4XkQcGBFjq26kNJzGIWmA++/vTFskSeo3I56fmJkLMvNrmbkHsAMwF/gC4F/L6pjBhqRf8ILi9c4729sWSZL61Wi+GhCAiFgPeDnwCmAT4OetbpQ0UoMNSW+8cbFS+ve/70ybJElaXcuWwVNPrbo9+eTg+9fk2GiMODBGxB7AocDbgYeAbwLHZOY9o7uk1DqDBUaA7beHefPa3x5JUv/JhKVLi/BV22phrNXvly9fvTaOGQMTJsD48YNvG2646r7TTht5/cMGxog4ETgE2AiYA7w5M29YvduRqtEYGHffHf7zP4tvfJk8uTNtkiRV65lnikeojSSUrWmgG2wK1HDGji1CXC3I1X6eMKEYCat/XzteC3PNwt9g29ixq/5dOJyWBkbglcAngO9mpk+2U1cZ6n/gffaBz38errkGDjigvW2SJBWWLSvC1hNPPLet7vvBQtzqPm93vfWGDnJTpqy6b7Tva/sGRj3xr3sNeyuZuXc7GiKtjqGGpHffvfiKwCuuMDBK0lBWrFg5oA0X3kYb+JYtG1171lkHJk4stgkTVv552rShg9lo3o8bV1xHo9NH2Vdro6EC49ixsO++cNll8JWvFL8gJKkXZRY9a4sXr7w98cSq+2r7RxruliwZXVsiBg90EycWc+Tq3zceH8n7ddcd/bCq2sPAqL4w2C+Yf/gHOP98+NKX4GMfa3+bJK19li4dPswNtn+4c0Yzf278+JWDWC2Mbbrp0GFtpIFu3DgD3drKwKie1uyX6F57wf77wz//M2y+Obz73e1qlaRul1n0ri1atPK2OmGu/v1ohmDXXRcmTVp122KLVfdNnDh42cb9EyYUq2WlVjMwqqcNNSRd23fhhfCWt8Bhh8GCBXDMMf4ylXrV8uWrBrw12Ub6+JIxYwYPa9OmFV8UsDrBbuLEYuqM1CsMjOppzQIjFEMz3/sevO1t8P73wyWXwNe/Dtts0742SmurzKIH7vHHWxPwRroidmAA1l9/1W3zzQff37g1hr311nMYVjIwqi80+2U+cSL84Adw9tnw4Q/DS14CJ59cBEhXykmryiwWRzz+OCxcWLyuzs+PPz7yuXeTJq0a3LbccvhwN3nyqvsMeFLrGRjV00b6l1FEsQjmjW+Eo46CY4+Fb30LvvpV2GWXSpsotU1m0Qs30lDXLOitWDH89caPLx5fNXlysW2wAWyyyXM/18LcYKGufps40akiUrczMKqnjfbJ+9Onw/e/DxdcUPQ27rorfOAD8JnPFH9xSZ20fHkR3BYseG5rfN+4rzHsjWTRxXrrrRr0tt565aA33M/rr+8cPGltYmBUT8sc/dBTRLFi+s1vhn/5l+KrkebMgS9+EQ480KEsrb4lS0YW+Iba/8QTw19jgw2Kb6KYMqX4eYstYObMlUPdcEFvvfWquHtJ/czAqJ63ugFvww2LIenDD4ejjy4WxrzpTXD66UVvi9Y+zzxT9NI99hg8+ujKr489NnzgG25RxjrrPBf0aqHvRS9a+X19GGx8v/76zruV1BkGRvW01fky+EavfCX86ldFUDz++KK35hOfgOOOsyemF9W+FaMx8NUHv6GOLVhQhMahrLvuqiFuiy2GD3q1nydOtAdbUm8yMKqnrc6Q9GAGBuBDHyp6GY89tgiO558PZ54Jr371mtev0Vu2bPSBr/bz0qVD17vOOkXv8oYbwkYbwcYbwwtfWPxc21f/Wv+z33IhaW1lYFRPa1VgrJk+HS6+GK6+Gv7pn+A1r4F3vAM++UnYccfWXWdtURviHSrgNQuBixc3r3vy5JXD3MyZwwe+jTYqhnUNfZI0OgZG9bwq/vLfe2+49Vb4t3+DU0+Fb38b9t236H2cPXvtegTIcEO8zULgcEO848atHOa22gpe+tLBg17965QpRa+wJKk9/JWrntaKOYxDGT++eNzOBz8IZ5wBX/pS8UieLbeEd74T9tmnmP/YzY8WqX1fbuNz90byOtIh3jFjVg5zU6fCttuObIh3/Pj2fRaSpNXXNYExIhoHoMYDX8nM95fHjwD+GdgUuB74h8z86xB17QCcAewKzAeOy8zLymPvAr5WV3xMea1ZmXlTRJwIfAJYUldmp8y8c83uUFVo9ZD0YDbeGE44AT76Ubj8cjjvPPj3f4fPfa74doqXvhR23rkYsp4+HTbbrAhN48YVW23hzLJlq25LlhS9d089Vaywrf081LY6ZZr18NWMG7fqI1he/OLmvXy11/XXX7t6XCVpbdQ1gTEzJ9V+joiJwIPAnPL9bOBk4NXAH4HTgIuA2Y31RMQAcDnwVeD1ZZnvR8RLM/P2zLwAuKCu/OHA8cCv66r5dma+u5X3p2q0IzDWTJgABx9cbAsWwE9/CtdcA7/5DZxzzvBz7tbUeusVPXKNWy3sbbLJ4McnTCiCYOMz+urD4brrVtt2SVJv65rA2OCtwEPAdeX7fYE5mTkPICJOAu6LiG0y808N524PbA58ITMT+ElE3AAcQhEMGx0GnFeWVQ/qxAKGKVPg7/6u2KDoxbvvPvjrX+H+++Hhh4vew9oGxdB147beekXgGyzo1QfCcePsxZMkdU63BsbGEBflRt17gB2BxsA4WHyIsuzKOyO2AvYE/qHh0L4R8ShwP3B6Zp45uuarXbol5o8ZUzyPb4stOt0SSZJar+v6LCJiS4ph5HPrdl8JvD0idoqI8cAJQAITBqniNoreyeMiYmxEvKGsb7CyhwLXZeZddfsuBnYApgHvAU6IiIObtPfIiJgbEXPnz58/4vtUa7RzSFqSpLVVWwJjRFwbETnEdn1D8UOB6+tDXGb+GPgUcAlwD3A3sAi4t/FambkM2B94M/AA8BGKELhK2fJa9cGUzPxdZv41M1dk5s8p5ku+dah7y8yzMnNWZs6aNm1a8w9CLWdglCSpem0JjJm5V2bGENseDcVXCXFlHWdk5raZ+TyK4DgA3DrE9W7JzNmZuXFmvhHYGrixvkxEvIpiruN3hms+gw9zq0sYGCVJqlZXDUlHxO7AdMrV0XX7x0XEjlHYEjgLOC0zHxuinp3KcyZExEeBzYBzGoodBlySmYsazt0vIjYsr7Ub8AGKVdfqQt0yh1GSpH7WbYteDgMubQxxwDjgQmAbiqHos6lb8RwRHwf+JjPfVO46BDgCGEux0vr1mbmkrvw44O3AgYO04SDgv4D1KIaxT8nMVXo81V5Ll8Kf/wx3311sd91VvF56qd/4IUlS1cKnybTOrFmzcu7cuZ1uRk/KhPnz4Y474E9/KrY773wuGN5338q9ieusU2xLlxYPjn788Y41XZKknhQRN2XmrJGUtW9GbbNiBdx773OBsBYOa6/1D76OgOc/H17wAnjNa2DGjOLnGTOK7fnPh4MOgksucQ6jJElVMzCqpTKLh1bfdlux/eEPxesddxS9hfXfSTx2LGy9NWyzDey5J7zwhcXP22xThMPaV+pJkqTOMjBqtSxbVgwZ14fC2s+PPvpcuXHjYNtti+9Z3m+/IgzWguHzn18MK6+uWs+iPYySJFXLwKimnnkG7rkHfvvblbfbb4fly58rt+mmsP328La3Fa+1bcstq/tKOwOjJEntYWDUsxYuhN/8pgiEt9xSvN5668pzC2fMgJe8BP72b2GHHYpQ+KIXwQYbtL+9BkVJktrDwLiWWrAAfv1ruOmm57Y77nju+EYbFcHw8MOL15e8BGbOhMmTO9XiVdnDKElSexgY1wLLlsHNN8MNN8AvfrFqONxyS9h1V/j7v4eXvQx22gk226z7g5iBUZKk9jAw9qEFC+DnPy+2G26AG2+EJ58sjj3/+fDylxfhcNddi4DY61+BbWCUJKlaBsY+sGRJ0XN4zTXF9qtfFYtV1lkHdtkFjjgCdt+92LbYotOtbR2DoiRJ7WFg7FF/+QtcfjlccQX893/DU08VAfEVr4BPfhL22gt22w0mTux0S6vjkLQkSe1hYOwhv/td8d3J3/1uMQ8RYLvtih7E172uCIndtCilagZGSZLaw8DY5ebPh4sugnPPLVY1A7zylfC5zxUPwt5++862r5MMjJIktYeBsQtlFotVvvjFYth5+fJiccoXv1g8GHvzzTvdwu5gUJQkqT0MjF1kxQqYMwdOPRXmzoUNN4QPfrB4FuKOO3a6dd3L4ChJUrUMjF0gE773vWKxyq23Ft+ccuaZcMgh/b1oZU05JC1JUnsYGDts3jx473vh+uth223hW98qhp2r+v7lfmJglCSpPYwlHbJ0KXziE8VzEn//ezjrrGIV9DveYVgcKYOiJEntYQ9jB9x9dxEMb7wRDjsM/uM/YOrUTreq99jDKElSexgY2+xHPyrC4ooV8J3vwIEHdrpFvcvAKElSezj42UYXXAD77FN8Pd+vf21YbBUDoyRJ1TIwtsl//Re8+92wxx7FV/lts02nW9T7DIqSJLWHgbENLrsM3vMeeOMb4aqrYIMNOt2i/uCQtCRJ7WFgrNgvfwkHHQS77QaXXALjxnW6Rf3DwChJUnsYGCv08MPPfZXfFVf4EO5WMzBKktQerpKu0FFHwUMPFd8LvfHGnW5N/zEoSpLUHgbGilx2GVx6KXzuc7Drrp1uTX8zOEqSVC2HpCvw5JPw/vcX3+Ly4Q93ujX9yyFpSZLawx7GCpx5Jtx3H1x4IYwd2+nW9C8DoyRJ7WEPY4stWwb//u/wutfBnnt2ujX9zaAoSVJ72MPYYldcAQ8+CF//eqdb0v/sYZQkqT3sYWyxs8+GzTaDvffudEv6n4FRkqT2MDC2UCb8+MfFd0QP2HdbOQOjJEntYWBsoSefLLbZszvdEkmSpNYxMLbQokXFq4td2sMeRkmS2sPA2EKLF8OLXgTPe16nW7J2MDBKktQeBsYWeuopeNnLOt2KtYeBUZKk9jAwttDSpUUPo9rDoChJUnsYGFvMwNg+9jBKktQeXRMYI2JGRFwZEY9FxAMRcXpEDNQdf21E3BYRT0bETyNiqyZ1bRQRl0XEExFxT0S8s+H4kHVF4ZSIeKTcPh8x8kgyY8Yob1xrzMAoSVK1uiYwAl8BHgI2A3YBZgPHAETEVOBS4HhgI2Au8O0mdZ0BLAU2Ad4FnBkRM0dY15HA/sDOwE7AW4CjRnoT06ePtKTWlD2MkiS1RzcFxhcAF2fm05n5AHA1MLM8dgAwLzPnZObTwInAzhGxfWMlETEROBA4PjMXZ+b1wPeAQ0ZY12HAqZl5b2beB5wKHD7Sm9h009HcstaEQVGSpPbopsB4GnBQREyIiOnAmyhCIxTB8eZawcx8AvgTzwXKetsBKzLz9rp9N9eVHa6ulY43nNvUwACMHTuSkmoFexglSWqPbgqMP6MIZo8D91IMFX+3PDYJWNhQfiGw/iD1DFd2tMcXApOGmscYEUdGxNyImDtmzLLBiqgiBkZJktqjLYExIq6NiBxiuz4ixgA/pJhbOBGYCmwInFJWsRiY3FDtZGDRIJcbruxoj08GFmdmDnZvmXlWZs7KzFkveYndi+1kUJQkqT3aEhgzc6/MjCG2PSgWn2wBnJ6ZSzLzEeBsYJ+yinkUi1CAZ+cpblPub3Q7MBAR29bt27mu7HB1rXS84Vx1IYOjJEnV6ooh6cx8GLgLODoiBiJiCsXik9pcwsuAHSPiwIgYB5wA3JKZtw1S1xMUPZWfiYiJEfEqYD/gmyOs6zzgwxExPSI2Bz4CnNP6u9aackhakqT26IrAWDoA2BuYD9wBLAeOBcjM+RQrnz8LPAa8AjiodmJEfDwirqqr6xhgPMVjei4Cjs7MeSOpC/ga8H3gt8CtwA/KfeoyBkZJktpjYPgi7ZGZvwH2anL8GmCVx+iUx05ueP8oxbMUV6euBD5WbupiBkVJktqjm3oYpVGxh1GSpPYwMKpnGRglSWoPA6N6noFRkqRqGRjVswyKkiS1h4FRPcshaUmS2sPAqJ5lYJQkqT0MjOpZBkVJktrDwKieZWCUJKk9DIySJElqysConmUPoyRJ7WFgVM+qBcbMzrZDkqR+Z2BUz7KHUZKk9jAwqmcZGCVJag8Do3qWz2GUJKk9DIzqec5hlCSpWgZG9Sx7FiVJag8Do3qWgVGSpPYwMKpn+VgdSZLaw8ConuWiF0mS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPMihKktQeBkb1LIekJUlqDwOjepaBUZKk9jAwqmcZGCVJag8Do3qWgVGSpPYwMEqSJKkpA6N6lj2MkiS1h4FRPcvAKElSexgY1bMMipIktYeBUT3LHkZJktrDwKieZWCUJKk9DIzqeQZGSZKqZWBUzzIoSpLUHgZG9SyHpCVJag8Do3qWgVGSpPYwMKpnGRQlSWoPA6N6lj2MkiS1h4FRPc/AKElStbomMEbEjIi4MiIei4gHIuL0iBioO/7aiLgtIp6MiJ9GxFZN6tooIi6LiCci4p6IeGfdsVdGxI8i4tGImB8RcyJis7rjJ0bEsohYXLdtXd2da3XZwyhJUnt0TWAEvgI8BGwG7ALMBo4BiIipwKXA8cBGwFzg203qOgNYCmwCvAs4MyJmlsc2BM4CZgBbAYuAsxvO/3ZmTqrb7lzTm1PrGRglSWqPgeGLtM0LgNMz82nggYi4GqiFvAOAeZk5B4peQODhiNg+M2+rryQiJgIHAjtm5mLg+oj4HnAI8M+ZeVVD+dOBn1V4X6qIQVGSpPboph7G04CDImJCREwH3gRcXR6bCdxcK5iZTwB/4rlAWW87YEVm3l637+YhygLsCcxr2LdvOWQ9LyKOHv2tqB3sYZQkqT26KTD+jCLUPQ7cSzHs/N3y2CRgYUP5hcD6g9Qz4rIRsRNwAnBc3e6LgR2AacB7gBMi4uChGh0RR0bE3IiYO3/+/KGKqQIGRkmS2qMtgTEiro2IHGK7PiLGAD+kmKc4EZhKMdfwlLKKxcDkhmonU8w/bDSishHxQuAq4IOZeV1tf2b+LjP/mpkrMvPnFD2fbx3q3jLzrMyclZmzpk2b1vyDUEsZGCVJao+2BMbM3CszY4htD4qFLFtQzGFckpmPUCxE2aesYh6wc62+cp7iNqw6lAxwOzAQEdvW7du5vmy5wvoa4KTM/OZwzQeMJJIkaa3VFUPSmfkwcBdwdEQMRMQU4DCem7d4GbBjRBwYEeMohpFvaVzwUtb1BEVP5WciYmJEvArYD/gmQDk/8ifAGZn51cbzI2K/iNgwCrsBHwAub/EtqwXsYZQkqT26IjCWDgD2BuYDdwDLgWMBMnM+xcrnzwKPAa8ADqqdGBEfj4j61c/HAOMpHtNzEXB0ZtZ6GI8AtgY+Vf+sxbpzDyqvvwg4DzglM89t8b2qBQyMkiS1R9c8ViczfwPs1eT4NcD2Qxw7ueH9o8D+Q5T9NPDpJtcZcoGLuotBUZKk9uimHkZpVOxhlCSpPQyM6lkGRkmS2sPAqJ5nYJQkqVoGRvUsexglSWoPA6N6lkFRkqT2MDCqZ9nDKElSexgY1bMMjJIktYeBUT3LwChJUnsYGCVJktSUgVE9yx5GSZLaw8ConmdglCSpWgZG9azMTrdAkqS1g4FRPc8eRkmSqmVgVM+q9TAaGCVJqpaBUT3rmWeKVwOjJEnVMjCq5xkYJUmqloFRPctFL5IktYeBUT3PHkZJkqplYFTPsodRkqT2MDCqZ7lKWpKk9jAwqmcZGCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y0UvkiS1h4FRPc8eRkmSqmVgVM9yDqMkSe1hYFTP8rukJUlqDwOjep6BUZKkahkY1bNc9CJJUnsYGNXz7GGUJKlaBkb1LHsYJUlqDwOjeparpCVJag8Do3qWgVGSpPYwMKpnGRglSWoPA6N6noFRkqRqGRjVs1z0IklSexgY1fPsYZQkqVoGRvUs5zBKktQeBkb1LL9LWpKk9uiawBgRMyLiyoh4LCIeiIjTI2Kg7vhrI+K2iHgyIn4aEVs1qWujiLgsIp6IiHsi4p0N18mIWFy3HV93PCLilIh4pNw+H2Ek6Wb+15EkqVpdExiBrwAPAZsBuwCzgWMAImIqcClwPLARMBf4dpO6zgCWApsA7wLOjIiZDWWmZOakcjupbv+RwP7AzsBOwFuAo9bkxlQNF71IktQe3RQYXwBcnJlPZ+YDwNVALeQdAMzLzDmZ+TRwIrBzRGzfWElETAQOBI7PzMWZeT3wPeCQEbbjMODUzLw3M+8DTgUOX4P7UsXsYZQkqVrdFBhPAw6KiAkRMR14E0VohCI43lwrmJlPAH/iuUBZbztgRWbeXrfv5kHK3hMR90bE2WUPZs1K1xri3GdFxJERMTci5s6fP7/5Haql7GGUJKk9uikw/owimD0O3Esx7Pzd8tgkYGFD+YXA+oPUM1zZh4GXA1sBu5b7L2hy/kJg0lDzGDPzrMyclZmzpk2bNtS9qQKukpYkqT3aEhgj4tpyoclg2/URMQb4IcU8xYnAVGBD4JSyisXA5IZqJwOLBrlc07LlMPXczFyemQ8C7wPeEBGThzh/MrA40/6sbnPYYbD//vDJT3a6JZIk9be2BMbM3CszY4htD4qFLFsAp2fmksx8BDgb2KesYh7FIhTg2XmK25T7G90ODETEtnX7dh6iLEAtCNb6qVa61jDnqoMmT4bLLoNNN+10SyRJ6m9dMSSdmQ8DdwFHR8RAREyhWHxSm0t4GbBjRBwYEeOAE4BbMvO2Qep6gqKn8jMRMTEiXgXsB3wTICJeEREviogxEbEx8CXg2sysDUOfB3w4IqZHxObAR4BzqrlzSZKk7tcVgbF0ALA3MB+4A1gOHAuQmfMpVj5/FngMeAVwUO3EiPh4RFxVV9cxwHiKx/RcBBydmbVewq0pFtMsAm4FlgAH1537NeD7wG/L4z8o90mSJK2Vwql5rTNr1qycO3dup5shSZI0rIi4KTNnjaRsN/UwSpIkqQsZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNRWZ2ug19IyIWAX/odDvWMlOBhzvdiLWMn3n7+Zm3n595+/mZt9+LMnP9kRQcqLola5k/ZOasTjdibRIRc/3M28vPvP38zNvPz7z9/MzbLyLmjrSsQ9KSJElqysAoSZKkpgyMrXVWpxuwFvIzbz8/8/bzM28/P/P28zNvvxF/5i56kSRJUlP2MEqSJKkpA6MkSZKaMjC2QERsFBGXRcQTEXFPRLyz023qdxHxvoiYGxFLIuKcTren30XEehHxjfLP96KI+N+IeFOn29XvIuL8iLg/Ih6PiNsj4ohOt2ltERHbRsTTEXF+p9vS7yLi2vKzXlxuPs+4DSLioIj4fZld/hQRf9OsvM9hbI0zgKXAJsAuwA8i4ubMnNfRVvW3vwL/CrwRGN/htqwNBoC/ALOBPwP7ABdHxEsy8+5ONqzP/Rvwj5m5JCK2B66NiP/NzJs63bC1wBnArzrdiLXI+zLz651uxNoiIl4PnAK8A7gR2Gy4c+xhXEMRMRE4EDg+Mxdn5vXA94BDOtuy/paZl2bmd4FHOt2WtUFmPpGZJ2bm3Zn5TGZeAdwF7NrptvWzzJyXmUtqb8ttmw42aa0QEQcBC4Afd7gpUlU+DXwmM/+n/J1+X2be1+wEA+Oa2w5YkZm31+27GZjZofZIlYuITSj+7NuLXrGI+EpEPAncBtwPXNnhJvW1iJgMfAb4SKfbspb5t4h4OCJuiIi9Ot2YfhYR6wCzgGkRcUdE3BsRp0dE09E6A+OamwQsbNi3EBjRdzNKvSYixgIXAOdm5m2dbk+/y8xjKH6f/A1wKbCk+RlaQycB38jMv3S6IWuR/wtsDUyneC7g9yPCnvTqbAKMBd5K8XtlF+ClwCebnWRgXHOLgckN+yYDizrQFqlSETEG+CbFnN33dbg5a43MXFFOd3k+cHSn29OvImIX4HXAFzrclLVKZv4yMxdl5pLMPBe4gWKetKrxVPn65cy8PzMfBv6TYT5zF72suduBgYjYNjP/WO7bGYfq1GciIoBvUPzrdJ/MXNbhJq2NBnAOY5X2AmYAfy7+uDMJWCciXpyZL+tgu9Y2CUSnG9GvMvOxiLiX4nMeMXsY11BmPkExTPSZiJgYEa8C9qPohVFFImIgIsYB61D8Qh8XEf4DqFpnAjsA+2bmU8MV1pqJiOeVj72YFBHrRMQbgYOBn3S6bX3sLIpAvku5fRX4AcXTGFSBiJgSEW+s/Q6PiHcBewI/7HTb+tzZwPvL3zMbAh8Crmh2gn/BtsYxwH8BD1Gs2j3aR+pU7pPAp+rev5ti1deJHWlNn4uIrYCjKObPPVD2vgAclZkXdKxh/S0php+/SvGP+3uAD2Xm5R1tVR/LzCeBJ2vvI2Ix8HRmzu9cq/reWIpHpG0PrKBY3LV/ZvosxmqdBEylGCV9GrgY+GyzE/wuaUmSJDXlkLQkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MktUhEzIuIvdp0rRdHxNwK6r00IvZudb2SepvPYZSkESof5FwzgeJB5ivK9219iHlEXALMycxvtbje3YAzM3PXVtYrqbcZGCVpNUTE3cARmXlNB669GcX31W+emU9XUP8fgYMzs+U9mJJ6k0PSktQiEXF3RLyu/PnEiJgTEedHxKKI+G1EbBcR/xIRD0XEXyLiDXXnbhAR34iI+yPivoj414hYZ4hLvR74dX1YLK99XETcEhFPlHVtEhFXlde/pvzOWMrv7T0/Ih6JiAUR8auI2KSu/muBN7f8A5LUswyMklSdfYFvAhsC/wv8kOL37nTgM8DX6sqeCywHXgi8FHgDcMQQ9b4EGOy7dg+kCJPblde+Cvg4xXfGjgE+UJY7DNgA2ALYGHgv8FRdPb8Hdh7xXUrqewZGSarOdZn5w8xcDswBpgGfy8xlwLeAGRExpezdexPwocx8IjMfAr4AHDREvVOARYPs/3JmPpiZ9wHXAb/MzP/NzCXAZRRBFGAZRVB8YWauyMybMvPxunoWldeQJAAGOt0ASepjD9b9/BTwcGauqHsPMAnYHBgL3B8RtfJjgL8MUe9jwPojuF7j+0nlz9+k6F38VkRMAc4HPlEGWcq6Fwx1U5LWPvYwSlLn/YVixfXUzJxSbpMzc+YQ5W+hGHZeLZm5LDM/nZkvBnYH3gIcWldkB+Dm1a1fUv8xMEpSh2Xm/cD/B5waEZMjYkxEbBMRs4c45UfAyyJi3OpcLyJeHREvKRfVPE4xRL2irshsivmPkgQYGCWpWxwKrAv8jmLI+TvAZoMVzMwHgZ8A+63mtTYt63+cYoHLzyiGpYmIlwNPZOaNq1m3pD7kcxglqQdFxIspVlbvli38RV4+EPwbmXllq+qU1PsMjJIkSWrKIWlJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSU/8/sNdOnI8BQvUAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCkUlEQVR4nO3debgcZZ33//c3OZGQhLAlbBEIqyCrEtEBJLiCIAOCC4yyzDwIwriMIj4zjiDKIw48P0ZREGUcWWQRIiCy+oiKA+iIQUWJIqLACLKEJSEJIRvf3x9VLZ3mnM45SVdveb+uq64+XXXXXXc14eSTe6mOzESSJEkayqhON0CSJEndzcAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIyS+kZE3BoRX697f2FE3NLJNklSPzAwSuq4iFg/Is6MiN9HxPMR8URE/FdEHBkRAxVf+9iI+EFEPB0RGRF7DVHu6LJ9iyLi3oh470pc69TyGhkRL0TEIxFxeURsvup3Muw2fDwilkXEv7frmoO0YWxEXBARv4yIxRFx/xDl1oqI/4iIpyJiQUTcFBFbtbu9kgyMkjosIl4O/AI4FPgs8GpgT+A/gY8DO1bchHHAD4GTmrTx4LI9XwV2Af4DuDgi3rYS13sQ2Bh4OXAkMA24LiJGr0RdK+P9wOnAkRGxRpuu2Wg0sBg4H/hWk3LfBN4EvBPYCwjg+xGxZuUtlLQcA6OkTjsPWAN4dWZempm/zcw/ZOZFwG7AH2oFI+JDZe/e8xHxh4j411XtgczML2bm54AfNCn2CeCKzPxCZt6bmWcBVwP/eyUuuSwzH8vMv2TmD4BTgZ2ArQEi4qiI+G3Zk/lwRPyf+nssh92/ERH/FhFPRsSzEfH14YSoiHgDsA7wGeBxipBef/x/R8SciJhat+/TZQ/fy8v3ryt7fxdGxDMRcVlEbFBX/tSIuD8iDir/Wy2IiB/V9wxm5oLMPC4zzwP+NERbtwUOAj6QmT/KzF8ChwNTgPes6F4ltZaBUVLHRMR6wP7AOZk5t/F4Zi7JzAVl2VMpehz/Bdge+AhwHPDpitv4MuA1wM0Nh24GXteCnsGF5euYiDgA+AZFz9pOwInAP/LSe3wnsD7weuC9wN8CZwzjWscBl2bmUuAi4NiG42cCPwMuj4iBiHg98Cng7zPz4YjYCPh/wMPA7sCBFD3AVzXUszFwfNm2PShC6jeG0b56ewJLqAvymfkMcCdFb6OkNjIwSuqkrSl+D/22WaGIGEfRy3dcZl6TmQ9k5o0UYeZDFbdxEjAAPNaw/zGKntH1VrbiiNiMopfyz8DvgX8GrsrMz2fmfZl5BUUP5MfL4FrzNEXP2+8y8zqKz+G4iBjf5FqTgXdQBEUoQumeEfGKWpnMTOAIYCrwJeAy4CuZ+d2yyD8CzwJHZ+ZvMvP2svxeEbF33eXWAI7IzLsy826KMPv6iBg7go9nY+DJzFzWsP+x8pikNjIwSuqkKF9zBeV2ANYEroqI+bUN+BqwdhmGOmVFbW+0Zdn+54CHKD6Dd2TmEor7/K+G8j8GxgL1iz3ubAhSdwAvayjT6O+B35UBjsx8FPg+xZzGF28m8wngHyh6CJ+iCOo1OwD/nZmL68rfDcwtj9X8JTNn171/pLzPDWiNkX7mklZRpasPJWkF/gC8QBE2rmlSrvaP23cB9w1y/OkWt6vek8BSYKOG/RsCi4BnRljfnykWcrwAPJaZzzUcbwxDwwnV0eQYERHAMcDWEbG07tAo4DUR8cn6EAhMB5ZR3OPawBNN2jfY/sVDHBtJJ8WjwKSIGN0Qjjdk8D8DkipkD6OkjsnMp4GbgA9GxNqNxyNiTDnMOgt4HtgyM+8fZGsctmxlGxcDPwf2bTi0H0Vv20ivvaRs858GCYuzKMJavb0p5jnWLw55TcPcyb+hCGl/HOKabwS2pJgXuGvDNgY4pFYwIt5MMVf0byl6QC8qA2etfX9TPzweEbtQhMpZQ93wSrqjbNsb6661DvBa4PYWX0vSCtjDKKnTTqAIB3dFxCnAryjCz+soHnVzVGb+KiJOB04vs8v3KX5/7QS8KjNXZrUyAOVCjo2ATcpdW5fD3Y9lZm3e4pnAtyPiTorFLgdQhKwDV/a6Q/g8xSN2/pliFfauFHMYz2roAVwfODcizqYIgqcB/1FbIDSI44AfZ+ZPGw9ExHcpFr98qxza/ybw/2XmjRHxO4r/Hh8DzgLOoVhsdGH532Md4CvA7Zl520huNCJeSTGMvhHwsojYtTz028xcnJn3RcS1wHkR8b8ohr1PpxjevmIk15LUApnp5ubm1tENmEwRSO6j6El8gmLu3vuAgbpy/4siwDxPMRT8M+D4uuO3Al+ve38hcMsKrn0qxZBp43ZqQ7mjy/Ytplig8r5BjicwdQXXun8F7TkK+F15nUeAzzV8BrdSrDj+vxRzDOeV78cNUd8GZV3HDXH8AIrh8W2AG4D/BsbUHT+cYuh9Wvn+dRTzLBcCcygWxmzQ7B4pVjUv99lQPI9ysM+9vsxawNcpphw8RxHWt+70n1c3t9Vxi0znDkvSqoqIz1I813CXLB5bU9V1bqUIZMdUdQ1JauQcRklqjbcDH6wyLEpSpziHUZJaIDNf3ek2SFJVHJKWJElSUw5JS5IkqSkDoyRJkppyDmMLTZo0KadOndrpZkiSJK3QXXfd9WRmDuurVQ2MLTR16lRmzpzZ6WZIkiStUEQ8NNyyDklLkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6N63gYbwPTpnW6FJEn9a6DTDZBW1ezZxSZJkqrRNT2METG/YVsWEV+uO35MRNxfHrs5IjZpUtfUiLgxIp6JiMci4pyIGKg7lg3XOrnu3IiIMyLiqXI7MyKi2ruXJEnqXl0TGDNzQm0DNgQWAjMAImI6cDpwELAe8ABweZPqvgI8AWwM7ApMB05oKLNO3TVPq9t/LHAwsAuwM/B24LhVujlJkqQe1jWBscE7KQLfbeX7A4EZmTkrMxcDpwF7R8RWQ5y/BXBlZj6fmY8BNwM7DPPaRwFnZebDmfkIcBZw9ErehyRJUs/r1sB4FHBxZmb5PsqNuvcAOw5x/tnAYRExLiKmAG+jCI31HoqIhyPigoiYVLd/B+Duuvd3M/ywKUmS1He6LjBGxGYUQ8gX1e2+EXh3ROwcEWsCpwAJjBuimh9ThLxngYeBmcB3ymNPAq8BNgd2A9YCLq07dwIwt+79XGDCUPMYI+LYiJgZETNnu/JCkiT1obYExoi4tVxoMth2e0PxI4HbM/OB2o7M/AHwaeAq4CHgQWAeRRhsvNYo4HvA1cB4YBKwLnBGWdf8zJyZmUsz83Hgg8BbI2JiWcV8YGJdlROB+XW9ncvJzPMzc1pmTps8efKIPhdJkqRe0JbAmJn7ZGYMse3VUPxIlu9drNVxbmZuk5kbUATHAeCeQS63HrApcE5mLsrMp4ALgP2Hal75WutBnEWx4KVml3KfJEnSaqmrhqQjYg9gCuXq6Lr9YyNix/KRN5sB5wNnZ+YzjXVk5pMUq6iPj4iBiFiHYk7k3WVdr42IV0TEqIhYH/gScGtm1oahLwY+FhFTykf3nAhcWMX9SpIk9YKuCowUwe7qzJzXsH8scBnFcPGdwE+B+mcnfjIibqorfwiwHzAbuB9YCny0PLYlxQKYeRQ9lIuAw+vO/RpwHfCb8vgN5T5JkqTVUgwxNU8rYdq0aTlz5sxON2O1U1uO5B9lSZKGLyLuysxpwynbbT2MkiRJ6jIGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkb1Db/pRZKkahgY1TeWLet0CyRJ6k8GRvWNpUs73QJJkvqTgVF9w8AoSVI1DIzqGwZGSZKqYWBU3zAwSpJUDQOj+oaBUZKkahgY1TcMjJIkVcPAqL5hYJQkqRoGRvWNJUs63QJJkvqTgVF9wx5GSZKqYWBU31i8uNMtkCSpPxkY1TcWLep0CyRJ6k8GRvUNexglSaqGgVF9w8AoSVI1DIzqGw5JS5JUDQOj+oY9jJIkVcPAqL5hYJQkqRoGRvUNh6QlSaqGgVF9wx5GSZKqYWBU3zAwSpJUDQOj+oZD0pIkVcPAqJ43qvxTbA+jJEnVMDCq573sZcWrgVGSpGoYGNXzBgaKV4ekJUmqhoFRPS+zeLWHUZKkahgY1fMMjJIkVcvAqL7hkLQkSdUwMKrn1XoYDYySJFXDwKieVwuMy5Z1th2SJPWrrgmMETG/YVsWEV+uO35MRNxfHrs5IjZpUtfUiLgxIp6JiMci4pyIGCiPvbfhOs9FREbEbuXxUyNiSUOZLav/BLSyaoFx6dLOtkOSpH7VNYExMyfUNmBDYCEwAyAipgOnAwcB6wEPAJc3qe4rwBPAxsCuwHTghPI6lzZc6wTgT8Av6s6/or5MZv6phbeqitjDKElSNbomMDZ4J0Xgu618fyAwIzNnZeZi4DRg74jYaojztwCuzMznM/Mx4GZghyHKHgVcnFnrp1KvsYdRkqRqdWtgbAxxUW7UvQfYcYjzzwYOi4hxETEFeBtFaFxORGwO7A1c3HDowIh4OiJmRcTxzRoaEcdGxMyImDl79uzmd6VKGBglSapW1wXGiNiMYgj5orrdNwLvjoidI2JN4BQggXFDVPNjih7FZ4GHgZnAdwYpdyRwW2Y+ULfvSmB7YDLwfuCUiDh8qPZm5vmZOS0zp02ePHkYd6hWc9GLJEnVaktgjIhby4Ulg223NxQ/Eri9PsRl5g+ATwNXAQ8BDwLzKMJg47VGAd8DrgbGA5OAdYEzBmnakSwfTMnM32bmXzJzWWb+hKK38p0rdeNqK3sYJUmqRlsCY2buk5kxxLZXQ/GXhLiyjnMzc5vM3IAiOA4A9wxyufWATYFzMnNRZj4FXADsX18oIvYENgG+vaLms/xwuLqMPYySJFWrq4akI2IPYArl6ui6/WMjYscobAacD5ydmc801pGZT1Ksoj4+IgYiYh2KOZF3NxQ9CrgqM+c1XOugiFi3vNbuwIeBa1t0i6qAcxglSapWVwVGihB3dWOIA8YClwHzgTuBnwIn1w5GxCcj4qa68ocA+wGzgfuBpcBH68qPBd7NID2ZwGHlOfMoFsOckZmDlVOXsIdRkqRqDXS6AfUy87gh9s8Bdm5y3ukN738F7NOk/PPAOkMcG3KBi7qbPYySJFWj23oYpRGzh1GSpGoZGNU37GGUJKkaBkb1tPrv57GHUZKkahgY1TfsYZQkqRoGRvW0+h5GA6MkSdUwMKqnOSQtSVL1DIzqafYwSpJUPQOj+oY9jJIkVcPAqJ5mD6MkSdUzMKqnOYdRkqTqGRjV0+xhlCSpegZG9Q17GCVJqoaBUT3NHkZJkqpnYFRPcw6jJEnVMzCqb9jDKElSNQyM6mm1HsbRo+1hlCSpKgZG9bRaYBwzpuhhrB+iliRJrWFgVE+rBcSBgeL1hRc61xZJkvqVgVF9YcyY4tVhaUmSWs/AqJ7W2MPowhdJklrPwKie1hgY7WGUJKn1DIzqafWLXsAeRkmSqmBgVF8YPbp4tYdRkqTWMzCqpzkkLUlS9QyM6mkGRkmSqmdgVE8zMEqSVD0Do/qCcxglSaqOgVE9zR5GSZKqZ2BUTzMwSpJUPQOjepqBUZKk6hkY1RdqcxhfeKGz7ZAkqR8ZGNXTaj2MLnqRJKk6Bkb1NIekJUmqnoFRPc3AKElS9QyM6gsOSUuSVB0Do3qaPYySJFXPwKieZmCUJKl6Bkb1NAOjJEnV65rAGBHzG7ZlEfHluuPHRMT95bGbI2KTJnVtHxE/jIi55TnvaDj+poi4NyKei4gfRcTmdcciIs6IiKfK7cyIiGruWq3iHEZJkqrTNYExMyfUNmBDYCEwAyAipgOnAwcB6wEPAJcPVk9EDADXAteXZY8FLomIbcvjk4CrgZPL4zOBK+qqOBY4GNgF2Bl4O3BcC29VLdT4HEYf3C1JUut1TWBs8E7gCeC28v2BwIzMnJWZi4HTgL0jYqtBzt0O2AT4QmYuy8wfAncAR5THDwFmZeaMzHweOBXYJSK2K48fBZyVmQ9n5iPAWcDRLb9DtYRD0pIkVa9bA+NRwMWZtThAlBt17wF2HOTcwYaPo67sDsDdtQOZuQD4Y7n/JcfLn3dAXcnAKElS9bouMEbEZsB04KK63TcC746InSNiTeAUIIFxg1RxL0Xv5EkRMSYi3lrWVys7AZjbcM5cYK0hjs8FJgw1jzEijo2ImRExc/bs2cO9TbWYcxglSapOWwJjRNwaETnEdntD8SOB2zPzgdqOzPwB8GngKuAh4EFgHvBw47UycwnFHMQDgMeAE4Er68rOByY2nDaxrG+w4xOB+XW9nY3XOz8zp2XmtMmTJzf7GFQBexglSapeWwJjZu6TmTHEtldD8SNZvnexVse5mblNZm5AERwHgHuGuN6vM3N6Zq6fmfsCWwJ3lodnUSxoASAixgNblftfcrz8eRbqSgZGSZKq11VD0hGxBzCFcnV03f6xEbFj+cibzYDzgbMz85kh6tm5PGdcRHwc2Bi4sDx8DbBjRBwaEWMphrd/nZn3lscvBj4WEVPKR/ecWHeuuoyBUZKk6nVVYKRY7HJ1Zs5r2D8WuIxiuPhO4KcUj8UBICI+GRE31ZU/AniUYi7jm4C3ZOYigMycDRwKfA54BngtcFjduV8DrgN+Q9GDeUO5T13MOYySJFVnoNMNqJeZgz7vMDPnUDwTcajzTm94fxJwUpPyt1A8fmewYwl8otzU5Rqfw2hglCSp9bqth1EakcYhaR/cLUlS6xkY1RfsYZQkqToGRvU0F71IklQ9A6N6moFRkqTqGRjV0wyMkiRVz8CovuAcRkmSqmNgVE+zh1GSpOoZGNXTDIySJFXPwKie5oO7JUmqnoFRfaEWGH1wtyRJrWdgVE9zSFqSpOoZGNXTDIySJFXPwKieVguMo8o/yQZGSZJaz8CovhBRzGM0MEqS1HoGRvW0Wg8jGBglSaqKgVE9rRYY7WGUJKk6Bkb1NAOjJEnVMzCqL9QCo89hlCSp9QyM6mn1cxhHjbKHUZKkKhgY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zecwSpJUPQOjeppD0pIkVc/AqJ5mYJQkqXoGRvUFA6MkSdUxMKqnNc5h9MHdkiS1noFRPa1+SNoHd0uSVA0Do3qacxglSaqegVF9wcAoSVJ1DIzqaT6HUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zTmMkiRVz8ContY4JO2DuyVJaj0Do3qaD+6WJKl6Bkb1BecwSpJUHQOjeppzGCVJql7XBMaImN+wLYuIL9cdPyYi7i+P3RwRmzSpa/uI+GFEzC3PeUfdsddFxPcj4umImB0RMyJi47rjp0bEkoa2bFndnWtV+FgdSZKq1zWBMTMn1DZgQ2AhMAMgIqYDpwMHAesBDwCXD1ZPRAwA1wLXl2WPBS6JiG3LIusC5wNTgc2BecAFDdVcUd+ezPxTy25UlTAwSpJUna4JjA3eCTwB3Fa+PxCYkZmzMnMxcBqwd0RsNci52wGbAF/IzGWZ+UPgDuAIgMy8KTNnZOazmfkccA6wZ8X3o4o4JC1JUvW6NTAeBVyc+dc4EOVG3XuAHQc5N4bYN1hZgL2BWQ37DiyHrGdFxPHDbLM6wCFpSZKq13WBMSI2A6YDF9XtvhF4d0TsHBFrAqcACYwbpIp7KXonT4qIMRHx1rK+l5SNiJ3Luk6q230lsD0wGXg/cEpEHN6kvcdGxMyImDl79uwR3KlawcAoSVL12hIYI+LWiMghttsbih8J3J6ZD9R2ZOYPgE8DVwEPAQ9SzD18uPFambkEOBg4AHgMOJEiBC5XNiK2Bm4CPpKZt9Wd/9vM/Es5nP0T4GyKIfJBZeb5mTktM6dNnjx5uB+JWqz2HEYf3C1JUuu1JTBm5j6ZGUNsezUUP5LlexdrdZybmdtk5gYUwXEAuGeI6/06M6dn5vqZuS+wJXBn7XhEbA7cApyWmd9cUfMZfJhbXcA5jJIkVa+rhqQjYg9gCuXq6Lr9YyNixyhsRrHK+ezMfGaIenYuzxkXER8HNgYuLI9NAX4InJuZXx3k3IMiYt3yWrsDH6ZYda0u5JC0JEnV66rASLHY5erMnNewfyxwGTCfoqfwp8DJtYMR8cmIuKmu/BHAoxRzGd8EvCUzF5XHjqHocfx0/bMW6849DLifYsj7YuCMzHxJj6e6g4FRkqTqDXS6AfUy87gh9s8Bdm5y3ukN709i+YUs9cc+A3ymSV1DLnBR9zIwSpJUnW7rYZRGxDmMkiRVz8ConuaQtCRJ1TMwqqcZGCVJqp6BUX3BwChJUnUMjOpp9XMYfXC3JEnVMDCqpzkkLUlS9QyM6mkGRkmSqmdgVF+oBcbM5YepJUnSqjMwqqfVh8OB8jH0S5d2pi2SJPUrA6N6Wv2Q9Jgxxc9LlnSuPZIk9SMDo3qagVGSpOoZGNUXDIySJFXHwKieVj+H0cAoSVI1DIzqafVD0i97WfHz4sWda48kSf3IwKie5hxGSZKqNzCcQhHxVuBoYAdgLWAeMAu4IDO/X1nrpGEyMEqSVJ0VBsaI+CjwCeA/gKuAucBEYBfgoog4IzPPrrSV0hCcwyhJUvWG08N4EvCGzLy3Yf/VEXE58CPAwKiOcEhakqTqDWcO43jgL0McewwY17rmSCNjYJQkqXrDCYxXAddFxJsiYnJEvCwiJkXEm4BrgG9X20RpxQyMkiRVZziB8QPAT4CLgMeBheXrRcB/A8dX1jppBernMPpYHUmSqrHCOYyZuRj4F+BfImIdYAIwPzPnNJaNiD0z845WN1IaikPSkiRVb1iP1akpQ+KcJkVuolhBLbWFgVGSpOq1+sHd0eL6pGExMEqSVJ1WB8ZccRGpdXwOoyRJ1fOrAdXTHJKWJKl6Bkb1NAOjJEnVcw6j+oaP1ZEkqRojCowRsX5EHBERnyjfbxIRL68dz8y1Wt1AqRl7GCVJqt6wA2NETAd+D7wXOLncvQ1wXgXtkobFwChJUvVG0sP4ReA9mbkfsLTc9zNg91Y3ShopA6MkSdUZSWCcmpk/KH+uPcxkMSN8+LfUSn41oCRJ1RtJYPxtROzbsO/NwG9a2B5pRBqHpEePhoULO9smSZL6zUh6B08Ero+IG4A1I+JrwIHAQZW0TBqG+sAIsOaaBkZJklpt2D2MmfnfwC7ALOAbwAPA7pn584raJg2bgVGSpOqMaP5hZj4CnFlRW6QRy4YvozQwSpLUek0DY0R8k2F8P3RmHtmyFkkj4JC0JEnVW9GQ9P3AH8ttLnAwMBp4uDz3IGBOdc2TmjMwSpJUvaaBMTM/U9uAbYEDMvO9mfnJzHwfcADwilY0JCLmN2zLIuLLdcePiYj7y2M3R8QmTeraPiJ+GBFzy3PeUXdsakRkw7VOrjseEXFGRDxVbmdGhF952OUMjJIkVWckj9V5HfDfDft+BvxNKxqSmRNqG7AhsBCYAX/9lpnTKXo016NYcHP5YPVExABwLXB9WfZY4JKI2Lah6Dp11zytbv+xFD2puwA7A28HjmvFPar1nMMoSVL1RhIYfwmcHhFrApSvnwN+VUG73gk8AdxWvj8QmJGZszJzMXAasHdEbDXIudsBmwBfyMxlmflD4A7giGFe+yjgrMx8uFzkcxZw9MrfiqrkkLQkSdUbSWA8GtgTmBsRj1PMadwLqGLBy1HAxZl/7T+KcqPuPcCOg5w72PBxDFL2oYh4OCIuiIhJdft3AO6ue393uU9dyMAoSVL1RvIcxgczcw9gK+Bvga0zc4/MfLCVDYqIzYDpwEV1u28E3h0RO5c9m6dQrN4eN0gV91L0Tp4UEWMi4q1lfbWyTwKvATYHdgPWAi6tO38CRRiumQtMGGoeY0QcGxEzI2Lm7NmzR3azahkDoyRJ1RlJDyMRsS7wBuCNwD7l++Gcd2u50GSw7faG4kcCt2fmA7Ud5XdYfxq4CngIeBCYR7FaezmZuYRiDuIBwGMU31BzZa1sZs7PzJmZuTQzHwc+CLw1IiaWVcwHJtZVORGYX9fb2Xi98zNzWmZOmzx58nA+DrWQcxglSaresANjRPwNxeN1PkCxGOQ44I/l/qYyc5/MjCG2vRqKH8nyvYu1Os7NzG0ycwOK4DgA3DPE9X6dmdMzc/3M3BfYErhzqObVbrF8nUWx4KWm9u026kKNQ9LjxsFzz3WuPZIk9aORfNPLF4ETMvNbtR0R8R7gSxRDvKssIvYAplCujq7bPxbYmiK4bQqcD5ydmc8MUc/OwH0UgfgEYGPgwvLYaymeHfkHYN2y/bdmZm0Y+mLgYxFxI0WYPBH4MupKjYFx4kSYPx9eeAFGjaj/XJIkDWUkf6VuSzG0W+/bFEGuVY4Crs7MeQ37xwKXUQwX3wn8FKh/duInI+KmuvJHAI9SzGV8E/CWzFxUHtsSuJliSPseYBFweN25XwOuA35THr+h3KcuVguMa69dhMj58zvbHkmS+slIehj/ABxGEdxq3kUxTN0SmTno8w4zcw7FMPhQ553e8P4k4KQhyl7OEM9wLI8n8IlyU5drnMM4sZx9Onfuiz9LkqRVM5LA+E/A9RHxYYqFJ1OBbSgebC11ROOQ9NprF69z58Kmm3amTZIk9ZthB8bM/En5oOwDKB6MfR1wY2Y+XVXjpBUZbA4jwLPPdqY9kiT1o5H0MFIuMrmkorZIK22wHkZJktQaww6MEbEFxVcB7krxcOu/yszNWtssaXiGmsNoD6MkSa0zkh7GyygWuJwI+KQ7dYVmcxglSVJrjCQw7gDsmZkvVNUYaaQMjJIkVW8kz2H8L+BVVTVEWhW1wDh+fPHAboekJUlqnZH0MD4IfC8irqb4jua/ysxTWtkoabga5zBGFPMY7WGUJKl1RhIYx1M8SmcMxdfz1eTgxaXqNQ5JQxEY7WGUJKl1RvIcxr9fUZmIOLz8JhWpLQYLjGuvbQ+jJEmtNJI5jMPhdy6rIxp7GA2MkiS1TqsDY6y4iNQ6jXMYoehhdEhakqTWaXVgdD6j2mqoIek5czrSHEmS+lKrA6PUVoMFxkmT4MknO9MeSZL60QoDY0QYKtX16gPjRhsVcxiff75z7ZEkqZ8MJww+EhFnRsSOwyj7P6vaIGkkBpvDuOGGxevjj7e3LZIk9avhBMYPAFsAP4+IX0TERyJi8mAFM3M4oVJqmcGGpA2MkiS11goDY2Zem5nvAjameGzOu4A/R8R3I+LQiBhTdSOlFWkckgZ49NHOtEWSpH4z7PmJmTknM7+WmXsB2wMzgS8A/rWsjhlsSHqLLYrXP/2pvW2RJKlfjeSrAQGIiDWA1wCvBTYEftLqRknDNdiQ9PrrFyulf/e7zrRJkqSVkQlLlsDChUNvzz3X/PhIyo3EsANjROwFHAm8G3gC+CZwQmY+NLJLSq0zWGAE2G47mDWr/e2RJPWfTFi06MUQ9txzy2+N+1bl/bJlK9fG0aNhzTVf3MaNW/79eust/37NNeGLXxx+/SsMjBFxKnAEsB4wAzggM+9YuduRqtEYGPfYA/7934tvfJk4sTNtkiRV64UXikeoDTeYrUqYG2wK1IqMGVMEt9pWC3LjxsHkyYMfGyzsDbY1lhmzEitKWhoYgdcB/wp8JzN9sp26ylD/A++/P5x5JtxyCxxySHvbJEkqLFkCCxYUgWvBghe3+vfNjtW/HyzMrezzdseOfWmAq71fd93BA95I36+5JgyMeOJf91rhrWTmfu1oiLQyhhqS3mOP4isCr7/ewChJQ1m2bOTBbSShb8mSkbVnYADGjy+2ceNe/Hn8eNhgg1ULcPU9cqP8SpIR66Psq9XRUIFxzBg48EC45hr4yleKf01KUi/KLALY/PnLbwsWvHRfbf9wQ9/ixSNry6hRQwe69dZb/n3j8eG8f9nLqvkMteoMjOoLjYER4B/+AS65BL70JfjEJ9rfJkmrl8wigK0ozA22v9mxkc6fawxitTC2ySZDh7XhBro11hj89636n4FRPa3ZL9F99oGDD4Z//ufiF+X73teuVknqdpnF/Ld585bfRhrmGvcvXTr8NqyxBkyY8OI2fnzxuv76g+9v3Abb73CrqmJgVE8baki6tu+yy+Dtb4ejjoI5c+CEE/xlKvWqpUtfGvDqt2efbX68cRvu40tGjRo8sG244dBhbkVBb/z4lVvVKnWKgVE9rVlghOJf29/9LrzrXfChD8FVV8HXvw5bbdW+Nkqrq8yiB26kQW6obbgrYgcGYK21lt8mToQpU166f7CtMeA5DCsZGNUnmv0yHz8ebrgBLrgAPvYx2GknOP30IkCOHt2+Nkq9orbI4tlnYe7c4nVlfn722eHNvYsoglljcNt88+EFvMbNgCe1noFRPW24E8EjikUw++4Lxx0HH/0ofOtb8NWvwq67VtpEqW1q8/KGG+qaBb3hDNeOG1c8vmrixGJbe23YaKMXf5448cXevWYBb9w4p4pI3c7AqJ420ifvT5kC110Hl15a9Dbutht8+MPw2c8Wf3FJnbR0aRHc5sxZfmvcV/++MewN57l3Y8e+NOhttdXyQW9FP6+1Vn89lFhSc/7vrp6WOfKhp4hixfQBB8C//AucfTbMmFF8RdKhhzqUpZW3aNHwg95g+xYsaF5/RBHW1lmn2NZeGzbbbORBz2fdSRopA6N63soGvHXXLYakjz4ajj++WBjztrfBOefAllu2tInqES+8UAS4Z56Bp59e/vWZZ1YcBle0KGP06BfDXi3wbbTRS/fVv6/fv9ZaDt1K6gwDo3raynwZfKPXvQ5+/vMiKJ58MuywA/zrv8JJJxWT59Vbags2Bgt9Q73Wfp4zp/mfqZe97KVBbrPNBg93g+0bP94ebEm9ycConrYyQ9KDGRiAf/qnopfxox8tguMll8B558Eb3rDq9WvkliwZWeirD3/Nvu5s9Oiid3nddYuvMps0CbbZpvi5tq/+tf7nNdds3/1LUjcxMKqntSow1kyZAldeCTffDP/4j/DGN8J73gOf+hTsuGPrrrO6eOGFYiHGyoS++fOb1z1x4vJhbscdVxz41luvGNa1l0+SRsbAqJ5XxV/+++0H99wDn/88nHUWXHEFHHhg0fs4ffrqNY8sExYuXLnQN2dOERqHMnbs8mFu6lR49asHD3r1r+us4wpdSWonf+Wqp7ViDuNQ1lyzeNzORz4C554LX/pS8UiezTaDv/s72H//Yv5jN3+9V2axcrfxuXvDea2f29dsiHfUqOXDnEO8ktR/uiYwRkTjANSawFcy80Pl8WOAfwY2Am4H/iEz/zJEXdsD5wK7AbOBkzLzmvLYe4Gv1RUfVV5rWmbeFRGnAv8KLKors3Nm/mnV7lBVaPWQ9GDWXx9OOQU+/nG49lq4+GL4v/8X/u3fim+neNWrYJddiiHRKVNg442L0DR2bLHVFs4sWfLSbdGiovdu4cJihW3t56G2lSnTrIevZuzYlz6C5ZWvbN7LV3t15a4k9b+uCYyZOaH2c0SMBx4HZpTvpwOnA28A/gCcDVwOTG+sJyIGgGuBrwJvKctcFxGvysz7MvNS4NK68kcDJwO/qKvmisx8XyvvT9VoR2CsGTcODj+82ObMgR/9CG65BX71K7jwwhXPuVtVa6xR9Mg1brWwt+GGgx+vfRtHLQw2vk6c6HP5JEnNdU1gbPBO4AngtvL9gcCMzJwFEBGnAY9ExFaZ+ceGc7cDNgG+kJkJ/DAi7gCOoAiGjY4CLi7Lqgd1YgHDOuvAO95RbFD04j3yCPzlL/Doo/Dkk0XvYW2DYui6cVtjjSLwDRb06gPh2LH24kmSOqdbA2NjiItyo+49wI5AY2AcLD5EWXb5nRGbA3sD/9Bw6MCIeBp4FDgnM88bWfPVLt0S80eNgk03LTZJkvpN1/VZRMRmFMPIF9XtvhF4d0TsHBFrAqcACYwbpIp7KXonT4qIMRHx1rK+wcoeCdyWmQ/U7bsS2B6YDLwfOCUiDm/S3mMjYmZEzJw9e/aw71Ot0c4haUmSVldtCYwRcWtE5BDb7Q3FjwRurw9xmfkD4NPAVcBDwIPAPODhxmtl5hLgYOAA4DHgRIoQ+JKy5bXqgymZ+dvM/EtmLsvMn1DMl3znUPeWmedn5rTMnDZ58uTmH4RazsAoSVL12hIYM3OfzIwhtr0air8kxJV1nJuZ22TmBhTBcQC4Z4jr/Tozp2fm+pm5L7AlcGd9mYjYk2Ku47dX1HwGH+ZWlzAwSpJUra4ako6IPYAplKuj6/aPjYgdo7AZcD5wdmY+M0Q9O5fnjIuIjwMbAxc2FDsKuCoz5zWce1BErFtea3fgwxSrrtWFumUOoyRJ/azbFr0cBVzdGOKAscBlwFYUQ9EXULfiOSI+Cbw+M99W7joCOAYYQ7HS+i2Zuaiu/Fjg3cChg7ThMOAbwBoUw9hnZOZLejzVXosXw//8Dzz4YLE98EDxevXVfuOHJElVC58m0zrTpk3LmTNndroZPSkTZs+G+++HP/6x2P70pxeD4SOPLN+bOHp0sS1eXDw4+tlnO9Z0SZJ6UkTclZnThlPWvhm1zbJl8PDDLwbCWjisvdY/+DoCXv5y2GILeOMbi+8Y3mKL4nXq1OLYYYfBVVc5h1GSpKoZGNVSmcVDq++9t9h+//vi9f77i97C+u8kHjMGttwSttoK9t4btt66+HmrrYpwWPtKPUmS1FkGRq2UJUuKIeP6UFj7+emnXyw3dixss03xPcsHHVSEwVowfPnLi2HllVXrWbSHUZKkahkY1dQLL8BDD8FvfrP8dt99sHTpi+U22gi22w7e9a7itbZttll1X2lnYJQkqT0MjPqruXPhV78qAuGvf1283nPP8nMLp06FnXaCv/1b2H77IhS+4hWw9trtb69BUZKk9jAwrqbmzIFf/ALuuuvF7f77Xzy+3npFMDz66OJ1p51ghx1g4sROtfil7GGUJKk9DIyrgSVL4O674Y474Kc/fWk43Gwz2G03+Pu/h1e/GnbeGTbeuPuDmIFRkqT2MDD2oblz4Sc/KQLiHXfAnXfCc88Vx17+cnjNa4pwuNtuRUDs9a/ANjBKklQtA2MfWLSo6Dm85ZZi+/nPi8Uqo0fDrrvCMcfAHnsU26abdrq1rWNQlCSpPQyMPerPf4Zrr4Xrr4f/+i9YuLAIiK99LXzqU7DPPrD77jB+fKdbWh2HpCVJag8DYw/53e+K707+zneg9g2E225b9CC++c1FSOymRSlVMzBKktQeBsYuN3s2XH45XHRRsaoZ4HWvg3/7t+JB2Ntt19n2dZKBUZKk9jAwdqHMYrHKF79YDDsvXVosTvniF4sHY2+ySadb2B0MipIktYeBsYssWwYzZsBZZxVDzuuuCx/5SPEsxB137HTrupfBUZKkahkYu0AmfPe7xWKVe+4pvjnlvPPgiCP6e9HKqnJIWpKk9jAwdtisWfCBD8Dtt8M228C3vlUMO1f1/cv9xMAoSVJ7GEs6ZPHiokdx112L1c9f+1oRHt/zHsPicBkUJUlqD3sYO+Chh4pg+LOfwZFHFnMWJ03qdKt6jz2MkiS1h4Gxzb7//SIsLlsG3/42HHpop1vUuwyMkiS1h4OfbXTppbD//sXX8/3iF4bFVjEwSpJULQNjm3zjG/C+98FeexVf5bfVVp1uUe8zKEqS1B4Gxja45hp4//th333hpptg7bU73aL+4JC0JEntYWCs2M9+BocdBrvvDlddBWPHdrpF/cPAKElSexgYK/Tkk8UzFTfeGK6/3odwt5qBUZKk9nCVdIWOOw4ef7z4Xuj11+90a/qPQVGSpPYwMFbkmmvg6qvh85+HadM63Zr+ZnCUJKlaDklXYOFC+NCHYJdd4MQTO92a/uWQtCRJ7WEPYwXOOw8eeQQuuwzGjOl0a/qXgVGSpPawh7HFliyBM8+EN78Z9t67063pbwZFSZLawx7GFrvhhmKhy9e/3umW9D97GCVJag97GFvsgguKx+jst1+nW9L/DIySJLWHgbGFMuGWW+CQQ2DAvtvKGRglSWoPA2MLPfdcse2zT6dbIkmS1DoGxhaaN694ff3rO9uO1YU9jJIktYeBsYXmz4dXvAI23LDTLVk9GBglSWoPA2MLLVwIr3pVp1ux+jAwSpLUHgbGFlq8GLbbrtOtWH0YFCVJag8DY4u94hWdbsHqwx5GSZLao2sCY0RMjYgbI+KZiHgsIs6JiIG642+KiHsj4rmI+FFEbN6krvUi4pqIWBARD0XE3zUcH7KuKJwREU+V25kRw48kU6eO8Ma1ygyMkiRVq2sCI/AV4AlgY2BXYDpwAkBETAKuBk4G1gNmAlc0qetcYDGwIfBe4LyI2GGYdR0LHAzsAuwMvB04brg3MWXKcEtqVdnDKElSe3RTYNwCuDIzn8/Mx4CbgR3KY4cAszJzRmY+D5wK7BIRL5kxGBHjgUOBkzNzfmbeDnwXOGKYdR0FnJWZD2fmI8BZwNHDvYmNNhrJLWtVGBQlSWqPbgqMZwOHRcS4iJgCvI0iNEIRHO+uFczMBcAfeTFQ1tsWWJaZ99Xtu7uu7IrqWu54w7lNDQzAmDHDKalWsIdRkqT26KbA+GOKYPYs8DDFUPF3ymMTgLkN5ecCaw1Sz4rKjvT4XGDCUPMYI+LYiJgZETNHjVo6WBFVxMAoSVJ7tCUwRsStEZFDbLdHxCjgexRzC8cDk4B1gTPKKuYDExuqnQjMG+RyKyo70uMTgfmZmYPdW2aen5nTMnPaTjv5BdLtZFCUJKk92hIYM3OfzIwhtr0oFp9sCpyTmYsy8yngAmD/sopZFItQgL/OU9yq3N/oPmAgIrap27dLXdkV1bXc8YZz1YUMjpIkVasrhqQz80ngAeD4iBiIiHUoFp/U5hJeA+wYEYdGxFjgFODXmXnvIHUtoOip/GxEjI+IPYGDgG8Os66LgY9FxJSI2AQ4Ebiw9XetVeWQtCRJ7dEVgbF0CLAfMBu4H1gKfBQgM2dTrHz+HPAM8FrgsNqJEfHJiLiprq4TgDUpHtNzOXB8Zs4aTl3A14DrgN8A9wA3lPvUZQyMkiS1R9dMusvMXwH7NDl+CzDoF+9l5ukN75+meJbiytSVwCfKTV3MoChJUnt0Uw+jNCL2MEqS1B4GRvUsA6MkSe1hYFTPMzBKklQtA6N6lkFRkqT2MDCqZzkkLUlSexgY1bMMjJIktYeBUT3LoChJUnsYGNWzDIySJLWHgVGSJElNGRjVs+xhlCSpPQyM6lm1wJjZ2XZIktTvDIzqWfYwSpLUHgZG9SwDoyRJ7WFgVM/yOYySJLWHgVE9zzmMkiRVy8ConmXPoiRJ7WFgVM8yMEqS1B4GRvUsH6sjSVJ7GBjVs1z0IklSexgY1bMMjJIktYeBUT3PwChJUrUMjOpZBkVJktrDwKie5ZC0JEntYWBUzzIwSpLUHgZG9SwDoyRJ7WFgVM8yMEqS1B4GRkmSJDVlYFTPsodRkqT2MDCqZxkYJUlqDwOjepZBUZKk9jAwqmfZwyhJUnsYGNWzDIySJLWHgVE9z8AoSVK1DIzqWQZFSZLaw8ConuWQtCRJ7WFgVM8yMEqS1B4GRvUsg6IkSe1hYFTPsodRkqT2MDCq5xkYJUmqVtcExoiYGhE3RsQzEfFYRJwTEQN1x98UEfdGxHMR8aOI2LxJXetFxDURsSAiHoqIv6s79rqI+H5EPB0RsyNiRkRsXHf81IhYEhHz67Ytq7tzrSx7GCVJao+uCYzAV4AngI2BXYHpwAkAETEJuBo4GVgPmAlc0aSuc4HFwIbAe4HzImKH8ti6wPnAVGBzYB5wQcP5V2TmhLrtT6t6c2o9A6MkSe0xsOIibbMFcE5mPg88FhE3A7WQdwgwKzNnQNELCDwZEdtl5r31lUTEeOBQYMfMnA/cHhHfBY4A/jkzb2oofw7w4wrvSxUxKEqS1B7d1MN4NnBYRIyLiCnA24Cby2M7AHfXCmbmAuCPvBgo620LLMvM++r23T1EWYC9gVkN+w4sh6xnRcTxI78VtYM9jJIktUc3BcYfU4S6Z4GHKYadv1MemwDMbSg/F1hrkHqGXTYidgZOAU6q230lsD0wGXg/cEpEHD5UoyPi2IiYGREzZ8+ePVQxVcDAKElSe7QlMEbErRGRQ2y3R8Qo4HsU8xTHA5Mo5hqeUVYxH5jYUO1EivmHjYZVNiK2Bm4CPpKZt9X2Z+ZvM/MvmbksM39C0fP5zqHuLTPPz8xpmTlt8uTJzT8ItZSBUZKk9mhLYMzMfTIzhtj2oljIsinFHMZFmfkUxUKU/csqZgG71Oor5yluxUuHkgHuAwYiYpu6fbvUly1XWN8CnJaZ31xR8wEjiSRJWm11xZB0Zj4JPAAcHxEDEbEOcBQvzlu8BtgxIg6NiLEUw8i/blzwUta1gKKn8rMRMT4i9gQOAr4JUM6P/CFwbmZ+tfH8iDgoItaNwu7Ah4FrW3zLagF7GCVJao+uCIylQ4D9gNnA/cBS4KMAmTmbYuXz54BngNcCh9VOjIhPRkT96ucTgDUpHtNzOXB8ZtZ6GI8BtgQ+Xf+sxbpzDyuvPw+4GDgjMy9q8b2qBQyMkiS1R9c8ViczfwXs0+T4LcB2Qxw7veH908DBQ5T9DPCZJtcZcoGLuotBUZKk9uimHkZpROxhlCSpPQyM6lkGRkmS2sPAqJ5nYJQkqVoGRvUsexglSWoPA6N6lkFRkqT2MDCqZ9nDKElSexgY1bMMjJIktYeBUT3LwChJUnsYGCVJktSUgVE9yx5GSZLaw8ConmdglCSpWgZG9azMTrdAkqTVg4FRPc8eRkmSqmVgVM+q9TAaGCVJqpaBUT3rhReKVwOjJEnVMjCq5xkYJUmqloFRPctFL5IktYeBUT3PHkZJkqplYFTPsodRkqT2MDCqZ7lKWpKk9jAwqmcZGCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y0UvkiS1h4FRPc8eRkmSqmVgVM9yDqMkSe1hYFTP8rukJUlqDwOjep6BUZKkahkY1bNc9CJJUnsYGNXz7GGUJKlaBkb1LHsYJUlqDwOjeparpCVJag8Do3qWgVGSpPYwMKpnGRglSWoPA6N6noFRkqRqGRjVs1z0IklSexgY1fPsYZQkqVoGRvUs5zBKktQeBkb1LL9LWpKk9uiawBgRUyPixoh4JiIei4hzImKg7vibIuLeiHguIn4UEZs3qWu9iLgmIhZExEMR8XcN18mImF+3nVx3PCLijIh4qtzOjDCSdDP/60iSVK2uCYzAV4AngI2BXYHpwAkAETEJuBo4GVgPmAlc0aSuc4HFwIbAe4HzImKHhjLrZOaEcjutbv+xwMHALsDOwNuB41blxlQNF71IktQe3RQYtwCuzMznM/Mx4GagFvIOAWZl5ozMfB44FdglIrZrrCQixgOHAidn5vzMvB34LnDEMNtxFHBWZj6cmY8AZwFHr8J9qWL2MEqSVK1uCoxnA4dFxLiImAK8jSI0QhEc764VzMwFwB95MVDW2xZYlpn31e27e5CyD0XEwxFxQdmDWbPctYY4968i4tiImBkRM2fPnt38DtVS9jBKktQe3RQYf0wRzJ4FHqYYdv5OeWwCMLeh/FxgrUHqWVHZJ4HXAJsDu5X7L21y/lxgwlDzGDPz/MyclpnTJk+ePNS9qQKukpYkqT3aEhgj4tZyoclg2+0RMQr4HsU8xfHAJGBd4IyyivnAxIZqJwLzBrlc07LlMPXMzFyamY8DHwTeGhEThzh/IjA/0/6sbnPUUXDwwfCpT3W6JZIk9be2BMbM3CczY4htL4qFLJsC52Tmosx8CrgA2L+sYhbFIhTgr/MUtyr3N7oPGIiIber27TJEWYBaEKz1Uy13rRWcqw6aOBGuuQY22qjTLZEkqb91xZB0Zj4JPAAcHxEDEbEOxeKT2lzCa4AdI+LQiBgLnAL8OjPvHaSuBRQ9lZ+NiPERsSdwEPBNgIh4bUS8IiJGRcT6wJeAWzOzNgx9MfCxiJgSEZsAJwIXVnPnkiRJ3a8rAmPpEGA/YDZwP7AU+ChAZs6mWPn8OeAZ4LXAYbUTI+KTEXFTXV0nAGtSPKbncuD4zKz1Em5JsZhmHnAPsAg4vO7crwHXAb8pj99Q7pMkSVothVPzWmfatGk5c+bMTjdDkiRphSLirsycNpyy3dTDKEmSpC5kYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1FZnZ6Tb0jYiYB/y+0+1YzUwCnux0I1Yzfubt52fefn7m7edn3n6vyMy1hlNwoOqWrGZ+n5nTOt2I1UlEzPQzby8/8/bzM28/P/P28zNvv4iYOdyyDklLkiSpKQOjJEmSmjIwttb5nW7AasjPvP38zNvPz7z9/Mzbz8+8/Yb9mbvoRZIkSU3ZwyhJkqSmDIySJElqysDYAhGxXkRcExELIuKhiPi7Trep30XEByNiZkQsiogLO92efhcRa0TEf5Z/vudFxC8j4m2dble/i4hLIuLRiHg2Iu6LiGM63abVRURsExHPR8QlnW5Lv4uIW8vPen65+TzjNoiIwyLid2V2+WNEvL5ZeZ/D2BrnAouBDYFdgRsi4u7MnNXRVvW3vwD/B9gXWLPDbVkdDAB/BqYD/wPsD1wZETtl5oOdbFif+zzwvzJzUURsB9waEb/MzLs63bDVwLnAzzvdiNXIBzPz651uxOoiIt4CnAG8B7gT2HhF59jDuIoiYjxwKHByZs7PzNuB7wJHdLZl/S0zr87M7wBPdbotq4PMXJCZp2bmg5n5QmZeDzwA7NbptvWzzJyVmYtqb8ttqw42abUQEYcBc4AfdLgpUlU+A3w2M/+7/J3+SGY+0uwEA+Oq2xZYlpn31e27G9ihQ+2RKhcRG1L82bcXvWIR8ZWIeA64F3gUuLHDTeprETER+CxwYqfbspr5fEQ8GRF3RMQ+nW5MP4uI0cA0YHJE3B8RD0fEORHRdLTOwLjqJgBzG/bNBYb13YxSr4mIMcClwEWZeW+n29PvMvMEit8nrweuBhY1P0Or6DTgPzPzz51uyGrkfwNbAlMongt4XUTYk16dDYExwDspfq/sCrwK+FSzkwyMq24+MLFh30RgXgfaIlUqIkYB36SYs/vBDjdntZGZy8rpLi8Hju90e/pVROwKvBn4QoebslrJzJ9l5rzMXJSZFwF3UMyTVjUWlq9fzsxHM/NJ4N9ZwWfuopdVdx8wEBHbZOYfyn274FCd+kxEBPCfFP863T8zl3S4SaujAZzDWKV9gKnA/xR/3JkAjI6IV2bmqzvYrtVNAtHpRvSrzHwmIh6m+JyHzR7GVZSZCyiGiT4bEeMjYk/gIIpeGFUkIgYiYiwwmuIX+tiI8B9A1ToP2B44MDMXrqiwVk1EbFA+9mJCRIyOiH2Bw4Efdrptfex8ikC+a7l9FbiB4mkMqkBErBMR+9Z+h0fEe4G9ge91um197gLgQ+XvmXWBfwKub3aCf8G2xgnAN4AnKFbtHu8jdSr3KeDTde/fR7Hq69SOtKbPRcTmwHEU8+ceK3tfAI7LzEs71rD+lhTDz1+l+Mf9Q8A/Zea1HW1VH8vM54Dnau8jYj7wfGbO7lyr+t4YikekbQcso1jcdXBm+izGap0GTKIYJX0euBL4XLMT/C5pSZIkNeWQtCRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyS1SETMioh92nStV0bEzArqvToi9mt1vZJ6m89hlKRhKh/kXDOO4kHmy8r3bX2IeURcBczIzG+1uN7dgfMyc7dW1iuptxkYJWklRMSDwDGZeUsHrr0xxffVb5KZz1dQ/x+AwzOz5T2YknqTQ9KS1CIR8WBEvLn8+dSImBERl0TEvIj4TURsGxH/EhFPRMSfI+KtdeeuHRH/GRGPRsQjEfF/ImL0EJd6C/CL+rBYXvukiPh1RCwo69owIm4qr39L+Z2xlN/be0lEPBURcyLi5xGxYV39twIHtPwDktSzDIySVJ0DgW8C6wK/BL5H8Xt3CvBZ4Gt1ZS8ClgJbA68C3gocM0S9OwGDfdfuoRRhctvy2jcBn6T4zthRwIfLckcBawObAusDHwAW1tXzO2CXYd+lpL5nYJSk6tyWmd/LzKXADGAy8G+ZuQT4FjA1ItYpe/feBvxTZi7IzCeALwCHDVHvOsC8QfZ/OTMfz8xHgNuAn2XmLzNzEXANRRAFWEIRFLfOzGWZeVdmPltXz7zyGpIEwECnGyBJfezxup8XAk9m5rK69wATgE2AMcCjEVErPwr48xD1PgOsNYzrNb6fUP78TYrexW9FxDrAJcC/lkGWsu45Q92UpNWPPYyS1Hl/plhxPSkz1ym3iZm5wxDlf00x7LxSMnNJZn4mM18J7AG8HTiyrsj2wN0rW7+k/mNglKQOy8xHgf8HnBUREyNiVERsFRHThzjl+8CrI2LsylwvIt4QETuVi2qepRiiXlZXZDrF/EdJAgyMktQtjgReBvyWYsj528DGgxXMzMeBHwIHreS1Nirrf5ZigcuPKYaliYjXAAsy886VrFtSH/I5jJLUgyLilRQrq3fPFv4iLx8I/p+ZeWOr6pTU+wyMkiRJasohaUmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJT/z8pCk6TcbDChQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBz0lEQVR4nO3debgcdZ3v8fc3OYFshDVsEQirIKsS0UEkOO4iA4ILjLLMXARhXMYFZ1xAlCsjzuUqCqJcR1ZBiYALAs6g4gA6YnREiSKiwAiyhCUhYcnG9/5R1dLpnO5zTtLVW96v56mnT1f9qupXTTj55Ld1ZCaSJElSM+O6XQFJkiT1NgOjJEmSWjIwSpIkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKGhgRcUNEfLnu/QURcX036yRJg8DAKKnrImLjiPh0RPwuIp6OiIci4j8j4qiIGKr43sdFxPcj4tGIyIjYb5gyb4iIayPigbLM21bzXqeW52dEPBMR90XEZRGxzZo/yajr8IGIWBER/7dT9xymDhMj4vyI+O+IWBoRdzYp99mI+GlEPBkRyztdT0nPMjBK6qqIeA7wC+Aw4BPAC4CXAP8GfADYreIqTAZ+AJzUosxU4BbghDbc725gC+A5wFHALOA7ETG+DdcejbcDpwNHRcS6Hbpno/HAUuA84GsjlLsU+EInKiWpOQOjpG47F1gXeEFmfjUzf5OZv8/MC4G9gd/XCkbEuyLi9rIV8vcR8ZE1bYHMzM9m5ieB77coc3Fmfiwzr1qTe5VWZOYDmfnnzPw+cCqwO7ADQEQcHRG/iYglEXFvRPzv+mcsu92/EhGfioiHI+LxiPhyREwa6cYR8TJgA+DjwIMUIb3++D9FxIKImFm372MR8UgZ7ImIF5etv09FxGMRcWlEbFpX/tSIuDMiDi7/Wz0RET+MiO1rZTLzicw8PjPPBf7YrL6Z+a7MPAu4baRnk1QtA6OkromIjYDXAWdn5sLG45m5LDOfKMueStHi+CFgF+A9wPHAxzpW4Wo8Vb5OiIgDga8AF1OEyPcD/8Cqz/hGYGPgpcBbgb8BzhjFvY4HvpqZy4ELgeMajn8a+ClwWUQMRcRLgY8Cf5eZ90bE5sC/A/cC+wAHUbQAX9FwnS0oWmPfCuxLEVK/Mor6SepRlY4NkqQR7EDxD9fftCoUEZOBDwKHZuZ15e67IuKjwOeAkyutZUUiYmvgn4A/Ab+jaG29IjP/pSxyRxnSPhURp2Xm0nL/o8A7MnMF8Nvyc/h8RHyoFrCHudd04A0UQQ+KUPrJiHhuZv4OIDMzIo4EbqX4XA8CvpCZ3y7P+QfgceCYWl3K8r+MiP0z8z/LcusCR2bm/LLMGcClETExM59ek89MUnfYwiipm6J8zRHK7QpMAq6IiMW1DfgSsH4ZhvrFdmX9nwTuofgM3pCZyyie8z8byv8ImAhsX7fvljIs1twMrNNQptHfAb/NzFsBMvN+4D8oxjT+RWY+BPw9RQvhIxRBvWZX4L/qgivl9RaWx2r+XAuLpfvK59wUSX3JFkZJ3fR74BmKsNFqfGDtH7dvAu4Y5vijba5Xlf4EvJziuR/IzCcbjjeG59GE6mhxjIgI4Fhgh4bZxuOAF0bEh+tDIDAbWAFsBqwPPNSifsPtX9rkmI0UUp/yf15JXZOZjwLXAu+MiPUbj0fEhIiYAswDnga2y8w7h9lWNJ7bw5aVdf7jMGFxHkVYq7c/xTjH+skhL2yYVf1XFCHtD03u+dfAdhSzz/dq2CYAh9YKRsQrKMaK/g1FC+iFZeCs1e+vImKduvJ7UoTKec0eWFL/s4VRUredSNGl+vOIOAX4JUX4eTHFUjdHZ+YvI+J04PQyu/wHxe+v3YHnZ+Y/re7NyzGCmwNblrt2KLu7H8jMB8oyGwFb1522dUTsBTyamf+zuvcexr9QLLHzz8CVFIHuVODMhhbAjYFzIuIsiiB4GvD/mo1fpJjs8qPM/EnjgYj4NsXkl6+VXfsXA/8nM6+JiN9S/Pd4H3AmcDbFZKMLyv8eG1AseXNTZt44lgeNiOdRdKNvDqxTfp4Av6kbH7kDxZJGW5fva2XuzMzFY7mfpDWUmW5ubm5d3YDpFIHkDoqWxIcoxu69DRiqK/e/KALM08BjFDN6T6g7fgPw5br3FwDXj3DvUym6TBu3U+vKHNOkzAXDlJk5wr3uHKE+RwO/pQjN9wGfbPgMbqCYcfyvFGMMF5XvJze53qbltY5vcvxAiu7xHYHvAv8FTKg7fgSwBJhVvn8xxTjLp4AFFOskbtrqGYH9Gj8bivUoh/tMZzY863BlDuj2n1k3t7Vti8yRxppLkkYSEZ+gWNdwzyyWranqPjdQBLJjq7qHJDVyDKMktcfrgXdWGRYlqVscwyhJbZCZL+h2HSSpKnZJS5IkqSW7pCVJktSSgVGSJEktOYaxjTbZZJOcOXNmt6shSZI0op///OcPZ+aovlrVwNhGM2fOZO7cud2uhiRJ0ogi4p7RlrVLWpIkSS0ZGCVJktSSgVGSJEktGRglSZLUkoFRkiRJLRkYJUmS1JKBUZIkSS0ZGCVJktSSgVGSJEktGRglSZLUkoFRkiRJLRkYJUmS1JKBUZIkSS0ZGCVJktSSgVGSJEktGRglSZLUkoFRkiRJLRkY1fc23RRmz+52LSRJGlxD3a6AtKbmzy82SZJUjZ5pYYyIxQ3bioj4fN3xYyPizvLYdRGxZYtrzYyIayLisYh4ICLOjoihumPZcK+T686NiDgjIh4pt09HRFT79JIkSb2rZwJjZk6tbcBmwFPAHICImA2cDhwMbATcBVzW4nJfAB4CtgD2AmYDJzaU2aDunqfV7T8OOATYE9gDeD1w/Bo9nCRJUh/rmcDY4I0Uge/G8v1BwJzMnJeZS4HTgP0jYvsm528LXJ6ZT2fmA8B1wK6jvPfRwJmZeW9m3gecCRyzms8hSZLU93o1MB4NXJSZWb6PcqPuPcBuTc4/Czg8IiZHxAzgtRShsd49EXFvRJwfEZvU7d8VuLXu/a2MPmxKkiQNnJ4LjBGxNUUX8oV1u68B3hwRe0TEJOAUIIHJTS7zI4qQ9zhwLzAX+GZ57GHghcA2wN7AesBX686dCiyse78QmNpsHGNEHBcRcyNi7nxnXkiSpAHUkcAYETeUE02G225qKH4UcFNm3lXbkZnfBz4GXAHcA9wNLKIIg433Ggd8D7gSmAJsAmwInFFea3Fmzs3M5Zn5IPBO4FURMa28xGJgWt0lpwGL61o7V5KZ52XmrMycNX369DF9LpIkSf2gI4ExMw/IzGiy7ddQ/ChWbl2sXeOczNwxMzelCI5DwG3D3G4jYCvg7MxckpmPAOcDr2tWvfK11oI4j2LCS82e5T5JkqS1Uk91SUfEvsAMytnRdfsnRsRu5ZI3WwPnAWdl5mON18jMhylmUZ8QEUMRsQHFmMhby2u9KCKeGxHjImJj4HPADZlZ64a+CHhfRMwol+55P3BBFc8rSZLUD3oqMFIEuyszc1HD/onApRTdxbcAPwHq1078cERcW1f+UOA1wHzgTmA58N7y2HYUE2AWUbRQLgGOqDv3S8B3gF+Xx79b7pMkSVorRZOheVoNs2bNyrlz53a7Gmud2nQk/yhLkjR6EfHzzJw1mrK91sIoSZKkHmNglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYNTA8JteJEmqhoFRA2PFim7XQJKkwWRg1MBYvrzbNZAkaTAZGDUwDIySJFXDwKiBYWCUJKkaBkYNDAOjJEnVMDBqYBgYJUmqhoFRA8PAKElSNQyMGhgGRkmSqmFg1MBYtqzbNZAkaTAZGDUwbGGUJKkaBkYNjKVLu10DSZIGk4FRA2PJkm7XQJKkwWRg1MCwhVGSpGoYGDUwDIySJFXDwKiBYZe0JEnVMDBqYNjCKElSNQyMGhgGRkmSqmFg1MCwS1qSpGoYGDUwbGGUJKkaBkYNDAOjJEnVMDBqYNglLUlSNQyM6nvjyj/FtjBKklQNA6P63jrrFK8GRkmSqmFgVN8bGipe7ZKWJKkaBkb1vczi1RZGSZKqYWBU3zMwSpJULQOjBoZd0pIkVcPAqL5Xa2E0MEqSVA0Do/peLTCuWNHdekiSNKh6JjBGxOKGbUVEfL7u+LERcWd57LqI2LLFtWZGxDUR8VhEPBARZ0fEUHnsrQ33eTIiMiL2Lo+fGhHLGspsV/0noNVVC4zLl3e3HpIkDaqeCYyZObW2AZsBTwFzACJiNnA6cDCwEXAXcFmLy30BeAjYAtgLmA2cWN7nqw33OhH4I/CLuvO/Xl8mM//YxkdVRWxhlCSpGj0TGBu8kSLw3Vi+PwiYk5nzMnMpcBqwf0Rs3+T8bYHLM/PpzHwAuA7YtUnZo4GLMmvtVOo3tjBKklStXg2MjSEuyo269wC7NTn/LODwiJgcETOA11KExpVExDbA/sBFDYcOiohHI2JeRJywug+hzjAwSpJUrZ4LjBGxNUUX8oV1u68B3hwRe0TEJOAUIIHJTS7zI4oWxceBe4G5wDeHKXcUcGNm3lW373JgF2A68HbglIg4okV9j4uIuRExd/78+aN4QrWbk14kSapWRwJjRNxQTiwZbrupofhRwE31IS4zvw98DLgCuAe4G1hEEQYb7zUO+B5wJTAF2ATYEDhjmKodxcrBlMz8TWb+OTNXZOaPKVor39js2TLzvMyclZmzpk+fPsInoSrZwihJUjU6Ehgz84DMjCbbfg3FVwlx5TXOycwdM3NTiuA4BNw2zO02ArYCzs7MJZn5CHA+8Lr6QhHxEmBL4BsjVZ+Vu8PVY2xhlCSpWj3VJR0R+wIzKGdH1+2fGBG7RWFr4DzgrMx8rPEamfkwxSzqEyJiKCI2oBgTeWtD0aOBKzJzUcO9Do6IDct77QO8G/hWmx5RFXAMoyRJ1eqpwEgR4q5sDHHAROBSYDFwC/AT4OTawYj4cERcW1f+UOA1wHzgTmA58N668hOBNzNMSyZweHnOIorJMGdk5nDl1CNsYZQkqVpD3a5Avcw8vsn+BcAeLc47veH9L4EDWpR/GtigybGmE1zU22xhlCSpGr3WwiiNmS2MkiRVy8CogWELoyRJ1TAwqq/Vfz+PLYySJFXDwKiBYQujJEnVMDCqr9W3MBoYJUmqhoFRfc0uaUmSqmdgVF+zhVGSpOoZGDUwbGGUJKkaBkb1NVsYJUmqnoFRfc0xjJIkVc/AqL5mC6MkSdUzMGpg2MIoSVI1DIzqa7YwSpJUPQOj+ppjGCVJqp6BUQPDFkZJkqphYFRfq7Uwjh9vC6MkSVUxMKqv1QLjhAlFC2N9F7UkSWoPA6P6Wi0gDg0Vr8880726SJI0qAyMGggTJhSvdktLktR+Bkb1tcYWRie+SJLUfgZG9bXGwGgLoyRJ7WdgVF+rn/QCtjBKklQFA6MGwvjxxastjJIktZ+BUX3NLmlJkqpnYFRfMzBKklQ9A6P6moFRkqTqGRg1EBzDKElSdQyM6mu2MEqSVD0Do/qagVGSpOoZGNXXDIySJFXPwKiBUBvD+Mwz3a2HJEmDyMCovlZrYXTSiyRJ1TEwqq/ZJS1JUvUMjOprBkZJkqpnYNRAsEtakqTqGBjV12xhlCSpegZG9TUDoyRJ1TMwqq8ZGCVJql7PBMaIWNywrYiIz9cdPzYi7iyPXRcRW7a41i4R8YOIWFie84aG4y+PiNsj4smI+GFEbFN3LCLijIh4pNw+HRFRzVOrXRzDKElSdXomMGbm1NoGbAY8BcwBiIjZwOnAwcBGwF3AZcNdJyKGgG8BV5dljwMuiYidyuObAFcCJ5fH5wJfr7vEccAhwJ7AHsDrgePb+Khqo8Z1GF24W5Kk9uuZwNjgjcBDwI3l+4OAOZk5LzOXAqcB+0fE9sOcuzOwJfCZzFyRmT8AbgaOLI8fCszLzDmZ+TRwKrBnROxcHj8aODMz783M+4AzgWPa/oRqC7ukJUmqXq8GxqOBizJrcYAoN+reA+w2zLnDdR9HXdldgVtrBzLzCeAP5f5Vjpc/74p6koFRkqTq9VxgjIitgdnAhXW7rwHeHBF7RMQk4BQggcnDXOJ2itbJkyJiQkS8qrxerexUYGHDOQuB9ZocXwhMbTaOMSKOi4i5ETF3/vz5o31MtZljGCVJqk5HAmNE3BAR2WS7qaH4UcBNmXlXbUdmfh/4GHAFcA9wN7AIuLfxXpm5jGIM4oHAA8D7gcvryi4GpjWcNq283nDHpwGL61o7G+93XmbOysxZ06dPb/UxqAK2MEqSVL2OBMbMPCAzo8m2X0Pxo1i5dbF2jXMyc8fM3JQiOA4BtzW5368yc3ZmbpyZrwa2A24pD8+jmNACQERMAbYv969yvPx5HupJBkZJkqrXU13SEbEvMINydnTd/okRsVu55M3WwHnAWZn5WJPr7FGeMzkiPgBsAVxQHr4K2C0iDouIiRTd27/KzNvL4xcB74uIGeXSPe+vO1c9xsAoSVL1eiowUkx2uTIzFzXsnwhcStFdfAvwE4plcQCIiA9HxLV15Y8E7qcYy/hy4JWZuQQgM+cDhwGfBB4DXgQcXnful4DvAL+maMH8brlPPcwxjJIkVWeo2xWol5nDrneYmQso1kRsdt7pDe9PAk5qUf56iuV3hjuWwAfLTT2ucR1GA6MkSe3Xay2M0pg0dkm7cLckSe1nYNRAsIVRkqTqGBjV15z0IklS9QyM6msGRkmSqmdgVF8zMEqSVD0DowaCYxglSaqOgVF9zRZGSZKqZ2BUXzMwSpJUPQOj+poLd0uSVD0DowZCLTC6cLckSe1nYFRfs0takqTqGRjV1wyMkiRVz8CovlYLjOPKP8kGRkmS2s/AqIEQUYxjNDBKktR+Bkb1tVoLIxgYJUmqioFRfa0WGG1hlCSpOgZG9TUDoyRJ1TMwaiDUAqPrMEqS1H4GRvW1+jGM48bZwihJUhUMjOprdklLklQ9A6P6moFRkqTqGRg1EAyMkiRVx8CovuY6jJIkVc/AqL5ml7QkSdUzMKqvGRglSaqegVEDwcAoSVJ1DIzqa41jGF24W5Kk9jMwqq/Vd0m7cLckSdUwMKqvOYZRkqTqGRg1EAyMkiRVx8CovuY6jJIkVc/AqL5ml7QkSdUzMKqvGRglSaqegVEDwcAoSVJ1DIzqa45hlCSpegZG9bXGLmkX7pYkqf0MjOprLtwtSVL1DIwaCI5hlCSpOgZG9TXHMEqSVL2eCYwRsbhhWxERn687fmxE3Fkeuy4itmxxrV0i4gcRsbA85w11x14cEf8REY9GxPyImBMRW9QdPzUiljXUZbvqnlxrwmV1JEmqXs8ExsycWtuAzYCngDkAETEbOB04GNgIuAu4bLjrRMQQ8C3g6rLsccAlEbFTWWRD4DxgJrANsAg4v+EyX6+vT2b+sW0PqkoYGCVJqk7PBMYGbwQeAm4s3x8EzMnMeZm5FDgN2D8ith/m3J2BLYHPZOaKzPwBcDNwJEBmXpuZczLz8cx8EjgbeEnFz6OK2CUtSVL1ejUwHg1clPmXOBDlRt17gN2GOTea7BuuLMD+wLyGfQeVXdbzIuKEUdZZXWCXtCRJ1eu5wBgRWwOzgQvrdl8DvDki9oiIScApQAKTh7nE7RStkydFxISIeFV5vVXKRsQe5bVOqtt9ObALMB14O3BKRBzRor7HRcTciJg7f/78MTyp2sHAKElS9ToSGCPihojIJttNDcWPAm7KzLtqOzLz+8DHgCuAe4C7KcYe3tt4r8xcBhwCHAg8ALyfIgSuVDYidgCuBd6TmTfWnf+bzPxz2Z39Y+Asii7yYWXmeZk5KzNnTZ8+fbQfidqstg6jC3dLktR+HQmMmXlAZkaTbb+G4kexcuti7RrnZOaOmbkpRXAcAm5rcr9fZebszNw4M18NbAfcUjseEdsA1wOnZebFI1Wf4bu51QMcwyhJUvV6qks6IvYFZlDOjq7bPzEidovC1hSznM/KzMeaXGeP8pzJEfEBYAvggvLYDOAHwDmZ+cVhzj04IjYs77UP8G6KWdfqQXZJS5JUvZ4KjBSTXa7MzEUN+ycClwKLKVoKfwKcXDsYER+OiGvryh8J3E8xlvHlwCszc0l57FiKFseP1a+1WHfu4cCdFF3eFwFnZOYqLZ7qDQZGSZKqN9TtCtTLzOOb7F8A7NHivNMb3p/EyhNZ6o99HPh4i2s1neCi3mVglCSpOr3WwiiNiWMYJUmqnoFRfc0uaUmSqmdgVF8zMEqSVD0DowaCgVGSpOoYGNXX6scwunC3JEnVMDCqr9klLUlS9QyM6msGRkmSqmdg1ECoBcbMlbupJUnSmjMwqq/Vh8Ohchn65cu7UxdJkgaVgVF9rb5LesKE4udly7pXH0mSBpGBUX3NwChJUvUMjBoIBkZJkqpjYFRfqx/DaGCUJKkaBkb1tfou6XXWKX5eurR79ZEkaRAZGNXXHMMoSVL1hkZTKCJeBRwD7AqsBywC5gHnZ+Z/VFY7aZQMjJIkVWfEwBgR7wU+CPw/4ApgITAN2BO4MCLOyMyzKq2l1IRjGCVJqt5oWhhPAl6Wmbc37L8yIi4DfggYGNUVdklLklS90YxhnAL8ucmxB4DJ7auONDYGRkmSqjeawHgF8J2IeHlETI+IdSJik4h4OXAV8I1qqyiNzMAoSVJ1RhMY3wH8GLgQeBB4qny9EPgv4ITKaieNoH4Mo8vqSJJUjRHHMGbmUuBDwIciYgNgKrA4Mxc0lo2Il2Tmze2upNSMXdKSJFVvVMvq1JQhcUGLItdSzKCWOsLAKElS9dq9cHe0+XrSqBgYJUmqTrsDY45cRGof12GUJKl6fjWg+ppd0pIkVc/AqL5mYJQkqXqOYdTAcFkdSZKqMabAGBEbR8SREfHB8v2WEfGc2vHMXK/dFZRasYVRkqTqjTowRsRs4HfAW4GTy907AudWUC9pVAyMkiRVbywtjJ8F3pKZrwGWl/t+CuzT7kpJY2VglCSpOmMJjDMz8/vlz7XFTJYyxsW/pXbyqwElSareWALjbyLi1Q37XgH8uo31kcaksUt6/Hh46qnu1kmSpEEzltbB9wNXR8R3gUkR8SXgIODgSmomjUJ9YASYNMnAKElSu426hTEz/wvYE5gHfAW4C9gnM39WUd2kUTMwSpJUnTGNP8zM+4BPV1QXacyy4csoDYySJLVfy8AYERcziu+Hzsyj2lYjaQzskpYkqXojdUnfCfyh3BYChwDjgXvLcw8GFlRXPak1A6MkSdVrGRgz8+O1DdgJODAz35qZH87MtwEHAs9tR0UiYnHDtiIiPl93/NiIuLM8dl1EbNniWrtExA8iYmF5zhvqjs2MiGy418l1xyMizoiIR8rt0xHhVx72OAOjJEnVGcuyOi8G/qth30+Bv2pHRTJzam0DNgOeAubAX75l5nSKFs2NKCbcXDbcdSJiCPgWcHVZ9jjgkojYqaHoBnX3PK1u/3EULal7AnsArweOb8czqv0cwyhJUvXGEhj/Gzg9IiYBlK+fBH5ZQb3eCDwE3Fi+PwiYk5nzMnMpcBqwf0RsP8y5OwNbAp/JzBWZ+QPgZuDIUd77aODMzLy3nORzJnDM6j+KqmSXtCRJ1RtLYDwGeAmwMCIepBjTuB9QxYSXo4GLMv/SfhTlRt17gN2GOXe47uMYpuw9EXFvRJwfEZvU7d8VuLXu/a3lPvUgA6MkSdUbyzqMd2fmvsD2wN8AO2Tmvpl5dzsrFBFbA7OBC+t2XwO8OSL2KFs2T6GYvT15mEvcTtE6eVJETIiIV5XXq5V9GHghsA2wN7Ae8NW686dShOGahcDUZuMYI+K4iJgbEXPnz58/todV2xgYJUmqzlhaGImIDYGXAX8NHFC+H815N5QTTYbbbmoofhRwU2beVdtRfof1x4ArgHuAu4FFFLO1V5KZyyjGIB4IPEDxDTWX18pm5uLMnJuZyzPzQeCdwKsiYlp5icXAtLpLTgMW17V2Nt7vvMyclZmzpk+fPpqPQ23kGEZJkqo36sAYEX9FsbzOOygmgxwP/KHc31JmHpCZ0WTbr6H4Uazculi7xjmZuWNmbkoRHIeA25rc71eZOTszN87MVwPbAbc0q17tEcvXeRQTXmpq326jHtTYJT15Mjz5ZPfqI0nSIBrLN718FjgxM79W2xERbwE+R9HFu8YiYl9gBuXs6Lr9E4EdKILbVsB5wFmZ+ViT6+wB3EERiE8EtgAuKI+9iGLtyN8DG5b1vyEza93QFwHvi4hrKMLk+4HPo57UGBinTYPFi+GZZ2DcmNrPJUlSM2P5K3Uniq7det+gCHLtcjRwZWYuatg/EbiUorv4FuAnQP3aiR+OiGvryh8J3E8xlvHlwCszc0l5bDvgOoou7duAJcARded+CfgO8Ovy+HfLfephtcC4/vpFiFy8uLv1kSRpkIylhfH3wOEUwa3mTRTd1G2RmcOud5iZCyi6wZudd3rD+5OAk5qUvYwmaziWxxP4YLmpxzWOYZxWjj5duPDZnyVJ0poZS2D8R+DqiHg3xcSTmcCOFAtbS13R2CW9/vrF68KFsNVW3amTJEmDZtSBMTN/XC6UfSDFwtjfAa7JzEerqpw0kuHGMAI8/nh36iNJ0iAaSwsj5SSTSyqqi7TahmthlCRJ7THqwBgR21J8FeBeFItb/0Vmbt3eakmj02wMoy2MkiS1z1haGC+lmODyfsCV7tQTWo1hlCRJ7TGWwLgr8JLMfKaqykhjZWCUJKl6Y1mH8T+B51dVEWlN1ALjlCnFgt12SUuS1D5jaWG8G/heRFxJ8R3Nf5GZp7SzUtJoNY5hjCjGMdrCKElS+4wlME6hWEpnAsXX89Xk8MWl6jV2SUMRGG1hlCSpfcayDuPfjVQmIo4ov0lF6ojhAuP669vCKElSO41lDONo+J3L6orGFkYDoyRJ7dPuwBgjF5Hap3EMIxQtjHZJS5LUPu0OjI5nVEfZJS1JUvXaHRiljhouMG6yCcyf3536SJI0iEYMjBFhqFTPqw+Mm29etDA+/XT36iNJ0iAZTRi8LyI+HRG7jaLs/6xphaSxGG4M42abFa8PPtjZukiSNKhGExjfAWwL/CwifhER74mI6cMVzMzRhEqpbYbrkjYwSpLUXiMGxsz8Vma+CdiCYtmcNwF/iohvR8RhETGh6kpKI2nskga4//7u1EWSpEEz6vGJmbkgM7+UmfsBuwBzgc8A/rWsrhmuS3rbbYvXP/6xs3WRJGlQjeWrAQGIiHWBFwIvAjYDftzuSkmjNVyX9MYbFzOlf/vb7tRJkqTVtWwZPPVU8+3JJ1sfH0u5sRh1YIyI/YCjgDcDDwEXAydm5j1ju6XUPsMFRoCdd4Z58zpfH0nS4MmEpUuLEFbbaqGs3e+XL1+9Oo4bB5Mnw6RJw28bbLDqvrPOGv31RwyMEXEqcCSwETAHODAzb169x5Gq0RgY990XPvOZ4htfpk3rTp0kSdV65pliCbXRhLI1DXTDDYEayYQJRYirBbnaz5MnFz1h9e9rx2thrlX4G26bMGHVvwtH0tbACLwY+Ajwzcx0ZTv1lGb/A7/udfDpT8P118Ohh3a2TpKkwrJlRdh64olnt9V9P1yIW931dtddt3mQq7XEDRfmRvu+tm9ozAP/eteIj5KZr+lERaTV0axLet99i68IvPpqA6MkNbNixcoBbaTwNtbAt2zZ2OozfjxMmVJskyev/PP06c2D2VjeT5xY3EdjM0DZV2ujZoFxwgQ46CC46ir4wheKXxCS1I8yi5a1xYtX3p54YtV9tf2jDXdLloytLhHDB7opU2DDDVd+33h8NO/XWWfs3arqDAOjBsJwv2D+/u/hkkvgc5+DD36w83WStPZZunTkMDfc/pHOGcv4uUmTVg5itTC2+ebNw9poA93EiQa6tZWBUX2t1S/RAw6AQw6Bf/5n2HJLeNvbOlUrSb0us2hdW7Ro5W11wlz9+7F0wa6zDkyduuq21Var7psyZfiyjfsnTy5my0rtZmBUX2vWJV3bd+ml8PrXw9FHw4IFcOKJ/jKV+tXy5asGvDXZRrt8ybhxw4e16dOLLwpYnWA3ZUoxdEbqFwZG9bVWgRGKrplvfxve9CZ417vgiivgy1+G7bfvXB2ltVVm0QL3+OPtCXijnRE7NATrrbfqtuWWw+9v3BrD3rrr2g0rGRg1EFr9Mp8yBb77XTj/fHjf+2D33eH004sA6Uw5aVW1SRYLFxZhr/a6Oj+Pduzd1KmrBrettx453E2btuo+A57UfgZG9bXR/mUUUUyCefWr4fjj4b3vha99Db74Rdhrr0qrKHVMbVzeaMLcSMdXrBj5fpMmFctXTZtWbOuvD5tt9uzPtTA3XKir36ZMcaiI1OsMjOprY115f8YM+M534KtfLVob994b3v1u+MQnir+4pG5avrwIawsWrLwtXNj8fWMIHM2ki3XXXTXobbvtykFvpJ/XW88xeNLaxMCovpY59q6niGLG9IEHwoc+VHw10pw58NnPwmGH2ZWl1bd06eiD3nD7Fi8e+R7rr198E8UGGxQ/P+c58LznrRzqRgp6665bxdNLGmQGRvW91Q14G25YdEkfcwyccEIxMea1r4Wzz4bttmtrFdUnnnmmaKl77DF49NGVXx97bOQw+NRTra8/fvyzQa8W+nbaaeX39WGw8f166znuVlJ3GBjV11bny+AbvfjF8LOfFUHx5JNh113hIx+Bk06yJaYf1SZsNAa++uDX7NiCBUVobGaddVYNcVttNXLQq/08ZYot2JL6k4FRfW11uqSHMzQE//iPRSvje99bBMdLLoFzz4WXvWzNr6+xW7Zs7IGv9vPSpc2vO3580bq84Yaw0Uaw8cawww7Fz7V99a/1P/stF5LWVgZG9bV2BcaaGTPg8svhuuvgH/4B/vqv4S1vgY9+FHbbrX33WVvUunibBbxWIXCk8XzTpq0c5nbddeTAt9FGRbeuoU+SxsbAqL5XxV/+r3kN3HYb/Mu/wJlnwte/DgcdVLQ+zp69di0BMlIXb6sQOFIX78SJK4e5bbaB5z9/+KBX/7rBBkWrsCSpM/yVq77WjjGMzUyaVCy38573wDnnwOc+VyzJs/XW8Ld/C697XTH+sZeXFqmty9e49t5oXkfbxTtu3MphbpNNYMcdR9fFO2lS5z4LSdLq65nAGBGNHVCTgC9k5rvK48cC/wxsDtwE/H1m/rnJtXYBzgH2BuYDJ2XmVeWxtwJfqis+rrzXrMz8eUScCnwEWFJXZo/M/OOaPaGq0O4u6eFsvDGccgp84APwrW/BRRfBv/4rfOpTxbdTPP/5sOeeRZf1jBmwxRZFaJo4sdhqE2eWLVt1W7KkaL176qnia89qPzfbVqdMqxa+mokTV12C5XnPa93KV3tdb721q8VVktZGPRMYM3Nq7eeImAI8CMwp388GTgdeBvweOAu4DJjdeJ2IGAK+BXwReGVZ5jsR8fzMvCMzvwp8ta78McDJwC/qLvP1zHxbO59P1ehEYKyZPBmOOKLYFiyAH/4Qrr8efvlLuOCC0a2htybWXbdokWvcamFvs82GPz55chEEG9foqw+H66xTbd0lSf2tZwJjgzcCDwE3lu8PAuZk5jyAiDgNuC8its/MPzScuzOwJfCZzEzgBxFxM3AkRTBsdDRwUVlWfagbExg22ADe8IZig6IV77774M9/hvvvh4cfLloPaxsUXdeN27rrFoFvuKBXHwgnTrQVT5LUPb0aGBtDXJQbde8BdgMaA+Nw8SHKsivvjNgG2B/4+4ZDB0XEo8D9wNmZee7Yqq9O6ZWYP25csR7fVlt1uyaSJLVfz7VZRMTWFN3IF9btvgZ4c0TsERGTgFOABCYPc4nbKVonT4qICRHxqvJ6w5U9CrgxM++q23c5sAswHXg7cEpEHNGivsdFxNyImDt//vxRP6fao5Nd0pIkra06Ehgj4oaIyCbbTQ3FjwJuqg9xmfl94GPAFcA9wN3AIuDexntl5jLgEOBA4AHg/RQhcJWy5b3qgymZ+ZvM/HNmrsjMH1OMl3xjs2fLzPMyc1Zmzpo+fXrrD0JtZ2CUJKl6HQmMmXlAZkaTbb+G4quEuPIa52Tmjpm5KUVwHAJua3K/X2Xm7MzcODNfDWwH3FJfJiJeQjHW8RsjVZ/hu7nVIwyMkiRVq6e6pCNiX2AG5ezouv0TI2K3KGwNnAeclZmPNbnOHuU5kyPiA8AWwAUNxY4GrsjMRQ3nHhwRG5b32gd4N8Wsa/WgXhnDKEnSIOu1SS9HA1c2hjhgInApsD1FV/T51M14jogPAy/NzNeWu44EjgUmUMy0fmVmLqkrPxF4M3DYMHU4HPgKsC5FN/YZmblKi6c6a+lS+J//gbvvLra77iper7zSb/yQJKlq4Woy7TNr1qycO3dut6vRlzJh/ny48074wx+K7Y9/fDYY3nffyq2J48cX29KlxcLRjz/etapLktSXIuLnmTlrNGVtm1HHrFgB9977bCCshcPaa/3C1xHwnOfAttvCX/81zJxZ/DxzZrE95zlw+OFwxRWOYZQkqWoGRrVVZrFo9e23F9vvfle83nln0VpY/53E66xThMDtt4fZs4vX2rbtts9+pZ4kSeouA6NWy7JlRZdxfSis/fzoo8+WmzgRdtoJdt8dDjnk2UC4ww7F9y6PH7/6dai1LNrCKElStQyMaumZZ+Cee+DXv155u+MOWL782XKbbw477wxvfnPxuvPO8NznwtZbV/eVdgZGSZI6w8Cov1iwAH75y5WD4W23rTy2cObMorXwb/4Gdtnl2WC4/vqdr69BUZKkzjAwrqUWLIBf/AJ+/vNntzvvfPb4RhsVwfCYY4rX3XeHXXeFadO6VeNV2cIoSVJnGBjXAsuWwa23ws03w09+smo43Hpr2Htv+Lu/gxe8APbYA7bYoveDmIFRkqTOMDAOoAUL4Mc/Lrabb4ZbboEnnyyOPec58MIXFuFw772LgNjvX4FtYJQkqVoGxgGwZEnRcnj99cX2s58Vk1XGj4e99oJjj4V99y22rbbqdm3bx6AoSVJnGBj71J/+BN/6Flx9Nfznf8JTTxUB8UUvgo9+FA44APbZB6ZM6XZNq2OXtCRJnWFg7CO/+U3x3cnf/GYxDhGKNQ6PPRZe8YoiJPbSpJSqGRglSeoMA2OPmz8fLrsMLrywmNUM8OIXw6c+BQcfXCxrs7YyMEqS1BkGxh6UWUxW+exni27n5cuLySmf/Sy86U2w5ZbdrmFvMChKktQZBsYesmIFzJkDZ54Jc+fChhvCe95TrIW4227drl3vMjhKklQtA2MPyIRvf7uYrHLbbcU3p5x7Lhx55GBPWllTdklLktQZBsYumzcP3vEOuOkm2HFH+NrXim7nqr5/eZAYGCVJ6gxjSZcsXQof+UixTuJvfwvnnVfMgn7LWwyLo2VQlCSpM2xh7IK77y6C4S23wNFHw//5P7DJJt2uVf+xhVGSpM4wMHbYv/87HH54McHlG9+Aww7rdo36l4FRkqTOsPOzgy65BA48sPh6vl/8wrDYLgZGSZKqZWDskK98pZj1/NKXFl/lt/323a5R/zMoSpLUGXZJd8BVV8Hb3w6vfnWxEPe663a7RoPBLmlJkjrDFsaK/fSnxZjFffaBK64wLLaTgVGSpM4wMFbo4Yef/Sq/q692Ee52MzBKktQZdklX6Pjj4aGHiu+F3njjbtdm8BgUJUnqDANjRa66Cq68Ej71Kdh7727XZrAZHCVJqpZd0hV48kl417uKb3F53/u6XZvBZZe0JEmdYQtjBc49F+67Dy69FCZM6HZtBpeBUZKkzrCFsc2WLYN//Vd4xStg//27XZvBZlCUJKkzbGFss6uvhgcfhC9/uds1GXy2MEqS1Bm2MLbZ+efDFlvAa17T7ZoMPgOjJEmdYWBso0z4/veL74gesu22cgZGSZI6w8DYRk8+WWyzZ3e7JpIkSe1jYGyjRYuKVye7dIYtjJIkdYaBsY0WL4bnPhc23bTbNVk7GBglSeoMA2MbPfUUvOAF3a7F2sPAKElSZxgY22jp0qKFUZ1hUJQkqTMMjG1mYOwcWxglSeqMngmMETEzIq6JiMci4oGIODsihuqOvzwibo+IJyPihxGxTYtrbRQRV0XEExFxT0T8bcPxpteKwhkR8Ui5fTpi9JFk5swxPrjWmIFRkqRq9UxgBL4APARsAewFzAZOBIiITYArgZOBjYC5wNdbXOscYCmwGfBW4NyI2HWU1zoOOATYE9gDeD1w/GgfYsaM0ZbUmrKFUZKkzuilwLgtcHlmPp2ZDwDXAbuWxw4F5mXmnMx8GjgV2DMidm68SERMAQ4DTs7MxZl5E/Bt4MhRXuto4MzMvDcz7wPOBI4Z7UNsvvlYHllrwqAoSVJn9FJgPAs4PCImR8QM4LUUoRGK4HhrrWBmPgH8gWcDZb2dgBWZeUfdvlvryo50rZWON5zb0tAQTJgwmpJqB1sYJUnqjF4KjD+iCGaPA/dSdBV/szw2FVjYUH4hsN4w1xmp7FiPLwSmNhvHGBHHRcTciJg7btyy4YqoIgZGSZI6oyOBMSJuiIhsst0UEeOA71GMLZwCbAJsCJxRXmIxMK3hstOARcPcbqSyYz0+DVicmTncs2XmeZk5KzNn7b67zYudZFCUJKkzOhIYM/OAzIwm234Uk0+2As7OzCWZ+QhwPvC68hLzKCahAH8Zp7h9ub/RHcBQROxYt2/PurIjXWul4w3nqgcZHCVJqlZPdEln5sPAXcAJETEUERtQTD6pjSW8CtgtIg6LiInAKcCvMvP2Ya71BEVL5SciYkpEvAQ4GLh4lNe6CHhfRMyIiC2B9wMXtP+ptabskpYkqTN6IjCWDgVeA8wH7gSWA+8FyMz5FDOfPwk8BrwIOLx2YkR8OCKurbvWicAkimV6LgNOyMx5o7kW8CXgO8CvgduA75b71GMMjJIkdcbQyEU6IzN/CRzQ4vj1wCrL6JTHTm94/yjFWoqrc60EPlhu6mEGRUmSOqOXWhilMbGFUZKkzjAwqm8ZGCVJ6gwDo/qegVGSpGoZGNW3DIqSJHWGgVF9yy5pSZI6w8CovmVglCSpMwyM6lsGRUmSOsPAqL5lYJQkqTMMjJIkSWrJwKi+ZQujJEmdYWBU36oFxszu1kOSpEFnYFTfsoVRkqTOMDCqbxkYJUnqDAOj+pbrMEqS1BkGRvU9xzBKklQtA6P6li2LkiR1hoFRfcvAKElSZxgY1bdcVkeSpM4wMKpvOelFkqTOMDCqbxkYJUnqDAOj+p6BUZKkahkY1bcMipIkdYaBUX3LLmlJkjrDwKi+ZWCUJKkzDIzqWwZGSZI6w8CovmVglCSpMwyMkiRJasnAqL5lC6MkSZ1hYFTfMjBKktQZBkb1LYOiJEmdYWBU37KFUZKkzjAwqm8ZGCVJ6gwDo/qegVGSpGoZGNW3DIqSJHWGgVF9yy5pSZI6w8CovmVglCSpMwyM6lsGRUmSOsPAqL5lC6MkSZ1hYFTfMzBKklStngmMETEzIq6JiMci4oGIODsihuqOvzwibo+IJyPihxGxTYtrbRQRV0XEExFxT0T8bd2xF0fEf0TEoxExPyLmRMQWdcdPjYhlEbG4btuuuifX6rKFUZKkzuiZwAh8AXgI2ALYC5gNnAgQEZsAVwInAxsBc4Gvt7jWOcBSYDPgrcC5EbFreWxD4DxgJrANsAg4v+H8r2fm1Lrtj2v6cGo/A6MkSZ0xNHKRjtkWODsznwYeiIjrgFrIOxSYl5lzoGgFBB6OiJ0z8/b6i0TEFOAwYLfMXAzcFBHfBo4E/jkzr20ofzbwowqfSxUxKEqS1Bm91MJ4FnB4REyOiBnAa4HrymO7ArfWCmbmE8AfeDZQ1tsJWJGZd9Ttu7VJWYD9gXkN+w4qu6znRcQJY38UdYItjJIkdUYvBcYfUYS6x4F7Kbqdv1kemwosbCi/EFhvmOuMumxE7AGcApxUt/tyYBdgOvB24JSIOKJZpSPiuIiYGxFz58+f36yYKmBglCSpMzoSGCPihojIJttNETEO+B7FOMUpwCYUYw3PKC+xGJjWcNlpFOMPG42qbETsAFwLvCczb6ztz8zfZOafM3NFZv6YouXzjc2eLTPPy8xZmTlr+vTprT8ItZWBUZKkzuhIYMzMAzIzmmz7UUxk2YpiDOOSzHyEYiLK68pLzAP2rF2vHKe4Pat2JQPcAQxFxI51+/asL1vOsL4eOC0zLx6p+oCRRJIkrbV6oks6Mx8G7gJOiIihiNgAOJpnxy1eBewWEYdFxESKbuRfNU54Ka/1BEVL5SciYkpEvAQ4GLgYoBwf+QPgnMz8YuP5EXFwRGwYhX2AdwPfavMjqw1sYZQkqTN6IjCWDgVeA8wH7gSWA+8FyMz5FDOfPwk8BrwIOLx2YkR8OCLqZz+fCEyiWKbnMuCEzKy1MB4LbAd8rH6txbpzDy/vvwi4CDgjMy9s87OqDQyMkiR1Rs8sq5OZvwQOaHH8emDnJsdOb3j/KHBIk7IfBz7e4j5NJ7iotxgUJUnqjF5qYZTGxBZGSZI6w8CovmVglCSpMwyM6nsGRkmSqmVgVN+yhVGSpM4wMKpvGRQlSeoMA6P6li2MkiR1hoFRfcvAKElSZxgY1bcMjJIkdYaBUZIkSS0ZGNW3bGGUJKkzDIzqewZGSZKqZWBU38rsdg0kSVo7GBjV92xhlCSpWgZG9a1aC6OBUZKkahkY1beeeaZ4NTBKklQtA6P6noFRkqRqGRjVt5z0IklSZxgY1fdsYZQkqVoGRvUtWxglSeoMA6P6lrOkJUnqDAOj+paBUZKkzjAwqm8ZGCVJ6gwDo/qegVGSpGoZGNW3nPQiSVJnGBjV92xhlCSpWgZG9S3HMEqS1BkGRvUtv0takqTOMDCq7xkYJUmqloFRfctJL5IkdYaBUX3PFkZJkqplYFTfsoVRkqTOMDCqbzlLWpKkzjAwqm8ZGCVJ6gwDo/qWgVGSpM4wMKrvGRglSaqWgVF9y0kvkiR1hoFRfc8WRkmSqmVgVN9yDKMkSZ1hYFTf8rukJUnqjJ4JjBExMyKuiYjHIuKBiDg7Iobqjr88Im6PiCcj4ocRsU2La20UEVdFxBMRcU9E/G3DfTIiFtdtJ9cdj4g4IyIeKbdPRxhJepn/dSRJqlbPBEbgC8BDwBbAXsBs4ESAiNgEuBI4GdgImAt8vcW1zgGWApsBbwXOjYhdG8pskJlTy+20uv3HAYcAewJ7AK8Hjl+TB1M1nPQiSVJn9FJg3Ba4PDOfzswHgOuAWsg7FJiXmXMy82ngVGDPiNi58SIRMQU4DDg5Mxdn5k3At4EjR1mPo4EzM/PezLwPOBM4Zg2eSxWzhVGSpGr1UmA8Czg8IiZHxAzgtRShEYrgeGutYGY+AfyBZwNlvZ2AFZl5R92+W4cpe09E3BsR55ctmDUr3avJuX8REcdFxNyImDt//vzWT6i2soVRkqTO6KXA+COKYPY4cC9Ft/M3y2NTgYUN5RcC6w1znZHKPgy8ENgG2Lvc/9UW5y8EpjYbx5iZ52XmrMycNX369GbPpgo4S1qSpM7oSGCMiBvKiSbDbTdFxDjgexTjFKcAmwAbAmeUl1gMTGu47DRg0TC3a1m27Kaem5nLM/NB4J3AqyJiWpPzpwGLM23P6jVHHw2HHAIf/Wi3ayJJ0mDrSGDMzAMyM5ps+1FMZNkKODszl2TmI8D5wOvKS8yjmIQC/GWc4vbl/kZ3AEMRsWPdvj2blAWoBcFaO9VK9xrhXHXRtGlw1VWw+ebdrokkSYOtJ7qkM/Nh4C7ghIgYiogNKCaf1MYSXgXsFhGHRcRE4BTgV5l5+zDXeoKipfITETElIl4CHAxcDBARL4qI50bEuIjYGPgccENm1rqhLwLeFxEzImJL4P3ABdU8uSRJUu/ricBYOhR4DTAfuBNYDrwXIDPnU8x8/iTwGPAi4PDaiRHx4Yi4tu5aJwKTKJbpuQw4ITNrrYTbUUymWQTcBiwBjqg790vAd4Bfl8e/W+6TJElaK4VD89pn1qxZOXfu3G5XQ5IkaUQR8fPMnDWasr3UwihJkqQeZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS1ZGCUJElSSwZGSZIktRSZ2e06DIyIWAT8rtv1WMtsAjzc7UqsZfzMO8/PvPP8zDvPz7zznpuZ642m4FDVNVnL/C4zZ3W7EmuTiJjrZ95Zfuad52feeX7mnedn3nkRMXe0Ze2SliRJUksGRkmSJLVkYGyv87pdgbWQn3nn+Zl3np955/mZd56feeeN+jN30oskSZJasoVRkiRJLRkYJUmS1JKBsQ0iYqOIuCoinoiIeyLib7tdp0EXEe+MiLkRsSQiLuh2fQZdRKwbEf9W/vleFBH/HRGv7Xa9Bl1EXBIR90fE4xFxR0Qc2+06rS0iYseIeDoiLul2XQZdRNxQftaLy831jDsgIg6PiN+W2eUPEfHSVuVdh7E9zgGWApsBewHfjYhbM3NeV2s12P4M/G/g1cCkLtdlbTAE/AmYDfwP8Drg8ojYPTPv7mbFBty/AP8rM5dExM7ADRHx35n5825XbC1wDvCzbldiLfLOzPxytyuxtoiIVwJnAG8BbgG2GOkcWxjXUERMAQ4DTs7MxZl5E/Bt4Mju1mywZeaVmflN4JFu12VtkJlPZOapmXl3Zj6TmVcDdwF7d7tugywz52Xmktrbctu+i1VaK0TE4cAC4PtdropUlY8Dn8jM/yp/p9+Xmfe1OsHAuOZ2AlZk5h11+24Fdu1SfaTKRcRmFH/2bUWvWER8ISKeBG4H7geu6XKVBlpETAM+Aby/23VZy/xLRDwcETdHxAHdrswgi4jxwCxgekTcGRH3RsTZEdGyt87AuOamAgsb9i0ERvXdjFK/iYgJwFeBCzPz9m7XZ9Bl5okUv09eClwJLGl9htbQacC/Zeaful2Rtcg/AdsBMyjWBfxORNiSXp3NgAnAGyl+r+wFPB/4aKuTDIxrbjEwrWHfNGBRF+oiVSoixgEXU4zZfWeXq7PWyMwV5XCX5wAndLs+gyoi9gJeAXymy1VZq2TmTzNzUWYuycwLgZspxkmrGk+Vr5/PzPsz82Hg/zLCZ+6klzV3BzAUETtm5u/LfXtiV50GTEQE8G8U/zp9XWYu63KV1kZDOIaxSgcAM4H/Kf64MxUYHxHPy8wXdLFea5sEotuVGFSZ+VhE3EvxOY+aLYxrKDOfoOgm+kRETImIlwAHU7TCqCIRMRQRE4HxFL/QJ0aE/wCq1rnALsBBmfnUSIW1ZiJi03LZi6kRMT4iXg0cAfyg23UbYOdRBPK9yu2LwHcpVmNQBSJig4h4de13eES8Fdgf+F636zbgzgfeVf6e2RD4R+DqVif4F2x7nAh8BXiIYtbuCS6pU7mPAh+re/82illfp3alNgMuIrYBjqcYP/dA2foCcHxmfrVrFRtsSdH9/EWKf9zfA/xjZn6rq7UaYJn5JPBk7X1ELAaezsz53avVwJtAsUTazsAKisldh2SmazFW6zRgE4pe0qeBy4FPtjrB75KWJElSS3ZJS5IkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWjIwSlKbRMS8iDigQ/d6XkTMreC6V0bEa9p9XUn9zXUYJWmUyoWcayZTLGS+onzf0UXMI+IKYE5mfq3N190HODcz927ndSX1NwOjJK2GiLgbODYzr+/Cvbeg+L76LTPz6Qqu/3vgiMxsewumpP5kl7QktUlE3B0Rryh/PjUi5kTEJRGxKCJ+HRE7RcSHIuKhiPhTRLyq7tz1I+LfIuL+iLgvIv53RIxvcqtXAr+oD4vlvU+KiF9FxBPltTaLiGvL+19ffmcs5ff2XhIRj0TEgoj4WURsVnf9G4AD2/4BSepbBkZJqs5BwMXAhsB/A9+j+L07A/gE8KW6shcCy4EdgOcDrwKObXLd3YHhvmv3MIowuVN572uBD1N8Z+w44N1luaOB9YGtgI2BdwBP1V3nt8Ceo35KSQPPwChJ1bkxM7+XmcuBOcB04FOZuQz4GjAzIjYoW/deC/xjZj6RmQ8BnwEOb3LdDYBFw+z/fGY+mJn3ATcCP83M/87MJcBVFEEUYBlFUNwhM1dk5s8z8/G66ywq7yFJAAx1uwKSNMAerPv5KeDhzFxR9x5gKrAlMAG4PyJq5ccBf2py3ceA9UZxv8b3U8ufL6ZoXfxaRGwAXAJ8pAyylNde0OyhJK19bGGUpO77E8WM600yc4Nym5aZuzYp/yuKbufVkpnLMvPjmfk8YF/g9cBRdUV2AW5d3etLGjwGRknqssy8H/h34MyImBYR4yJi+4iY3eSU/wBeEBETV+d+EfGyiNi9nFTzOEUX9Yq6IrMpxj9KEmBglKRecRSwDvAbii7nbwBbDFcwMx8EfgAcvJr32ry8/uMUE1x+RNEtTUS8EHgiM29ZzWtLGkCuwyhJfSginkcxs3qfbOMv8nJB8H/LzGvadU1J/c/AKEmSpJbskpYkSVJLBkZJkiS1ZGCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJkiS19P8B57wUfj0xM48AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCgUlEQVR4nO3debgcZZ33//c3OYFshLCELSxhFWRVIjqIBMcFFRkQFEGHZeaHIIy74jMuIMrIiDM8ioIojyOroERABQFnUHEAHTEuIFFEFBhBlrAkJCzZ+P7+qGrpdM7pc07S1Vver+uqq09X3XXXXU04+eReqiMzkSRJkoYyptMNkCRJUnczMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDo6S+ERE3RsRX695fEBE3dLJNktQPDIySOi4iNoiIz0bE7yPi2Yh4JCL+OyKOioiBiq99XET8ICIej4iMiH0ajg9ExOkR8auIWBgRj0bE9yPipatwrVPLa2REPBcRD0TEZRGxVevuaNg2fCgilkfE/23XNQdpw/iIOL/8TJdExN2DlNk1Ii6OiHvLPxP3RMTnI2JqB5osrfEMjJI6KiI2B34JHAp8Cngx8HLgP4APAbtU3ISJwA+Bk4Y4vjbwN8CZwMuA/YB5wA0Rse0qXO9eYFNgc+AoYCZwdUSMXYW6VsU7gNOBoyJi7TZds9FYYAlwHvCNIcq8GFgEHAu8EHgncCBwWTsaKGlFBkZJnXYuRSh7cWZ+PTN/m5l/yMwLgT2BP9QKRsS7I+LOssfpDxHxsdXtgczMz2fmp4EfDHH8qcx8ZWZekplzM/MO4GhgOfCGVbjk8sx8KDP/kpk/AE4FdgW2A4iIoyPitxGxOCLuj4h/qb/Hctj9axHxmbK388mI+GpETBjuwhHxSmAq8EngYYqQXn/8/0TE/IiYUbfvExHxWBnsiYiXlb2/z0TEExFxaURsVFf+1Ii4OyIOKv9bPRURP6oP1+Vnenxmngv8abC2ZuaFmXlCZt6QmX/KzO8DHwb2j4gpw92rpNYyMErqmIhYnyJ0nZ2ZCxqPZ+bSzHyqLHsqRY/jR4CdgPcCxwOfaFuDnzcBGAc82oK6nilfx0XEAcDXgIspQuQHgX9i5Xt8M7AB8Arg7cDfAWeM4FrHA1/PzGXAhcBxDcc/C/wMuKwcin8F8HHgHzLz/ojYBPhP4H5gL4oev12AKxrq2RQ4oWzb3hQh9WsjaN9w1qX4vJ5uQV2SRqHSuUGSNIztKP7h+ttmhSJiIkXv0iGZeX25+56I+DjwBeDkSlu5ss9TDEtfvTqVRMSWwP8B/gz8nqK39YrM/NeyyF1lSPtMRJyWmUvK/Y8D78zM5cDvys/hixHxkVrAHuRa04A3UQQ9KELppyPiBZn5e4DMzIg4EriN4nM9EPhSZn63POefgCeBY2ptKcv/OiL2zcz/LsutDRyZmfPKMmcAl0bE+Mx8dhU/q00oekbPLQOvpDayh1FSJ0X5msOU25miV++KiFhU24CvAOuWYagtIuIzwMHA32XmolWoYpuy/U8D91F8Bm/KzKUU9/nfDeV/DIwH6udL3lqGxZpbgLUayjT6B+B3mXkbQGY+CPwXxZzGv8rMR4B/pOghfIwiqNfsDPxPXXClrG9BeazmL7WwWHqgvM+NWAXlkPd/ArdT9DBLajN7GCV10h+A5yjCxlVNytX+cfsW4K5Bjj/e4natJCICOAs4AnhVZt6+ilX9GXgVxX0/lJmNw6uN4XkkoTqaHKu1/Vhgu4io750bA7wkIj5aHwKBWRRzNDemGAZ+pEn7Btu/ZIhjo+6kKOdO/hdwN/DmMlhLajN7GCV1TGY+DlwHvCsi1m08HhHjImISMBd4FtgmM+8eZFveeG4rlSuYv0YRWPer9dKtoqVlm/80SFicSxHW6u1LMW+vfnHISxpWVf8NRUj74xDX/FtgG4rV53s0bOOAQ2oFI+LVFHNF/46iB/TCMnDW2vc3EbFWXfndKULl3KFueFWVC2VuopiycEhmLm71NSSNjIFRUqedCCwFfhERb4uIF0bEdhHx98AcYPty6Pd04PSIeFdEvCAido6Iw8v5cassIjaJiD0oHt0CRS/cHuWcOcoVyt+gCFCHAY+V52wSEZNX59qD+Ffg0Ij454jYISIOo1hFfWZDD+AGwDkRsVO5UOY04P8NNX+RYrHLjzPzp5l5R912O/BdysUv5dD+xcC/Z+a1FL2pewMfKOs5G5gCXBARu0TxzMqLgZsz86bR3Gj533kPYBNgrfIz36MWRiPihRRh8ffAe4AN6j73dj2CSFLJIWlJHZWZ/xsRLwb+mSIcbUmxsOJ3wL8Bd5TlTouIvwDvBv6dotftLuCC1WzCO1lxFfL55esny/ZsTrEqGVaeX1grQ0QcU567dWbeuyoNycxrI+IfKT6LT1EsrPlSeZ163wIWAjdTzF2czYpzDf+qnP93MMXnNphvUjwHcnuKxTz3US4iysx7IuKdFAHxx5k5JyJeS7Ga+ufAYuBa4H2rcLvXAvUPLP9V+bo1xbMqD6NYbb0pxarserUyktokMoebay5JGk5EfIriuYa7V7mKNyJuBO7OzGOruoYkNXJIWpJa443Au3zki6R+5JC0JLVAZr64022QpKo4JC1JkqSmHJKWJElSUwZGSZIkNeUcxhbacMMNc8aMGZ1uhiRJ0rB+8YtfPJqZI/pqVQNjC82YMYM5c+Z0uhmSJEnDioj7RlrWIWlJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYFTP22gjmDWr062QJKl/DXS6AdLqmjev2CRJUjW6pocxIhY1bMsj4ot1x4+NiLvLY9dHxGZN6poREddGxBMR8VBEnB0RA3XHsuFaJ9edGxFxRkQ8Vm6fjYio9u4lSZK6V9cExsycXNuAjYFngNkAETELOB04CFgfuAe4rEl1XwIeATYF9gBmASc2lJlad83T6vYfBxwM7A7sBrwROH61bk6SJKmHdU1gbPBmisB3U/n+QGB2Zs7NzCXAacC+EbHtEOdvDVyemc9m5kPA9cDOI7z20cCZmXl/Zj4AnAkcs4r3IUmS1PO6NTAeDVyUmVm+j3Kj7j3ALkOcfxZweERMjIjpwOspQmO9+yLi/og4PyI2rNu/M3Bb3fvbGHnYlCRJ6jtdFxgjYkuKIeQL63ZfCxwWEbtFxATgFCCBiUNU82OKkPckcD8wB/h2eexR4CXAVsCewDrA1+vOnQwsqHu/AJg81DzGiDguIuZExJx5rryQJEl9qC2BMSJuLBeaDLbd3FD8KODmzLyntiMzfwB8ArgCuA+4F1hIEQYbrzUG+D5wJTAJ2BBYDzijrGtRZs7JzGWZ+TDwLuC1ETGlrGIRMKWuyinAorrezhVk5nmZOTMzZ06bNm1Un4skSVIvaEtgzMz9MjOG2PZpKH4UK/Yu1uo4JzO3z8yNKILjAHDHIJdbH9gCODszF2fmY8D5wBuGal75WutBnEux4KVm93KfJEnSGqmrhqQjYm9gOuXq6Lr94yNil/KRN1sC5wFnZeYTjXVk5qMUq6hPiIiBiJhKMSfytrKul0bECyJiTERsAHwBuDEza8PQFwEfiIjp5aN7PghcUMX9SpIk9YKuCowUwe7KzFzYsH88cCnFcPGtwE+B+mcnfjQirqsrfwjwOmAecDewDHh/eWwbigUwCyl6KBcDR9Sd+xXgauA35fHvlfskSZLWSDHE1DytgpkzZ+acOXM63Yw1Tm05kn+UJUkauYj4RWbOHEnZbuthlCRJUpcxMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjCqb/hNL5IkVcPAqL6xfHmnWyBJUn8yMKpvLFvW6RZIktSfDIzqGwZGSZKqYWBU3zAwSpJUDQOj+oaBUZKkahgY1TcMjJIkVcPAqL5hYJQkqRoGRvUNA6MkSdUwMKpvLF3a6RZIktSfDIzqG/YwSpJUDQOj+saSJZ1ugSRJ/cnAqL6xeHGnWyBJUn8yMKpv2MMoSVI1DIzqGwZGSZKqYWBU33BIWpKkahgY1TfsYZQkqRoGRvUNA6MkSdUwMKpvOCQtSVI1DIzqG/YwSpJUDQOj+oaBUZKkahgY1TcckpYkqRoGRvW8MeWfYnsYJUmqhoFRPW+ttYpXA6MkSdUwMKrnDQwUrw5JS5JUDQOjel5m8WoPoyRJ1TAwqucZGCVJqpaBUX3DIWlJkqphYFTPq/UwGhglSaqGgVE9rxYYly/vbDskSepXXRMYI2JRw7Y8Ir5Yd/zYiLi7PHZ9RGzWpK4ZEXFtRDwREQ9FxNkRMVAee3vDdZ6OiIyIPcvjp0bE0oYy21T/CWhV1QLjsmWdbYckSf2qawJjZk6ubcDGwDPAbICImAWcDhwErA/cA1zWpLovAY8AmwJ7ALOAE8vrfL3hWicCfwJ+WXf+N+vLZOafWnirqog9jJIkVaNrAmODN1MEvpvK9wcCszNzbmYuAU4D9o2IbYc4f2vg8sx8NjMfAq4Hdh6i7NHARZm1fir1GnsYJUmqVrcGxsYQF+VG3XuAXYY4/yzg8IiYGBHTgddThMYVRMRWwL7ARQ2HDoyIxyNibkScsKo3ofYwMEqSVK2uC4wRsSXFEPKFdbuvBQ6LiN0iYgJwCpDAxCGq+TFFj+KTwP3AHODbg5Q7CrgpM++p23c5sBMwDXgHcEpEHNGkvcdFxJyImDNv3rwR3KFazUUvkiRVqy2BMSJuLBeWDLbd3FD8KODm+hCXmT8APgFcAdwH3AsspAiDjdcaA3wfuBKYBGwIrAecMUjTjmLFYEpm/jYz/5KZyzPzJxS9lW8e6t4y87zMnJmZM6dNmzbMJ6Eq2cMoSVI12hIYM3O/zIwhtn0aiq8U4so6zsnM7TNzI4rgOADcMcjl1ge2AM7OzMWZ+RhwPvCG+kIR8XJgM+BbwzWfFYfD1WXsYZQkqVpdNSQdEXsD0ylXR9ftHx8Ru0RhS+A84KzMfKKxjsx8lGIV9QkRMRARUynmRN7WUPRo4IrMXNhwrYMiYr3yWnsB7wG+06JbVAWcwyhJUrW6KjBShLgrG0McMB64FFgE3Ar8FDi5djAiPhoR19WVPwR4HTAPuBtYBry/rvx44DAG6ckEDi/PWUixGOaMzBysnLqEPYySJFVroNMNqJeZxw+xfz6wW5PzTm94/2tgvyblnwWmDnFsyAUu6m72MEqSVI1u62GURs0eRkmSqmVgVN+wh1GSpGoYGNXT6r+fxx5GSZKqYWBU37CHUZKkahgY1dPqexgNjJIkVcPAqJ7mkLQkSdUzMKqn2cMoSVL1DIzqG/YwSpJUDQOjepo9jJIkVc/AqJ7mHEZJkqpnYFRPs4dRkqTqGRjVN+xhlCSpGgZG9TR7GCVJqp6BUT3NOYySJFXPwKi+YQ+jJEnVMDCqp9V6GMeOtYdRkqSqGBjV02qBcdy4ooexfohakiS1hoFRPa0WEAcGitfnnutcWyRJ6lcGRvWFceOKV4elJUlqPQOjelpjD6MLXyRJaj0Do3paY2C0h1GSpNYzMKqn1S96AXsYJUmqgoFRfWHs2OLVHkZJklrPwKie5pC0JEnVMzCqpxkYJUmqnoFRPc3AKElS9QyM6gvOYZQkqToGRvU0exglSaqegVE9zcAoSVL1DIzqaQZGSZKqZ2BUX6jNYXzuuc62Q5KkfmRgVE+r9TC66EWSpOoYGNXTHJKWJKl6Bkb1NAOjJEnVMzCqLzgkLUlSdQyM6mn2MEqSVD0Do3qagVGSpOoZGNXTDIySJFWvawJjRCxq2JZHxBfrjh8bEXeXx66PiM2a1LVTRPwwIhaU57yp4firIuLOiHg6In4UEVvVHYuIOCMiHiu3z0ZEVHPXahXnMEqSVJ2uCYyZObm2ARsDzwCzASJiFnA6cBCwPnAPcNlg9UTEAPAd4Jqy7HHAJRGxQ3l8Q+BK4OTy+Bzgm3VVHAccDOwO7Aa8ETi+hbeqFmp8DqMP7pYkqfW6JjA2eDPwCHBT+f5AYHZmzs3MJcBpwL4Rse0g5+4IbAZ8LjOXZ+YPgVuAI8vjhwBzM3N2Zj4LnArsHhE7lsePBs7MzPsz8wHgTOCYlt+hWsIhaUmSqtetgfFo4KLMWhwgyo269wC7DHLuYMPHUVd2Z+C22oHMfAr4Y7l/pePlzzujrmRglCSpel0XGCNiS2AWcGHd7muBwyJit4iYAJwCJDBxkCrupOidPCkixkXEa8v6amUnAwsazlkArDPE8QXA5KHmMUbEcRExJyLmzJs3b6S3qRZzDqMkSdVpS2CMiBsjIofYbm4ofhRwc2beU9uRmT8APgFcAdwH3AssBO5vvFZmLqWYg3gA8BDwQeDyurKLgCkNp00p6xvs+BRgUV1vZ+P1zsvMmZk5c9q0ac0+BlXAHkZJkqrXlsCYmftlZgyx7dNQ/ChW7F2s1XFOZm6fmRtRBMcB4I4hrnd7Zs7KzA0yc39gG+DW8vBcigUtAETEJGDbcv9Kx8uf56KuZGCUJKl6XTUkHRF7A9MpV0fX7R8fEbuUj7zZEjgPOCsznxiint3KcyZGxIeATYELysNXAbtExKERMZ5iePv2zLyzPH4R8IGImF4+uueDdeeqyxgYJUmqXlcFRorFLldm5sKG/eOBSymGi28FfkrxWBwAIuKjEXFdXfkjgQcp5jK+CnhNZi4GyMx5wKHAp4EngJcCh9ed+xXgauA3FD2Y3yv3qYs5h1GSpOoMdLoB9TJz0OcdZuZ8imciDnXe6Q3vTwJOalL+BorH7wx2LIEPl5u6XONzGA2MkiS1Xrf1MEqj0jgk7YO7JUlqPQOj+oI9jJIkVcfAqJ7mohdJkqpnYFRPMzBKklQ9A6N6moFRkqTqGRjVF5zDKElSdQyM6mn2MEqSVD0Do3qagVGSpOoZGNXTfHC3JEnVMzCqL9QCow/uliSp9QyM6mkOSUuSVD0Do3qagVGSpOoZGNXTaoFxTPkn2cAoSVLrGRjVFyKKeYwGRkmSWs/AqJ5W62EEA6MkSVUxMKqn1QKjPYySJFXHwKieZmCUJKl6Bkb1hVpg9DmMkiS1noFRPa1+DuOYMfYwSpJUBQOjeppD0pIkVc/AqJ5mYJQkqXoGRvUFA6MkSdUxMKqn+RxGSZKqZ2BUT3NIWpKk6hkY1dMMjJIkVc/AqL5gYJQkqToGRvW0xjmMPrhbkqTWMzCqp9UPSfvgbkmSqmFgVE9zDqMkSdUzMKovGBglSaqOgVE9zecwSpJUPQOjeppD0pIkVc/AqJ5mYJQkqXoGRvUFA6MkSdUxMKqnOYdRkqTqGRjV0xqHpH1wtyRJrWdgVE/zwd2SJFXPwKi+4BxGSZKqY2BUT3MOoyRJ1euawBgRixq25RHxxbrjx0bE3eWx6yNisyZ17RQRP4yIBeU5b6o79rKI+K+IeDwi5kXE7IjYtO74qRGxtKEt21R351odPlZHkqTqdU1gzMzJtQ3YGHgGmA0QEbOA04GDgPWBe4DLBqsnIgaA7wDXlGWPAy6JiB3KIusB5wEzgK2AhcD5DdV8s749mfmnlt2oKmFglCSpOl0TGBu8GXgEuKl8fyAwOzPnZuYS4DRg34jYdpBzdwQ2Az6Xmcsz84fALcCRAJl5XWbOzswnM/Np4Gzg5RXfjyrikLQkSdXr1sB4NHBR5l/jQJQbde8Bdhnk3Bhi32BlAfYF5jbsO7Acsp4bESeMsM3qAIekJUmqXtcFxojYEpgFXFi3+1rgsIjYLSImAKcACUwcpIo7KXonT4qIcRHx2rK+lcpGxG5lXSfV7b4c2AmYBrwDOCUijmjS3uMiYk5EzJk3b94o7lStYGCUJKl6bQmMEXFjROQQ280NxY8Cbs7Me2o7MvMHwCeAK4D7gHsp5h7e33itzFwKHAwcADwEfJAiBK5QNiK2A64D3puZN9Wd/9vM/Es5nP0T4CyKIfJBZeZ5mTkzM2dOmzZtpB+JWqz2HEYf3C1JUuu1JTBm5n6ZGUNs+zQUP4oVexdrdZyTmdtn5kYUwXEAuGOI692embMyc4PM3B/YBri1djwitgJuAE7LzIuHaz6DD3OrCziHUZKk6nXVkHRE7A1Mp1wdXbd/fETsEoUtKVY5n5WZTwxRz27lORMj4kPApsAF5bHpwA+BczLzy4Oce1BErFdeay/gPRSrrtWFHJKWJKl6XRUYKRa7XJmZCxv2jwcuBRZR9BT+FDi5djAiPhoR19WVPxJ4kGIu46uA12Tm4vLYsRQ9jp+of9Zi3bmHA3dTDHlfBJyRmSv1eKo7GBglSareQKcbUC8zjx9i/3xgtybnnd7w/iRWXMhSf+yTwCeb1DXkAhd1LwOjJEnV6bYeRmlUnMMoSVL1DIzqaQ5JS5JUPQOjepqBUZKk6hkY1RcMjJIkVcfAqJ5WP4fRB3dLklQNA6N6mkPSkiRVz8ConmZglCSpegZG9YVaYMxccZhakiStPgOjelp9OBwoH0O/bFln2iJJUr8yMKqn1Q9JjxtX/Lx0aefaI0lSPzIwqqcZGCVJqp6BUX3BwChJUnUMjOpp9XMYDYySJFXDwKieVj8kvdZaxc9LlnSuPZIk9SMDo3qacxglSarewEgKRcRrgWOAnYF1gIXAXOD8zPyvylonjZCBUZKk6gwbGCPi/cCHgf8HXAEsAKYAuwMXRsQZmXlWpa2UhuAcRkmSqjeSHsaTgFdm5p0N+6+MiMuAHwEGRnWEQ9KSJFVvJHMYJwF/GeLYQ8DE1jVHGh0DoyRJ1RtJYLwCuDoiXhUR0yJirYjYMCJeBVwFfKvaJkrDMzBKklSdkQTGdwI/AS4EHgaeKV8vBP4HOKGy1knDqJ/D6GN1JEmqxrBzGDNzCfAR4CMRMRWYDCzKzPmNZSPi5Zl5S6sbKQ3FIWlJkqo3osfq1JQhcX6TItdRrKCW2sLAKElS9Vr94O5ocX3SiBgYJUmqTqsDYw5fRGodn8MoSVL1/GpA9TSHpCVJqp6BUT3NwChJUvWcw6i+4WN1JEmqxqgCY0RsEBFHRsSHy/ebRcTmteOZuU6rGyg1Yw+jJEnVG3FgjIhZwO+BtwMnl7u3B86toF3SiBgYJUmq3mh6GD8PvDUzXwcsK/f9DNir1Y2SRsvAKElSdUYTGGdk5g/Kn2sPM1nCKB/+LbWSXw0oSVL1RhMYfxsR+zfsezXwmxa2RxqVxiHpsWPhmWc62yZJkvrNaHoHPwhcExHfAyZExFeAA4GDKmmZNAL1gRFgwgQDoyRJrTbiHsbM/B9gd2Au8DXgHmCvzPx5RW2TRszAKElSdUY1/zAzHwA+W1FbpFHLhi+jNDBKktR6TQNjRFzMCL4fOjOPalmLpFFwSFqSpOoNNyR9N/DHclsAHAyMBe4vzz0ImF9d86TmDIySJFWvaWDMzE/WNmAH4IDMfHtmfjQz/x44AHhBKxoSEYsatuUR8cW648dGxN3lsesjYrMmde0UET+MiAXlOW+qOzYjIrLhWifXHY+IOCMiHiu3z0aEX3nY5QyMkiRVZzSP1XkZ8D8N+34G/E0rGpKZk2sbsDHwDDAb/votM6dT9GiuT7Hg5rLB6omIAeA7wDVl2eOASyJih4aiU+uueVrd/uMoelJ3B3YD3ggc34p7VOs5h1GSpOqNJjD+Cjg9IiYAlK+fBn5dQbveDDwC3FS+PxCYnZlzM3MJcBqwb0RsO8i5OwKbAZ/LzOWZ+UPgFuDIEV77aODMzLy/XORzJnDMqt+KquSQtCRJ1RtNYDwGeDmwICIeppjTuA9QxYKXo4GLMv/afxTlRt17gF0GOXew4eMYpOx9EXF/RJwfERvW7d8ZuK3u/W3lPnUhA6MkSdUbzXMY783MvYFtgb8DtsvMvTPz3lY2KCK2BGYBF9btvhY4LCJ2K3s2T6FYvT1xkCrupOidPCkixkXEa8v6amUfBV4CbAXsCawDfL3u/MkUYbhmATB5qHmMEXFcRMyJiDnz5s0b3c2qZQyMkiRVZzQ9jETEesArgb8F9ivfj+S8G8uFJoNtNzcUPwq4OTPvqe0ov8P6E8AVwH3AvcBCitXaK8jMpRRzEA8AHqL4hprLa2Uzc1FmzsnMZZn5MPAu4LURMaWsYhEwpa7KKcCiut7Oxuudl5kzM3PmtGnTRvJxqIWcwyhJUvVGHBgj4m8oHq/zTorFIMcDfyz3N5WZ+2VmDLHt01D8KFbsXazVcU5mbp+ZG1EExwHgjiGud3tmzsrMDTJzf2Ab4Nahmle7xfJ1LsWCl5rat9uoCzUOSU+cCE8/3bn2SJLUj0bzTS+fB07MzG/UdkTEW4EvUAzxrraI2BuYTrk6um7/eGA7iuC2BXAecFZmPjFEPbsBd1EE4hOBTYELymMvpXh25B+A9cr235iZtWHoi4APRMS1FGHyg8AXUVdqDIxTpsCiRfDcczBmVP3nkiRpKKP5K3UHiqHdet+iCHKtcjRwZWYubNg/HriUYrj4VuCnQP2zEz8aEdfVlT8SeJBiLuOrgNdk5uLy2DbA9RRD2ncAi4Ej6s79CnA18Jvy+PfKfepitcC47rpFiFy0qLPtkSSpn4ymh/EPwOEUwa3mLRTD1C2RmYM+7zAz51MMgw913ukN708CThqi7GUM8QzH8ngCHy43dbnGOYxTytmnCxY8/7MkSVo9owmM7wOuiYj3UCw8mQFsT/Fga6kjGoek1123eF2wALbYojNtkiSp34w4MGbmT8oHZR9A8WDsq4FrM/PxqhonDWewOYwATz7ZmfZIktSPRtPDSLnI5JKK2iKtssF6GCVJUmuMODBGxNYUXwW4B8XDrf8qM7dsbbOkkRlqDqM9jJIktc5oehgvpVjg8kHAJ92pKzSbwyhJklpjNIFxZ+DlmflcVY2RRsvAKElS9UbzHMb/Bl5UVUOk1VELjJMmFQ/sdkhakqTWGU0P473A9yPiSorvaP6rzDyllY2SRqpxDmNEMY/RHkZJklpnNIFxEsWjdMZRfD1fTQ5eXKpe45A0FIHRHkZJklpnNM9h/IfhykTEEeU3qUhtMVhgXHddexglSWql0cxhHAm/c1kd0djDaGCUJKl1Wh0YY/giUus0zmGEoofRIWlJklqn1YHR+YxqK4ekJUmqXqsDo9RWgwXGDTeEefM60x5JkvrRsIExIgyV6nr1gXGTTYoexmef7Vx7JEnqJyMJgw9ExGcjYpcRlP3f1W2QNBqDzWHceOPi9eGH29sWSZL61UgC4zuBrYGfR8QvI+K9ETFtsIKZOZJQKbXMYEPSBkZJklpr2MCYmd/JzLcAm1I8NuctwJ8j4rsRcWhEjKu6kdJwGoekAR58sDNtkSSp34x4fmJmzs/Mr2TmPsBOwBzgc4B/LatjBhuS3nrr4vVPf2pvWyRJ6lej+WpAACJibeAlwEuBjYGftLpR0kgNNiS9wQbFSunf/a4zbZIkaVUtXQrPPDP09vTTzY+PptxojDgwRsQ+wFHAYcAjwMXAiZl53+guKbXOYIERYMcdYe7c9rdHktR/MmHJkiKE1bZaKGv1+2XLVq2NY8bAxIkwYcLg29SpK+8766yR1z9sYIyIU4EjgfWB2cABmXnLqt2OVI3GwLj33vC5zxXf+DJlSmfaJEmq1nPPFY9QG0koW91AN9gUqOGMG1eEuFqQq/08cWIxElb/vna8Fuaahb/BtnHjVv67cDgtDYzAy4CPAd/OTJ9sp64y1P/Ab3gDfPazcMMNcMgh7W2TJKmwdGkRtp566vltVd8PFuJW9Xm7a689dJCr9cQNFuZG+r62b2DUE/+617C3kpmva0dDpFUx1JD03nsXXxF4zTUGRkkayvLlKwa04cLbaAPf0qWja8/YsTBpUrFNnLjiz9OmDR3MRvN+/PjiOhqdPsq+WhMNFRjHjYMDD4SrroIvfan4BSFJvSiz6FlbtGjF7amnVt5X2z/ScLd48ejaEjF4oJs0CdZbb8X3jcdH8n6ttUY/rKr2MDCqLwz2C+Yf/xEuuQS+8AX48Ifb3yZJa54lS4YPc4PtH+6c0cyfmzBhxSBWC2ObbDJ0WBtpoBs/3kC3pjIwqqc1+yW6335w8MHwz/8Mm20Gf//37WqVpG6XWfSuLVy44rYqYa7+/WiGYNdaCyZPXnnbYouV902aNHjZxv0TJxarZaVWMzCqpw01JF3bd+ml8MY3wtFHw/z5cOKJ/jKVetWyZSsHvNXZRvr4kjFjBg9r06YVXxSwKsFu0qRi6ozUKwyM6mnNAiMUQzPf/S685S3w7nfDFVfAV78K227bvjZKa6rMogfuySdbE/BGuiJ2YADWWWflbbPNBt/fuDWGvbXXdhhWMjCqLzT7ZT5pEnzve3D++fCBD8Cuu8LppxcB0pVy0spqiywWLCjCXu11VX4e6dy7yZNXDm5bbjl8uJsyZeV9Bjyp9QyM6mkj/csoolgEs//+cPzx8P73wze+AV/+MuyxR6VNlNqmNi9vJGFuuOPLlw9/vQkTisdXTZlSbOuuCxtv/PzPtTA3WKir3yZNcqqI1O0MjOppo33y/vTpcPXV8PWvF72Ne+4J73kPfOpTxV9cUictW1aEtfnzV9wWLBj6fWMIHMmii7XXXjnobb31ikFvuJ/XWcc5eNKaxMConpY5+qGniGLF9AEHwEc+Unw10uzZ8PnPw6GHOpSlVbdkyciD3mD7Fi0a/hrrrlt8E8XUqcXPm28OL3zhiqFuuKC39tpV3L2kfmZgVM9b1YC33nrFkPQxx8AJJxQLY17/ejj7bNhmm5Y2UT3iueeKnronnoDHH1/x9Yknhg+DzzzTvP6xY58PerXQt8MOK76vD4ON79dZx3m3kjrDwKietipfBt/oZS+Dn/+8CIonnww77wwf+xicdJI9Mb2otmCjMfDVB7+hjs2fX4TGoay11sohbosthg96tZ8nTbIHW1JvMjCqp63KkPRgBgbgfe8rehnf//4iOF5yCZx7Lrzylatfv0Zv6dLRB77az0uWDF3v2LFF7/J668H668MGG8B22xU/1/bVv9b/7LdcSFpTGRjV01oVGGumT4fLL4frr4d/+if427+Ft74VPv5x2GWX1l1nTVEb4h0q4DULgcPN55syZcUwt/POwwe+9dcvhnUNfZI0OgZG9bwq/vJ/3evgjjvgX/8VzjwTvvlNOPDAovdx1qw16xEgww3xNguBww3xjh+/Ypjbait40YsGD3r1r1OnFr3CkqT28Feuelor5jAOZcKE4nE7730vnHMOfOELxSN5ttwS3vY2eMMbivmP3fxokdpz+RqfvTeS15EO8Y4Zs2KY23BD2H77kQ3xTpjQvs9CkrTquiYwRkTjANQE4EuZ+e7y+LHAPwObADcD/5iZfxmirp2Ac4A9gXnASZl5VXns7cBX6oqPKa81MzN/ERGnAh8DFteV2S0z/7R6d6gqtHpIejAbbACnnAIf+hB85ztw0UXwb/8Gn/lM8e0UL3oR7L57MWQ9fTpsumkRmsaPL7bawpmlS1feFi8ueu+eeab42rPaz0Ntq1KmWQ9fzfjxKz+C5YUvbN7LV3tdZ501q8dVktZEXRMYM3Ny7eeImAQ8DMwu388CTgdeCfwBOAu4DJjVWE9EDADfAb4MvKYsc3VEvCgz78rMrwNfryt/DHAy8Mu6ar6ZmX/fyvtTNdoRGGsmToQjjii2+fPhRz+CG26AX/8aLrhgZM/QWx1rr130yDVutbC38caDH584sQiCjc/oqw+Ha61VbdslSb2tawJjgzcDjwA3le8PBGZn5lyAiDgNeCAits3MPzacuyOwGfC5zEzghxFxC3AkRTBsdDRwUVlWPagTCximToU3vanYoOjFe+AB+Mtf4MEH4dFHi97D2gbF0HXjtvbaReAbLOjVB8Lx4+3FkyR1TrcGxsYQF+VG3XuAXYDGwDhYfIiy7Io7I7YC9gX+seHQgRHxOPAgcHZmnju65qtduiXmjxlTPI9viy063RJJklqv6/osImJLimHkC+t2XwscFhG7RcQE4BQggYmDVHEnRe/kSRExLiJeW9Y3WNmjgJsy8566fZcDOwHTgHcAp0TEEU3ae1xEzImIOfPmzRvxfao12jkkLUnSmqotgTEiboyIHGK7uaH4UcDN9SEuM38AfAK4ArgPuBdYCNzfeK3MXAocDBwAPAR8kCIErlS2vFZ9MCUzf5uZf8nM5Zn5E4r5km8e6t4y87zMnJmZM6dNm9b8g1DLGRglSapeWwJjZu6XmTHEtk9D8ZVCXFnHOZm5fWZuRBEcB4A7hrje7Zk5KzM3yMz9gW2AW+vLRMTLKeY6fmu45jP4MLe6hIFRkqRqddWQdETsDUynXB1dt398ROwShS2B84CzMvOJIerZrTxnYkR8CNgUuKCh2NHAFZm5sOHcgyJivfJaewHvoVh1rS7ULXMYJUnqZ9226OVo4MrGEAeMBy4FtqUYij6fuhXPEfFR4BWZ+fpy15HAscA4ipXWr8nMxXXlxwOHAYcO0obDga8Ba1MMY5+RmSv1eKq9liyB//1fuPfeYrvnnuL1yiv9xg9JkqoWPk2mdWbOnJlz5szpdDN6UibMmwd33w1//GOx/elPzwfDBx5YsTdx7NhiW7KkeHD0k092rOmSJPWkiPhFZs4cSVn7ZtQ2y5fD/fc/Hwhr4bD2Wv/g6wjYfHPYemv427+FGTOKn2fMKLbNN4fDD4crrnAOoyRJVTMwqqUyi4dW33lnsf3+98Xr3XcXvYX130m81lpFCNx2W5g1q3itbVtv/fxX6kmSpM4yMGqVLF1aDBnXh8Laz48//ny58eNhhx1g113h4IOfD4TbbVd87/LYsavehlrPoj2MkiRVy8Copp57Du67D37zmxW3u+6CZcueL7fJJrDjjnDYYcXrjjvCC14AW25Z3VfaGRglSWoPA6P+av58+PWvVwyGd9yx4tzCGTOK3sK/+zvYaafng+G667a/vQZFSZLaw8C4hpo/H375S/jFL57f7r77+ePrr18Ew2OOKV533RV23hmmTOlUi1dmD6MkSe1hYFwDLF0Kt90Gt9wCP/3pyuFwyy1hzz3hH/4BXvxi2G032HTT7g9iBkZJktrDwNiH5s+Hn/yk2G65BW69FZ5+uji2+ebwkpcU4XDPPYuA2OtfgW1glCSpWgbGPrB4cdFzeMMNxfbznxeLVcaOhT32gGOPhb33LrYttuh0a1vHoChJUnsYGHvUn/8M3/kOXHMN/Pd/wzPPFAHxpS+Fj38c9tsP9toLJk3qdEur45C0JEntYWDsIb/9bfHdyd/+djEPEYpnHB57LLz61UVI7KZFKVUzMEqS1B4Gxi43bx5cdhlceGGxqhngZS+Dz3wGDjqoeKzNmsrAKElSexgYu1BmsVjl858vhp2XLSsWp3z+8/CWt8Bmm3W6hd3BoChJUnsYGLvI8uUwezaceSbMmQPrrQfvfW/xLMRddul067qXwVGSpGoZGLtAJnz3u8VilTvuKL455dxz4cgj+3vRyupySFqSpPYwMHbY3LnwznfCzTfD9tvDN75RDDtX9f3L/cTAKElSexhLOmTJEvjYx4rnJP7ud3DeecUq6Le+1bA4UgZFSZLawx7GDrj33iIY3norHH00/Pu/w4YbdrpVvcceRkmS2sPA2Gb/+Z9w+OHFApdvfQsOPbTTLepdBkZJktrDwc82uuQSOOCA4uv5fvlLw2KrGBglSaqWgbFNvva1YtXzK15RfJXfttt2ukW9z6AoSVJ7OCTdBlddBe94B+y/f/Eg7rXX7nSL+oND0pIktYc9jBX72c+KOYt77QVXXGFYbCUDoyRJ7WFgrNCjjz7/VX7XXONDuFvNwChJUns4JF2h44+HRx4pvhd6gw063Zr+Y1CUJKk9DIwVueoquPJK+MxnYM89O92a/mZwlCSpWg5JV+Dpp+Hd7y6+xeUDH+h0a/qXQ9KSJLWHPYwVOPdceOABuPRSGDeu063pXwZGSZLawx7GFlu6FP7t3+DVr4Z99+10a/qbQVGSpPawh7HFrrkGHn4YvvrVTrek/9nDKElSe9jD2GLnnw+bbgqve12nW9L/DIySJLWHgbGFMuEHPyi+I3rAvtvKGRglSWoPA2MLPf10sc2a1emWSJIktY6BsYUWLixeXezSHvYwSpLUHgbGFlq0CF7wAthoo063ZM1gYJQkqT0MjC30zDPw4hd3uhVrDgOjJEntYWBsoSVLih5GtYdBUZKk9jAwtpiBsX3sYZQkqT26JjBGxIyIuDYinoiIhyLi7IgYqDv+qoi4MyKejogfRcRWTepaPyKuioinIuK+iHhbw/Eh64rCGRHxWLl9NmLkkWTGjFHeuFabgVGSpGp1TWAEvgQ8AmwK7AHMAk4EiIgNgSuBk4H1gTnAN5vUdQ6wBNgYeDtwbkTsPMK6jgMOBnYHdgPeCBw/0puYPn2kJbW67GGUJKk9uikwbg1cnpnPZuZDwPXAzuWxQ4C5mTk7M58FTgV2j4gdGyuJiEnAocDJmbkoM28GvgscOcK6jgbOzMz7M/MB4EzgmJHexCabjOaWtToMipIktUc3BcazgMMjYmJETAdeTxEaoQiOt9UKZuZTwB95PlDW2wFYnpl31e27ra7scHWtcLzh3KYGBmDcuJGUVCvYwyhJUnt0U2D8MUUwexK4n2Ko+NvlscnAgobyC4B1BqlnuLKjPb4AmDzUPMaIOC4i5kTEnDFjlg5WRBUxMEqS1B5tCYwRcWNE5BDbzRExBvg+xdzCScCGwHrAGWUVi4ApDdVOARYOcrnhyo72+BRgUWbmYPeWmedl5szMnLnrrnYvtpNBUZKk9mhLYMzM/TIzhtj2oVh8sgVwdmYuzszHgPOBN5RVzKVYhAL8dZ7ituX+RncBAxGxfd2+3evKDlfXCscbzlUXMjhKklStrhiSzsxHgXuAEyJiICKmUiw+qc0lvArYJSIOjYjxwCnA7Zl55yB1PUXRU/mpiJgUES8HDgIuHmFdFwEfiIjpEbEZ8EHggtbftVaXQ9KSJLVHVwTG0iHA64B5wN3AMuD9AJk5j2Ll86eBJ4CXAofXToyIj0bEdXV1nQhMoHhMz2XACZk5dyR1AV8BrgZ+A9wBfK/cpy5jYJQkqT0Ghi/SHpn5a2C/JsdvAFZ6jE557PSG949TPEtxVepK4MPlpi5mUJQkqT26qYdRGhV7GCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y6AoSVJ7GBjVsxySliSpPQyM6lkGRkmS2sPAqJ5lUJQkqT0MjOpZBkZJktrDwChJkqSmDIzqWfYwSpLUHgZG9axaYMzsbDskSep3Bkb1LHsYJUlqDwOjepaBUZKk9jAwqmf5HEZJktrDwKie5xxGSZKqZWBUz7JnUZKk9jAwqmcZGCVJag8Do3qWj9WRJKk9DIzqWS56kSSpPQyM6lkGRkmS2sPAqJ5nYJQkqVoGRvUsg6IkSe1hYFTPckhakqT2MDCqZxkYJUlqDwOjepaBUZKk9jAwqmcZGCVJag8DoyRJkpoyMKpn2cMoSVJ7GBjVswyMkiS1h4FRPcugKElSexgY1bPsYZQkqT0MjOpZBkZJktrDwKieZ2CUJKlaBkb1LIOiJEntYWBUz3JIWpKk9jAwqmcZGCVJag8Do3qWQVGSpPYwMKpn2cMoSVJ7GBjV8wyMkiRVq2sCY0TMiIhrI+KJiHgoIs6OiIG646+KiDsj4umI+FFEbNWkrvUj4qqIeCoi7ouIt9Ude1lE/FdEPB4R8yJidkRsWnf81IhYGhGL6rZtqrtzrSp7GCVJao+uCYzAl4BHgE2BPYBZwIkAEbEhcCVwMrA+MAf4ZpO6zgGWABsDbwfOjYidy2PrAecBM4CtgIXA+Q3nfzMzJ9dtf1rdm1PrGRglSWqPgeGLtM3WwNmZ+SzwUERcD9RC3iHA3MycDUUvIPBoROyYmXfWVxIRk4BDgV0ycxFwc0R8FzgS+OfMvK6h/NnAjyu8L1XEoChJUnt0Uw/jWcDhETExIqYDrweuL4/tDNxWK5iZTwF/5PlAWW8HYHlm3lW377YhygLsC8xt2HdgOWQ9NyJOGP2tqB3sYZQkqT26KTD+mCLUPQncTzHs/O3y2GRgQUP5BcA6g9Qz4rIRsRtwCnBS3e7LgZ2AacA7gFMi4oihGh0Rx0XEnIiYM2/evKGKqQIGRkmS2qMtgTEiboyIHGK7OSLGAN+nmKc4CdiQYq7hGWUVi4ApDdVOoZh/2GhEZSNiO+A64L2ZeVNtf2b+NjP/kpnLM/MnFD2fbx7q3jLzvMycmZkzp02b1vyDUEsZGCVJao+2BMbM3C8zY4htH4qFLFtQzGFcnJmPUSxEeUNZxVxg91p95TzFbVl5KBngLmAgIrav27d7fdlyhfUNwGmZefFwzQeMJJIkaY3VFUPSmfkocA9wQkQMRMRU4Gien7d4FbBLRBwaEeMphpFvb1zwUtb1FEVP5aciYlJEvBw4CLgYoJwf+UPgnMz8cuP5EXFQRKwXhb2A9wDfafEtqwXsYZQkqT26IjCWDgFeB8wD7gaWAe8HyMx5FCufPw08AbwUOLx2YkR8NCLqVz+fCEygeEzPZcAJmVnrYTwW2Ab4RP2zFuvOPby8/kLgIuCMzLywxfeqFjAwSpLUHl3zWJ3M/DWwX5PjNwA7DnHs9Ib3jwMHD1H2k8Anm1xnyAUu6i4GRUmS2qObehilUbGHUZKk9jAwqmcZGCVJag8Do3qegVGSpGoZGNWz7GGUJKk9DIzqWQZFSZLaw8ConmUPoyRJ7WFgVM8yMEqS1B4GRvUsA6MkSe1hYJQkSVJTBkb1LHsYJUlqDwOjep6BUZKkahkY1bMyO90CSZLWDAZG9Tx7GCVJqpaBUT2r1sNoYJQkqVoGRvWs554rXg2MkiRVy8ConmdglCSpWgZG9SwXvUiS1B4GRvU8exglSaqWgVE9yx5GSZLaw8ConuUqaUmS2sPAqJ5lYJQkqT0MjOpZBkZJktrDwKieZ2CUJKlaBkb1LBe9SJLUHgZG9Tx7GCVJqpaBUT3LOYySJLWHgVE9y++SliSpPQyM6nkGRkmSqmVgVM9y0YskSe1hYFTPs4dRkqRqGRjVs+xhlCSpPQyM6lmukpYkqT0MjOpZBkZJktrDwKieZWCUJKk9DIzqeQZGSZKqZWBUz3LRiyRJ7WFgVM+zh1GSpGoZGNWznMMoSVJ7GBjVs/wuaUmS2qNrAmNEzIiIayPiiYh4KCLOjoiBuuOviog7I+LpiPhRRGzVpK71I+KqiHgqIu6LiLc1XCcjYlHddnLd8YiIMyLisXL7bISRpJv5X0eSpGp1TWAEvgQ8AmwK7AHMAk4EiIgNgSuBk4H1gTnAN5vUdQ6wBNgYeDtwbkTs3FBmamZOLrfT6vYfBxwM7A7sBrwROH51bkzVcNGLJEnt0U2BcWvg8sx8NjMfAq4HaiHvEGBuZs7OzGeBU4HdI2LHxkoiYhJwKHByZi7KzJuB7wJHjrAdRwNnZub9mfkAcCZwzGrclypmD6MkSdXqpsB4FnB4REyMiOnA6ylCIxTB8bZawcx8CvgjzwfKejsAyzPzrrp9tw1S9r6IuD8izi97MGtWuNYQ5/5VRBwXEXMiYs68efOa36Fayh5GSZLao5sC448pgtmTwP0Uw87fLo9NBhY0lF8ArDNIPcOVfRR4CbAVsGe5/+tNzl8ATB5qHmNmnpeZMzNz5rRp04a6N1XAVdKSJLVHWwJjRNxYLjQZbLs5IsYA36eYpzgJ2BBYDzijrGIRMKWh2inAwkEu17RsOUw9JzOXZebDwLuA10bElCHOnwIsyrQ/q9scfTQcfDB8/OOdbokkSf2tLYExM/fLzBhi24diIcsWwNmZuTgzHwPOB95QVjGXYhEK8Nd5ituW+xvdBQxExPZ1+3YfoixALQjW+qlWuNYw56qDpkyBq66CTTbpdEskSepvXTEknZmPAvcAJ0TEQERMpVh8UptLeBWwS0QcGhHjgVOA2zPzzkHqeoqip/JTETEpIl4OHARcDBARL42IF0TEmIjYAPgCcGNm1oahLwI+EBHTI2Iz4IPABdXcuSRJUvfrisBYOgR4HTAPuBtYBrwfIDPnUax8/jTwBPBS4PDaiRHx0Yi4rq6uE4EJFI/puQw4ITNrvYTbUCymWQjcASwGjqg79yvA1cBvyuPfK/dJkiStkcKpea0zc+bMnDNnTqebIUmSNKyI+EVmzhxJ2W7qYZQkSVIXMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmorM7HQb+kZELAR+3+l2rGE2BB7tdCPWMH7m7edn3n5+5u3nZ95+L8jMdUZScKDqlqxhfp+ZMzvdiDVJRMzxM28vP/P28zNvPz/z9vMzb7+ImDPSsg5JS5IkqSkDoyRJkpoyMLbWeZ1uwBrIz7z9/Mzbz8+8/fzM28/PvP1G/Jm76EWSJElN2cMoSZKkpgyMkiRJasrA2AIRsX5EXBURT0XEfRHxtk63qd9FxLsiYk5ELI6ICzrdnn4XEWtHxH+Uf74XRsSvIuL1nW5Xv4uISyLiwYh4MiLuiohjO92mNUVEbB8Rz0bEJZ1uS7+LiBvLz3pRufk84zaIiMMj4ndldvljRLyiWXmfw9ga5wBLgI2BPYDvRcRtmTm3o63qb38B/gXYH5jQ4basCQaAPwOzgP8F3gBcHhG7Zua9nWxYn/tX4P/LzMURsSNwY0T8KjN/0emGrQHOAX7e6UasQd6VmV/tdCPWFBHxGuAM4K3ArcCmw51jD+NqiohJwKHAyZm5KDNvBr4LHNnZlvW3zLwyM78NPNbptqwJMvOpzDw1M+/NzOcy8xrgHmDPTretn2Xm3MxcXHtbbtt2sElrhIg4HJgP/KDDTZGq8kngU5n5P+Xv9Acy84FmJxgYV98OwPLMvKtu323Azh1qj1S5iNiY4s++vegVi4gvRcTTwJ3Ag8C1HW5SX4uIKcCngA92ui1rmH+NiEcj4paI2K/TjelnETEWmAlMi4i7I+L+iDg7IpqO1hkYV99kYEHDvgXAiL6bUeo1ETEO+DpwYWbe2en29LvMPJHi98krgCuBxc3P0Go6DfiPzPxzpxuyBvk/wDbAdIrnAl4dEfakV2djYBzwZorfK3sALwI+3uwkA+PqWwRMadg3BVjYgbZIlYqIMcDFFHN239Xh5qwxMnN5Od1lc+CETrenX0XEHsCrgc91uClrlMz8WWYuzMzFmXkhcAvFPGlV45ny9YuZ+WBmPgr8X4b5zF30svruAgYiYvvM/EO5b3ccqlOfiYgA/oPiX6dvyMylHW7SmmgA5zBWaT9gBvC/xR93JgNjI+KFmfniDrZrTZNAdLoR/Sozn4iI+yk+5xGzh3E1ZeZTFMNEn4qISRHxcuAgil4YVSQiBiJiPDCW4hf6+IjwH0DVOhfYCTgwM58ZrrBWT0RsVD72YnJEjI2I/YEjgB92um197DyKQL5HuX0Z+B7F0xhUgYiYGhH7136HR8TbgX2B73e6bX3ufODd5e+Z9YD3Adc0O8G/YFvjROBrwCMUq3ZP8JE6lfs48Im6939Pserr1I60ps9FxFbA8RTz5x4qe18Ajs/Mr3esYf0tKYafv0zxj/v7gPdl5nc62qo+lplPA0/X3kfEIuDZzJzXuVb1vXEUj0jbEVhOsbjr4Mz0WYzVOg3YkGKU9FngcuDTzU7wu6QlSZLUlEPSkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMktQiETE3IvZr07VeGBFzKqj3yoh4XavrldTbfA6jJI1Q+SDnmokUDzJfXr5v60PMI+IKYHZmfqPF9e4FnJuZe7ayXkm9zcAoSasgIu4Fjs3MGzpw7U0pvq9+s8x8toL6/wAckZkt78GU1JsckpakFomIeyPi1eXPp0bE7Ii4JCIWRsRvImKHiPhIRDwSEX+OiNfWnbtuRPxHRDwYEQ9ExL9ExNghLvUa4Jf1YbG89kkRcXtEPFXWtXFEXFde/4byO2Mpv7f3koh4LCLmR8TPI2LjuvpvBA5o+QckqWcZGCWpOgcCFwPrAb8Cvk/xe3c68CngK3VlLwSWAdsBLwJeCxw7RL27AoN91+6hFGFyh/La1wEfpfjO2DHAe8pyRwPrAlsAGwDvBJ6pq+d3wO4jvktJfc/AKEnVuSkzv5+Zy4DZwDTgM5m5FPgGMCMippa9e68H3peZT2XmI8DngMOHqHcqsHCQ/V/MzIcz8wHgJuBnmfmrzFwMXEURRAGWUgTF7TJzeWb+IjOfrKtnYXkNSQJgoNMNkKQ+9nDdz88Aj2bm8rr3AJOBzYBxwIMRUSs/BvjzEPU+Aawzgus1vp9c/nwxRe/iNyJiKnAJ8LEyyFLWPX+om5K05rGHUZI6788UK643zMyp5TYlM3ceovztFMPOqyQzl2bmJzPzhcDewBuBo+qK7ATctqr1S+o/BkZJ6rDMfBD4T+DMiJgSEWMiYtuImDXEKf8FvDgixq/K9SLilRGxa7mo5kmKIerldUVmUcx/lCTAwChJ3eIoYC3gtxRDzt8CNh2sYGY+DPwQOGgVr7VJWf+TFAtcfkwxLE1EvAR4KjNvXcW6JfUhn8MoST0oIl5IsbJ6r2zhL/LygeD/kZnXtqpOSb3PwChJkqSmHJKWJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNfX/A76XthvlBFxGAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCr0lEQVR4nO3debgcZZ33//c3nEg2AgTCFoFAZBtWJaKDSHDcEGRAQIVRlpkfgjDuiDOjgigjDsyDioIoj8oiixIBFQR8RMUBdMSgokQRUUBBlrAkJCFk4/v7o6ql05zTOSfp6i3v13XV1aer7rrrriacfHIv1ZGZSJIkSUMZ1ekGSJIkqbsZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUVLfiIibIuLLde8vjIgbO9kmSeoHBkZJHRcRG0TEmRHx+4h4JiIejYj/iYgjI2Kg4msfGxE/iIgnIiIjYq9BynwwIn4TEU9FxIKI+GVEHLUK1zq1vEZGxLMR8WBEXB4RW7bmbobVhg9GxPKI+HS7rjlIG8ZExAXl57gkIu4ZpMzYiLg2Iv5c/pl4JCK+FRF/14k2S2s6A6OkjoqIFwK/AA4BPgG8BHgF8BXgg8BOFTdhHPBD4KQmZe4DPgRMB3YDvgZ8JSIOWoXr3QdsCrwQOLKs85qIWGsV6loV7wBOB46MiLXbdM1GawFLgPOBrw9RJoHvA28BtgP2BwaAH0TEmHY0UtJzDIySOu08YG3gJZl5aWb+NjP/kJkXAbsDf6gVjIh3R8RdZY/THyLiI6vbA5mZn83MTwI/aFLmm5l5fWbenZn3ZOangd8AM1bhkssz8+HM/Gtm/gA4FdgZeBFARBwVEb+NiMUR8UBE/Gf9PZbD7l+NiP+KiMfKXs8vR8TYlV04Il4FrAd8HHiEIqTXH/+3iJgbEVPr9n0sIh4vgz0R8fKy93dRRDwZEZdFxEZ15U+NiHsi4sDyv9XCiPhRREyrlcnMhZl5XGaeB/xpsLZm5jOZeXZm/m9m3p+Zs4CPAJtQBEhJbWRglNQxETEJ2A84JzPnNR7PzKWZubAseypFj+N/ADsA7wWOAz7WtgYX7RgVEftShJYftaDKReXr6IjYH/gqRQ/mzsCJwL/y/Hs8FNgAeCXwNuAfgTOGca3jgEszcxlwEXBsw/EzgZ8Bl0fEQES8Evgo8M+Z+UBEbAL8P+ABYA/gAIoe4Csb6tkUOL5s254UIfWrw2jfkCJiHeAY4EHq/hEhqT0MjJI66UUUv4d+26xQRIyjGBI+LjOvzsx7M/M6ijDz7uqbCRGxc0QsoBhKvRp4T2Z+ZzXr3AL4N+AvwO+BfweuzMxPlb2Z36DogfxgRLyg7tQngHdm5u8y8xqKz+G4iBjf5FqTgTdRBEUoQukrIuJvvXWZmcARwFTgc8BlwBfq7vNfgaeAozPzN5l5S1l+r4jYu+5yawNHZObtmXkHRZh95aoMJUfEGeXn/hTwGmCfzHx6pPVIWj0GRkmdFOVrrqTcjsBY4Mpy0cmCMkR8CVi3DENV+z3F/MWXUoS4T0fEG1ahnq3L9j8N3E/xGbwpM5dS3Of/NJT/MTAGmFa377bMXF73/lbgBQ1lGv0z8LsywJGZD1HMEXxHfaHMfBT4F4oewscpgnrNjsD/ZuaSuvJ3APPKYzV/zcw5de8fLO9zI0buv4EXA68C/ghcXfY2SmqjSlcfStJK/AF4liJsXN2kXO0ft28G7h7k+BMtbtfzlCGptpr3lxGxNcVQ8fUjrOovwKsp7vvhQXrLGsPzcEJ1NDlGRATFcO6LImJZ3aFRwEsj4sP1IZBibuZyYGNgXeDRJu0bbP+SIY6NuJMiMx8DHgP+EBE/oQixbwO+ONK6JK06exgldUxmPkERuN4VEes2Ho+I0eUw62zgGWDrctFJ47a88dw2GEUx9DpSS8s2/2mQsDib5y+k2ZtinmP94pCXNqyq/nuKkPbHIa75D8DWFKvPd2vYRgMH1wpGxGso5or+I0UP6EVl4Ky17+/rh8cjYleKUDl7qBtusWDVPndJq8EeRkmddgLFkOrtEXEK8CuK8PNyikfdHJWZv4qI04HTy+zyfYrfXzsDL87Mf1vVi5cLOTYBNit3vagc7n44Mx8uy3yaogf0L8B4ioU6R7PicG0rfIriETv/DlxFEehOBc5q6AHcADg3Is6mCIKnAf+3tkBoEMcBP87MnzYeiIjvUCx++Xo5tP814P9k5nUR8TuK/x4fAM4CzqFYbHRh+d9jPeALwC2ZefNIbrR8nuILKD77F0TEbuWh32bmkojYh2Jx00+AJ4HNKeZ7Pkvz3mhJFTAwSuqozPxzRLyEYsHHqcAWFAscfkcxf+3OstxpEfFXikUu/4ei1+1u4MLVbMI7WXEV8gXl68fL9kARJi+hCDfzKeYzHpWZl9VOioijy3O3ysz7VqUhZUj7F4rP4hPAHIpA9vGGot8s23ELReiayRDhtXzkzUEMvTjoGxQhdRvgsxS9iieX7bk3It5JERB/nJmzIuJ1FKupfw4sBq4D3rcKt3sdUP/A8l+Wr1tRPKtyEXAY8J/ABOBh4Gbg5Zn551W4nqTVEMWiOEnS6oiIT1A813DX8rE1VV3nJuCezDymqmtIUiPnMEpSa7wReFeVYVGSOsUhaUlqgcx8SafbIElVcUhakiRJTTkkLUmSpKYMjJIkSWrKOYwttOGGG+bUqVM73QxJkqSVuv322x/LzGF9taqBsYWmTp3KrFmzOt0MSZKklYqI+4db1iFpSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWBUz9toI5gxo9OtkCSpfw10ugHS6pozp9gkSVI1uqaHMSIWNGzLI+LzdcePiYh7ymM3RMRmTeqaGhHXRcSTEfFwRJwTEQN1x7LhWifXnRsRcUZEPF5uZ0ZEVHv3kiRJ3atrAmNmTqhtwMbAImAmQETMAE4HDgQmAfcClzep7gvAo8CmwG7ADOCEhjLr1V3ztLr9xwIHAbsCuwBvBI5brZuTJEnqYV0TGBscShH4bi7fHwDMzMzZmbkEOA3YOyKmDXH+VsAVmflMZj4M3ADsOMxrHwWclZkPZOaDwFnA0at4H5IkST2vWwPjUcDFmZnl+yg36t4D7DTE+WcDh0XEuIiYAryBIjTWuz8iHoiICyJiw7r9OwJ31L2/g+GHTUmSpL7TdYExIragGEK+qG73dcBbImKXiBgLnAIkMG6Ian5MEfKeAh4AZgHfKo89BrwU2BLYHVgHuLTu3AnAvLr384AJQ81jjIhjI2JWRMya48oLSZLUh9oSGCPipnKhyWDbLQ3FjwRuycx7azsy8wfAx4ArgfuB+4D5FGGw8VqjgO8BVwHjgQ2B9YEzyroWZOaszFyWmY8A7wJeFxETyyoWABPrqpwILKjr7VxBZp6fmdMzc/rkyZNH9LlIkiT1grYExszcJzNjiG2vhuJHsmLvYq2OczNzm8zciCI4DgB3DnK5ScDmwDmZuTgzHwcuAPYbqnnla60HcTbFgpeaXct9kiRJa6SuGpKOiD2BKZSro+v2j4mIncpH3mwBnA+cnZlPNtaRmY9RrKI+PiIGImI9ijmRd5R1vSwitouIURGxAfA54KbMrA1DXwx8ICKmlI/uORG4sIr7lSRJ6gVdFRgpgt1VmTm/Yf8Y4DKK4eLbgJ8C9c9O/HBEXF9X/mBgX2AOcA+wDHh/eWxrigUw8yl6KBcDh9ed+yXgGuA35fHvlvskSZLWSDHE1DytgunTp+esWbM63Yw1Tm05kn+UJUkavoi4PTOnD6dst/UwSpIkqcsYGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRjVN/ymF0mSqmFgVN9YvrzTLZAkqT8ZGNU3li3rdAskSepPBkb1DQOjJEnVMDCqbxgYJUmqhoFRfcPAKElSNQyM6hsGRkmSqmFgVN8wMEqSVA0Do/qGgVGSpGoYGNU3li7tdAskSepPBkb1DXsYJUmqhoFRfWPJkk63QJKk/mRgVN9YvLjTLZAkqT8ZGNU37GGUJKkaBkb1DQOjJEnVMDCqbzgkLUlSNQyM6hv2MEqSVA0Do/qGgVGSpGoYGNU3HJKWJKkaBkb1DXsYJUmqhoFRfcPAKElSNQyM6hsOSUuSVA0Do3reqPJPsT2MkiRVw8ConveCFxSvBkZJkqphYFTPGxgoXh2SliSpGgZG9bzM4tUeRkmSqmFgVM8zMEqSVC0Do/qGQ9KSJFXDwKieV+thNDBKklQNA6N6Xi0wLl/e2XZIktSvuiYwRsSChm15RHy+7vgxEXFPeeyGiNisSV1TI+K6iHgyIh6OiHMiYqA89raG6zwdERkRu5fHT42IpQ1ltq7+E9CqqgXGZcs62w5JkvpV1wTGzJxQ24CNgUXATICImAGcDhwITALuBS5vUt0XgEeBTYHdgBnACeV1Lm241gnAn4Bf1J3/jfoymfmnFt6qKmIPoyRJ1eiawNjgUIrAd3P5/gBgZmbOzswlwGnA3hExbYjztwKuyMxnMvNh4AZgxyHKHgVcnFnrp1KvsYdRkqRqdWtgbAxxUW7UvQfYaYjzzwYOi4hxETEFeANFaFxBRGwJ7A1c3HDogIh4IiJmR8TxzRoaEcdGxKyImDVnzpzmd6VKGBglSapW1wXGiNiCYgj5orrd1wFviYhdImIscAqQwLghqvkxRY/iU8ADwCzgW4OUOxK4OTPvrdt3BbADMBl4B3BKRBw+VHsz8/zMnJ6Z0ydPnjyMO1SruehFkqRqtSUwRsRN5cKSwbZbGoofCdxSH+Iy8wfAx4ArgfuB+4D5FGGw8VqjgO8BVwHjgQ2B9YEzBmnakawYTMnM32bmXzNzeWb+hKK38tBVunG1lT2MkiRVoy2BMTP3ycwYYturofjzQlxZx7mZuU1mbkQRHAeAOwe53CRgc+CczFycmY8DFwD71ReKiFcAmwHfXFnzWXE4XF3GHkZJkqrVVUPSEbEnMIVydXTd/jERsVMUtgDOB87OzCcb68jMxyhWUR8fEQMRsR7FnMg7GooeBVyZmfMbrnVgRKxfXmsP4D3At1t0i6qAcxglSapWVwVGihB3VWOIA8YAlwELgNuAnwIn1w5GxIcj4vq68gcD+wJzgHuAZcD768qPAd7CID2ZwGHlOfMpFsOckZmDlVOXsIdRkqRqDXS6AfUy87gh9s8Fdmly3ukN738F7NOk/DPAekMcG3KBi7qbPYySJFWj23oYpRGzh1GSpGoZGNU37GGUJKkaBkb1tPrv57GHUZKkahgY1TfsYZQkqRoGRvW0+h5GA6MkSdUwMKqnOSQtSVL1DIzqafYwSpJUPQOj+oY9jJIkVcPAqJ5mD6MkSdUzMKqnOYdRkqTqGRjV0+xhlCSpegZG9Q17GCVJqoaBUT3NHkZJkqpnYFRPcw6jJEnVMzCqb9jDKElSNQyM6mm1Hsa11rKHUZKkqhgY1dNqgXH06KKHsX6IWpIktYaBUT2tFhAHBorXZ5/tXFskSepXBkb1hdGji1eHpSVJaj0Do3paYw+jC18kSWo9A6N6WmNgtIdRkqTWMzCqp9UvegF7GCVJqoKBUX1hrbWKV3sYJUlqPQOjeppD0pIkVc/AqJ5mYJQkqXoGRvU0A6MkSdUzMKovOIdRkqTqGBjV0+xhlCSpegZG9TQDoyRJ1TMwqqcZGCVJqp6BUX2hNofx2Wc72w5JkvqRgVE9rdbD6KIXSZKqY2BUT3NIWpKk6hkY1dMMjJIkVc/AqL7gkLQkSdUxMKqn2cMoSVL1DIzqaQZGSZKqZ2BUTzMwSpJUva4JjBGxoGFbHhGfrzt+TETcUx67ISI2a1LXDhHxw4iYV57zpobjr46IuyLi6Yj4UURsWXcsIuKMiHi83M6MiKjmrtUqzmGUJKk6XRMYM3NCbQM2BhYBMwEiYgZwOnAgMAm4F7h8sHoiYgD4NnBtWfZY4JKI2LY8viFwFXByeXwW8I26Ko4FDgJ2BXYB3ggc18JbVQs1PofRB3dLktR6XRMYGxwKPArcXL4/AJiZmbMzcwlwGrB3REwb5Nztgc2Az2Tm8sz8IXArcER5/GBgdmbOzMxngFOBXSNi+/L4UcBZmflAZj4InAUc3fI7VEs4JC1JUvW6NTAeBVycWYsDRLlR9x5gp0HOHWz4OOrK7gjcUTuQmQuBP5b7n3e8/HlH1JUMjJIkVa/rAmNEbAHMAC6q230d8JaI2CUixgKnAAmMG6SKuyh6J0+KiNER8bqyvlrZCcC8hnPmAesMcXweMGGoeYwRcWxEzIqIWXPmzBnubarFnMMoSVJ12hIYI+KmiMghtlsaih8J3JKZ99Z2ZOYPgI8BVwL3A/cB84EHGq+VmUsp5iDuDzwMnAhcUVd2ATCx4bSJZX2DHZ8ILKjr7Wy83vmZOT0zp0+ePLnZx6AK2MMoSVL12hIYM3OfzIwhtr0aih/Jir2LtTrOzcxtMnMjiuA4ANw5xPV+nZkzMnODzHw9sDVwW3l4NsWCFgAiYjwwrdz/vOPlz7NRVzIwSpJUva4ako6IPYEplKuj6/aPiYidykfebAGcD5ydmU8OUc8u5TnjIuKDwKbAheXhq4GdIuKQiBhDMbz968y8qzx+MfCBiJhSPrrnxLpz1WUMjJIkVa+rAiPFYperMnN+w/4xwGUUw8W3AT+leCwOABHx4Yi4vq78EcBDFHMZXw28NjMXA2TmHOAQ4JPAk8DLgMPqzv0ScA3wG4oezO+W+9TFnMMoSVJ1BjrdgHqZOejzDjNzLsUzEYc67/SG9ycBJzUpfyPF43cGO5bAh8pNXa7xOYwGRkmSWq/behilEWkckvbB3ZIktZ6BUX3BHkZJkqpjYFRPc9GLJEnVMzCqpxkYJUmqnoFRPc3AKElS9QyM6gvOYZQkqToGRvU0exglSaqegVE9zcAoSVL1DIzqaT64W5Kk6hkY1RdqgdEHd0uS1HoGRvU0h6QlSaqegVE9zcAoSVL1DIzqabXAOKr8k2xglCSp9QyM6gsRxTxGA6MkSa1nYFRPq/UwgoFRkqSqGBjV02qB0R5GSZKqY2BUTzMwSpJUPQOj+kItMPocRkmSWs/AqJ5WP4dx1Ch7GCVJqoKBUT3NIWlJkqpnYFRPMzBKklQ9A6P6goFRkqTqGBjV03wOoyRJ1TMwqqc5JC1JUvUMjOppBkZJkqpnYFRfMDBKklQdA6N6WuMcRh/cLUlS6xkY1dPqh6R9cLckSdUwMKqnOYdRkqTqGRjVFwyMkiRVx8ConuZzGCVJqp6BUT3NIWlJkqpnYFRPMzBKklQ9A6P6goFRkqTqGBjV05zDKElS9QyM6mmNQ9I+uFuSpNYzMKqn+eBuSZKqZ2BUX3AOoyRJ1TEwqqc5h1GSpOp1TWCMiAUN2/KI+Hzd8WMi4p7y2A0RsVmTunaIiB9GxLzynDfVHXt5RHw/Ip6IiDkRMTMiNq07fmpELG1oy9bV3blWh4/VkSSpel0TGDNzQm0DNgYWATMBImIGcDpwIDAJuBe4fLB6ImIA+DZwbVn2WOCSiNi2LLI+cD4wFdgSmA9c0FDNN+rbk5l/atmNqhIGRkmSqtM1gbHBocCjwM3l+wOAmZk5OzOXAKcBe0fEtEHO3R7YDPhMZi7PzB8CtwJHAGTm9Zk5MzOfysyngXOAV1R8P6qIQ9KSJFWvWwPjUcDFmX+LA1Fu1L0H2GmQc2OIfYOVBdgbmN2w74ByyHp2RBw/zDarAxySliSpel0XGCNiC2AGcFHd7uuAt0TELhExFjgFSGDcIFXcRdE7eVJEjI6I15X1Pa9sROxS1nVS3e4rgB2AycA7gFMi4vAm7T02ImZFxKw5c+aM4E7VCgZGSZKq15bAGBE3RUQOsd3SUPxI4JbMvLe2IzN/AHwMuBK4H7iPYu7hA43XysylwEHA/sDDwIkUIXCFshHxIuB64L2ZeXPd+b/NzL+Ww9k/Ac6mGCIfVGaen5nTM3P65MmTh/uRqMVqz2H0wd2SJLVeWwJjZu6TmTHEtldD8SNZsXexVse5mblNZm5EERwHgDuHuN6vM3NGZm6Qma8HtgZuqx2PiC2BG4HTMvNrK2s+gw9zqws4h1GSpOp11ZB0ROwJTKFcHV23f0xE7BSFLShWOZ+dmU8OUc8u5TnjIuKDwKbAheWxKcAPgXMz84uDnHtgRKxfXmsP4D0Uq67VhRySliSpel0VGCkWu1yVmfMb9o8BLgMWUPQU/hQ4uXYwIj4cEdfXlT8CeIhiLuOrgddm5uLy2DEUPY4fq3/WYt25hwH3UAx5XwyckZnP6/FUdzAwSpJUvYFON6BeZh43xP65wC5Nzju94f1JrLiQpf7Yx4GPN6lryAUu6l4GRkmSqtNtPYzSiDiHUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9rX4Oow/uliSpGgZG9TSHpCVJqp6BUT3NwChJUvUMjOoLtcCYueIwtSRJWn0GRvW0+nA4UD6GftmyzrRFkqR+ZWBUT6sfkh49uvh56dLOtUeSpH5kYFRPMzBKklQ9A6P6goFRkqTqGBjV0+rnMBoYJUmqhoFRPa1+SPoFLyh+XrKkc+2RJKkfGRjV05zDKElS9QaGUygiXgccDewIrAPMB2YDF2Tm9ytrnTRMBkZJkqqz0sAYEe8HPgT8X+BKYB4wEdgVuCgizsjMsyttpTQE5zBKklS94fQwngS8KjPvath/VURcDvwIMDCqIxySliSpesOZwzge+OsQxx4GxrWuOdLIGBglSarecALjlcA1EfHqiJgcES+IiA0j4tXA1cA3q22itHIGRkmSqjOcwPhO4CfARcAjwKLy9SLgf4HjK2udtBL1cxh9rI4kSdVY6RzGzFwC/AfwHxGxHjABWJCZcxvLRsQrMvPWVjdSGopD0pIkVW9Yj9WpKUPi3CZFrqdYQS21hYFRkqTqtfrB3dHi+qRhMTBKklSdVgfGXHkRqXV8DqMkSdXzqwHV0xySliSpegZG9TQDoyRJ1XMOo/qGj9WRJKkaIwqMEbFBRBwRER8q328WES+sHc/MdVrdQKkZexglSaresANjRMwAfg+8DTi53L0NcF4F7ZKGxcAoSVL1RtLD+FngrZm5L7Cs3PczYI9WN0oaKQOjJEnVGUlgnJqZPyh/rj3MZAkjfPi31Ep+NaAkSdUbSWD8bUS8vmHfa4DftLA90og0DkmvtRYsWtTZNkmS1G9G0jt4InBtRHwXGBsRXwIOAA6spGXSMNQHRoCxYw2MkiS12rB7GDPzf4FdgdnAV4F7gT0y8+cVtU0aNgOjJEnVGdH8w8x8EDizorZII5YNX0ZpYJQkqfWaBsaI+BrD+H7ozDyyZS2SRsAhaUmSqreyIel7gD+W2zzgIGAt4IHy3AOBudU1T2rOwChJUvWaBsbM/HhtA7YF9s/Mt2XmhzPz7cD+wHataEhELGjYlkfE5+uOHxMR95THboiIzZrUtUNE/DAi5pXnvKnu2NSIyIZrnVx3PCLijIh4vNzOjAi/8rDLGRglSarOSB6r83Lgfxv2/Qz4+1Y0JDMn1DZgY2ARMBP+9i0zp1P0aE6iWHBz+WD1RMQA8G3g2rLsscAlEbFtQ9H16q55Wt3+Yyl6UncFdgHeCBzXintU6zmHUZKk6o0kMP4SOD0ixgKUr58EflVBuw4FHgVuLt8fAMzMzNmZuQQ4Ddg7IqYNcu72wGbAZzJzeWb+ELgVOGKY1z4KOCszHygX+ZwFHL3qt6IqOSQtSVL1RhIYjwZeAcyLiEco5jTuBVSx4OUo4OLMv/UfRblR9x5gp0HOHWz4OAYpe39EPBARF0TEhnX7dwTuqHt/R7lPXcjAKElS9UbyHMb7MnNPYBrwj8CLMnPPzLyvlQ2KiC2AGcBFdbuvA94SEbuUPZunUKzeHjdIFXdR9E6eFBGjI+J1ZX21so8BLwW2BHYH1gEurTt/AkUYrpkHTBhqHmNEHBsRsyJi1pw5c0Z2s2oZA6MkSdUZSQ8jEbE+8CrgH4B9yvfDOe+mcqHJYNstDcWPBG7JzHtrO8rvsP4YcCVwP3AfMJ9itfYKMnMpxRzE/YGHKb6h5opa2cxckJmzMnNZZj4CvAt4XURMLKtYAEysq3IisKCut7Pxeudn5vTMnD558uThfBxqIecwSpJUvWEHxoj4e4rH67yTYjHIccAfy/1NZeY+mRlDbHs1FD+SFXsXa3Wcm5nbZOZGFMFxALhziOv9OjNnZOYGmfl6YGvgtqGaV7vF8nU2xYKXmtq326gLNQ5JjxsHTz/dufZIktSPRvJNL58FTsjMr9d2RMRbgc9RDPGutojYE5hCuTq6bv8Y4EUUwW1z4Hzg7Mx8coh6dgHupgjEJwCbAheWx15G8ezIPwDrl+2/KTNrw9AXAx+IiOsowuSJwOdRV2oMjBMnwoIF8OyzMGpE/eeSJGkoI/krdVuKod1636QIcq1yFHBVZs5v2D8GuIxiuPg24KdA/bMTPxwR19eVPwJ4iGIu46uB12bm4vLY1sANFEPadwKLgcPrzv0ScA3wm/L4d8t96mK1wLjuukWIXLCgs+2RJKmfjKSH8Q/AYRTBrebNFMPULZGZgz7vMDPnUgyDD3Xe6Q3vTwJOGqLs5QzxDMfyeAIfKjd1ucY5jBPL2afz5j33syRJWj0jCYzvA66NiPdQLDyZCmxD8WBrqSMah6TXXbd4nTcPNt+8M22SJKnfDDswZuZPygdl70/xYOxrgOsy84mqGietzGBzGAGeeqoz7ZEkqR+NpIeRcpHJJRW1RVplg/UwSpKk1hh2YIyIrSi+CnA3iodb/01mbtHaZknDM9QcRnsYJUlqnZH0MF5GscDlRMAn3akrNJvDKEmSWmMkgXFH4BWZ+WxVjZFGysAoSVL1RvIcxv8BXlxVQ6TVUQuM48cXD+x2SFqSpNYZSQ/jfcD3IuIqiu9o/pvMPKWVjZKGq3EOY0Qxj9EeRkmSWmckgXE8xaN0RlN8PV9NDl5cql7jkDQUgdEeRkmSWmckz2H855WViYjDy29SkdpisMC47rr2MEqS1EojmcM4HH7nsjqisYfRwChJUuu0OjDGyotIrdM4hxGKHkaHpCVJap1WB0bnM6qthhqSnju3I82RJKkvtTowSm01WGDccEN47LHOtEeSpH600sAYEYZKdb36wLjJJsUcxmee6Vx7JEnqJ8MJgw9GxJkRsdMwyv55dRskjcRgcxg33rh4feSR9rZFkqR+NZzA+E5gK+DnEfGLiHhvREwerGBmDidUSi0z2JC0gVGSpNZaaWDMzG9n5puBTSkem/Nm4C8R8Z2IOCQiRlfdSGllGoekAR56qDNtkSSp3wx7fmJmzs3ML2XmXsAOwCzgM4B/LatjBhuS3mqr4vVPf2pvWyRJ6lcj+WpAACJibeClwMuAjYGftLpR0nANNiS9wQbFSunf/a4zbZIkaVVkwtKlsGjR0NvTTzc/PpJyIzHswBgRewFHAm8BHgW+BpyQmfeP7JJS6wwWGAG23x5mz25/eyRJ/ScTFi9+LoQ9/fSKW+O+1Xm/fPmqtXGttWDs2Oe2ceNWfD9p0orvx46Fz352+PWvNDBGxKnAEcAkYCawf2beumq3I1WjMTDuuSd8+tPFN75MnNiZNkmSqvXss8Uj1IYbzFYnzA02BWplRo8uglttqwW5ceNg8uTBjw0W9gbbGsuMXoUVJS0NjMDLgY8A38pMn2ynrjLU/8D77Qdnngk33ggHH9zeNkmSCkuXwsKFReBauPC5rf59s2P17wcLc6v6vN0xY54f4Grv119/8IA30vdjx8LAiCf+da+V3kpm7tuOhkirYqgh6T33LL4i8NprDYySNJTly0ce3EYS+pYuHVl7BgZg/PhiGzfuuZ/Hj4eNNlq9AFffIzfKryQZsT7KvloTDRUYR4+GAw6Aq6+GL3yh+NekJPWizCKALViw4rZw4fP31fYPN/QtWTKytowaNXSgmzRpxfeNx4fz/gUvqOYz1OozMKovNAZGgH/5F7jkEvjc5+BDH2p/myStWTKLALayMDfY/mbHRjp/rjGI1cLYZpsNHdaGG+jWXnvw37fqfwZG9bRmv0T32QcOOgj+/d+LX5Rvf3u7WiWp22UW89/mz19xG2mYa9y/bNnw27D22jBhwnPb+PHF6wYbDL6/cRtsv8OtqoqBUT1tqCHp2r7LLoM3vhGOOgrmzoUTTvCXqdSrli17fsCr3556qvnxxm24jy8ZNWrwwLbxxkOHuZUFvfHjV21Vq9QpBkb1tGaBEYp/bX/nO/DmN8O73w1XXglf/jJMm9a+NkprqsyiB26kQW6obbgrYgcGYJ11VtwmToQpU56/f7CtMeA5DCsZGNUnmv0yHz8evvtduOAC+MAHYOed4fTTiwC51lrta6PUK2qLLJ56CubNK15X5eennhre3LuIIpg1BrcttxxewGvcDHhS6xkY1dOGOxE8olgE8/rXw3HHwfvfD1//Onzxi7DbbpU2UWqb2ry84Ya6ZkFvOMO148YVj6+aOLHY1l0XNtnkuZ8nTnyud69ZwBs3zqkiUrczMKqnjfTJ+1OmwDXXwKWXFr2Nu+8O73kPfOITxV9cUictW1YEt7lzV9wa99W/bwx7w3nu3Zgxzw9606atGPRW9vM66/TXQ4klNef/7uppmSMfeoooVkzvvz/8x3/A2WfDzJnFVyQdcohDWVp1ixcPP+gNtm/hwub1RxRhbb31im3ddWGLLUYe9HzWnaSRMjCq561qwFt//WJI+uij4fjji4Uxb3gDnHMObL11S5uoHvHss0WAe/JJeOKJFV+ffHLlYXBlizIGBp4LerXQt+mmK76vD4ON79dZx6FbSZ1hYFRPW5Uvg2/08pfDz39eBMWTT4Ydd4SPfAROOqmYPK/eUluwMVjoG+q19vPcuc3/TK299vND3JZbrjzo1X4eN84ebEm9ycConrYqQ9KDGRiA972v6GV8//uL4HjJJXDeefCqV61+/Rq5pUtHFvrqw1+zrztba62id3nSpOJ18mTYdtvn3je+1v/sV0xKWlMZGNXTWhUYa6ZMgSuugBtugH/9V/iHf4C3vhU++lHYaafWXWdN8eyzxUKMVQl9CxY0r3vixBXD3U47DR366sPfOuvYyydJI2VgVM+r4i//ffeFO++ET30KzjoLvvENOOCAovdxxow1ax5ZJixatGqhb+7cIjQOZcyYFUPd1KnwkpesPPStt54rdCWpnfyVq57WijmMQxk7tnjcznvfC+eeC5/7XPFIni22gH/6J9hvv2L+Yzd/vVdmsXK38bl7w3mtn9s3nCHeWqjbcMNiiHeosFf/fuzY9n0WkqRV1zWBMSIaB6DGAl/IzHeXx48B/h3YBLgF+JfM/OsQde0AnAvsDswBTsrMq8tjbwO+VFd8VHmt6Zl5e0ScCnwEWFxXZpfM/NPq3aGq0Ooh6cFssAGccgp88IPw7W/DxRfDf/83/Nd/Fd9O8eIXw667FkOiU6YUq1433LDoPRsz5rmFM0uXPn9bvLjovVu0qFhhW/t5qG1VyjTr4asZO/b5j2DZcceV9/RNmuQQryStCbomMGbmhNrPETEeeASYWb6fAZwOvAr4A3A2cDkwo7GeiBgAvg18EXhtWeaaiHhxZt6dmZcCl9aVPxo4GfhFXTXfyMy3t/L+VI12BMaacePg8MOLbe5c+NGP4MYb4Ve/ggsvXPmcu9U1ZkwR7MaOXfHnsWOf+4aN+n21rfZtHLUw2Pjqc/kkSSvTNYGxwaHAo8DN5fsDgJmZORsgIk4DHoyIaZn5x4Zztwc2Az6TmQn8MCJuBY6gCIaNjgIuLsuqB3Wid2u99eBNbyo2KHrxHnwQ/vpXeOghePzxovdw8eLnns03evTzt7XXfn74G2xbe+01a96kJKm7dGtgbAxxUW7UvQfYCWgMjIPFhyjLrrgzYktgb+BfGg4dEBFPAA8B52TmeSNrvtqlW2L+qFGw+ebFJklSv+m6PouI2IJiGPmiut3XAW+JiF0iYixwCpDAuEGquIuid/KkiBgdEa8r6xus7JHAzZl5b92+K4AdgMnAO4BTIuLwJu09NiJmRcSsOXPmDPs+1RrtHJKWJGlN1ZbAGBE3RUQOsd3SUPxI4Jb6EJeZPwA+BlwJ3A/cB8wHHmi8VmYuBQ4C9gceBk6kCIHPK1teqz6Ykpm/zcy/ZubyzPwJxXzJQ4e6t8w8PzOnZ+b0yZMnN/8g1HIGRkmSqteWwJiZ+2RmDLHt1VD8eSGurOPczNwmMzeiCI4DwJ1DXO/XmTkjMzfIzNcDWwO31ZeJiFdQzHX85sqaz+DD3OoSBkZJkqrVVUPSEbEnMIVydXTd/jERsVMUtgDOB87OzCeHqGeX8pxxEfFBYFPgwoZiRwFXZub8hnMPjIj1y2vtAbyHYtW1ulC3zGGUJKmfdduil6OAqxpDHDAGuAyYRjEUfQF1K54j4sPAKzPzDeWuI4BjgNEUK61fm5mL68qPAd4CHDJIGw4DvgqsTTGMfUZmPq/HU+21ZAn8+c9w333Fdu+9xetVV/mNH5IkVS18mkzrTJ8+PWfNmtXpZvSkTJgzB+65B/74x2L705+eC4YPPrhib+JaaxXbkiXFcwSfeqpjTZckqSdFxO2ZOX04Ze2bUdssXw4PPPBcIKyFw9pr/YOvI+CFL4SttoJ/+IfiO4a32qp4nTq1OHbYYXDllc5hlCSpagZGtVQmPPYY3HVXsf3+98XrPfcUvYX130k8ejRsvTVMmwZ77w0velHx87RpRTisfaWeJEnqLAOjVsnSpcWQcX0orP38xBPPlRszBrbZpvie5QMPLMJgLRi+8IXFsPKqqvUs2sMoSVK1DIxq6tln4f774Te/WXG7+25Ytuy5cptsAttvD29+c/Fa27bYorqvtDMwSpLUHgZG/c28efCrXxWB8Ne/Ll7vvHPFuYVTp8LOO8M//iPssEMRCrfbDtZdt/3tNShKktQeBsY11Ny58ItfwO23P7fdc89zxydNKoLh0UcXrzvvDDvuCBMndqrFz2cPoyRJ7WFgXAMsXQp33AG33go//enzw+EWW8Duu8M//zO85CWwyy6w6abdH8QMjJIktYeBsQ/Nmwc/+UkREG+9FW67DZ5+ujj2whfCS19ahMPddy8CYq9/BbaBUZKkahkY+8DixUXP4Y03FtvPf14sVllrLdhtNzjmGNhzz2LbfPNOt7Z1DIqSJLWHgbFH/eUv8O1vw7XXwv/8DyxaVATEl70MPvpR2Gcf2GMPGD++0y2tjkPSkiS1h4Gxh/zud8V3J3/rW1D7BsJtty16EF/zmiIkdtOilKoZGCVJag8DY5ebMwcuvxwuuqhY1Qzw8pfDf/1X8SDs7bfvbPs6ycAoSVJ7GBi7UGaxWOWzny2GnZctKxanfPazxYOxN9us0y3sDgZFSZLaw8DYRZYvh5kz4ayziiHn9deH9763eBbiTjt1unXdy+AoSVK1DIxdIBOuuQY+8pHim1W22w7OOw+OOKK/F62sLoekJUlqDwNjh82eDccfDzffDNtsA1//ejHsXNX3L/cTA6MkSe1hLOmQJUuKx9/stlsRGr/0peL1rW81LA6XQVGSpPawh7ED7r+/CIY/+1kx7HzWWb3/bSudYA+jJEntYWBss+9/vwiLtQUuhx7a6Rb1LgOjJEnt4eBnG116Key3X/H1fL/4hWGxVQyMkiRVy8DYJl/9Krz97bDXXsVX+U2b1ukW9T6DoiRJ7WFgbIOrr4Z3vANe/3q4/npYd91Ot6g/OCQtSVJ7GBgrdtttcPjhsMcecOWVMGZMp1vUPwyMkiS1h4GxQo89VsxT3GQTuPZaH8LdagZGSZLaw1XSFTruOHjkkeJ7oTfYoNOt6T8GRUmS2sPAWJGrr4arroJPfQqmT+90a/qbwVGSpGo5JF2BRYvg3e+GXXeFE0/sdGv6l0PSkiS1hz2MFTjvPHjwQbjsMhg9utOt6V8GRkmS2sMexhZbuhTOPBNe8xrYe+9Ot6a/GRQlSWoPexhb7LvfLRa6fPnLnW5J/7OHUZKk9rCHscUuuAA23RT23bfTLel/BkZJktrDwNhCmXDjjXDwwTBg323lDIySJLWHgbGFnn662PbZp9MtkSRJah0DYwvNn1+8vvKVnW3HmsIeRkmS2sPA2EILFsB228HGG3e6JWsGA6MkSe1hYGyhRYvgxS/udCvWHAZGSZLaw8DYQkuWwPbbd7oVaw6DoiRJ7WFgbLHttut0C9Yc9jBKktQeXRMYI2JqRFwXEU9GxMMRcU5EDNQdf3VE3BURT0fEjyJiyyZ1TYqIqyNiYUTcHxH/1HB8yLqicEZEPF5uZ0YMP5JMnTrCG9dqMzBKklStrgmMwBeAR4FNgd2AGcAJABGxIXAVcDIwCZgFfKNJXecCS4CNgbcB50XEjsOs61jgIGBXYBfgjcBxw72JKVOGW1Kryx5GSZLao5sC41bAFZn5TGY+DNwA7FgeOxiYnZkzM/MZ4FRg14h43ozBiBgPHAKcnJkLMvMW4DvAEcOs6yjgrMx8IDMfBM4Cjh7uTWyyyUhuWavDoChJUnt0U2A8GzgsIsZFxBTgDRShEYrgeEetYGYuBP7Ic4Gy3rbA8sy8u27fHXVlV1bXCscbzm1qYABGjx5OSbWCPYySJLVHNwXGH1MEs6eAByiGir9VHpsAzGsoPw9YZ5B6VlZ2pMfnAROGmscYEcdGxKyImDVq1LLBiqgiBkZJktqjLYExIm6KiBxiuyUiRgHfo5hbOB7YEFgfOKOsYgEwsaHaicD8QS63srIjPT4RWJCZOdi9Zeb5mTk9M6fvvLNfIN1OBkVJktqjLYExM/fJzBhi24ti8cnmwDmZuTgzHwcuAPYrq5hNsQgF+Ns8xWnl/kZ3AwMRsU3dvl3ryq6srhWON5yrLmRwlCSpWl0xJJ2ZjwH3AsdHxEBErEex+KQ2l/BqYKeIOCQixgCnAL/OzLsGqWshRU/lJyJifES8AjgQ+Now67oY+EBETImIzYATgQtbf9daXQ5JS5LUHl0RGEsHA/sCc4B7gGXA+wEycw7FyudPAk8CLwMOq50YER+OiOvr6joBGEvxmJ7LgeMzc/Zw6gK+BFwD/Aa4E/huuU9dxsAoSVJ7dM2ku8z8FbBPk+M3AoN+8V5mnt7w/gmKZymuSl0JfKjc1MUMipIktUc39TBKI2IPoyRJ7WFgVM8yMEqS1B4GRvU8A6MkSdUyMKpnGRQlSWoPA6N6lkPSkiS1h4FRPcvAKElSexgY1bMMipIktYeBUT3LwChJUnsYGCVJktSUgVE9yx5GSZLaw8ConlULjJmdbYckSf3OwKieZQ+jJEntYWBUzzIwSpLUHgZG9SyfwyhJUnsYGNXznMMoSVK1DIzqWfYsSpLUHgZG9SwDoyRJ7WFgVM/ysTqSJLWHgVE9y0UvkiS1h4FRPcvAKElSexgY1fMMjJIkVcvAqJ5lUJQkqT0MjOpZDklLktQeBkb1LAOjJEntYWBUzzIwSpLUHgZG9SwDoyRJ7WFglCRJUlMGRvUsexglSWoPA6N6loFRkqT2MDCqZxkUJUlqDwOjepY9jJIktYeBUT3LwChJUnsYGNXzDIySJFXLwKieZVCUJKk9DIzqWQ5JS5LUHgZG9SwDoyRJ7WFgVM8yKEqS1B4GRvUsexglSWoPA6N6noFRkqRqdU1gjIipEXFdRDwZEQ9HxDkRMVB3/NURcVdEPB0RP4qILZvUNSkiro6IhRFxf0T8U92xl0fE9yPiiYiYExEzI2LTuuOnRsTSiFhQt21d3Z1rVdnDKElSe3RNYAS+ADwKbArsBswATgCIiA2Bq4CTgUnALOAbTeo6F1gCbAy8DTgvInYsj60PnA9MBbYE5gMXNJz/jcycULf9aXVvTq1nYJQkqT0GVl6kbbYCzsnMZ4CHI+IGoBbyDgZmZ+ZMKHoBgcciYvvMvKu+kogYDxwC7JSZC4BbIuI7wBHAv2fm9Q3lzwF+XOF9qSIGRUmS2qObehjPBg6LiHERMQV4A3BDeWxH4I5awcxcCPyR5wJlvW2B5Zl5d92+O4YoC7A3MLth3wHlkPXsiDh+5LeidrCHUZKk9uimwPhjilD3FPAAxbDzt8pjE4B5DeXnAesMUs+wy0bELsApwEl1u68AdgAmA+8ATomIw4dqdEQcGxGzImLWnDlzhiqmChgYJUlqj7YExoi4KSJyiO2WiBgFfI9inuJ4YEOKuYZnlFUsACY2VDuRYv5ho2GVjYgXAdcD783Mm2v7M/O3mfnXzFyemT+h6Pk8dKh7y8zzM3N6Zk6fPHly8w9CLWVglCSpPdoSGDNzn8yMIba9KBaybE4xh3FxZj5OsRBlv7KK2cCutfrKeYrTeP5QMsDdwEBEbFO3b9f6suUK6xuB0zLzaytrPmAkkSRJa6yuGJLOzMeAe4HjI2IgItYDjuK5eYtXAztFxCERMYZiGPnXjQteyroWUvRUfiIixkfEK4ADga8BlPMjfwicm5lfbDw/Ig6MiPWjsAfwHuDbLb5ltYA9jJIktUdXBMbSwcC+wBzgHmAZ8H6AzJxDsfL5k8CTwMuAw2onRsSHI6J+9fMJwFiKx/RcDhyfmbUexmOArYGP1T9rse7cw8rrzwcuBs7IzItafK9qAQOjJEnt0TWP1cnMXwH7NDl+I7D9EMdOb3j/BHDQEGU/Dny8yXWGXOCi7mJQlCSpPbqph1EaEXsYJUlqDwOjepaBUZKk9jAwqucZGCVJqpaBUT3LHkZJktrDwKieZVCUJKk9DIzqWfYwSpLUHgZG9SwDoyRJ7WFgVM8yMEqS1B4GRkmSJDVlYFTPsodRkqT2MDCq5xkYJUmqloFRPSuz0y2QJGnNYGBUz7OHUZKkahkY1bNqPYwGRkmSqmVgVM969tni1cAoSVK1DIzqeQZGSZKqZWBUz3LRiyRJ7WFgVM+zh1GSpGoZGNWz7GGUJKk9DIzqWa6SliSpPQyM6lkGRkmS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPctGLJEntYWBUz7OHUZKkahkY1bOcwyhJUnsYGNWz/C5pSZLaw8ConmdglCSpWgZG9SwXvUiS1B4GRvU8exglSaqWgVE9yx5GSZLaw8ConuUqaUmS2sPAqJ5lYJQkqT0MjOpZBkZJktrDwKieZ2CUJKlaBkb1LBe9SJLUHgZG9Tx7GCVJqpaBUT3LOYySJLWHgVE9y++SliSpPbomMEbE1Ii4LiKejIiHI+KciBioO/7qiLgrIp6OiB9FxJZN6poUEVdHxMKIuD8i/qnhOhkRC+q2k+uOR0ScERGPl9uZEUaSbuZ/HUmSqtU1gRH4AvAosCmwGzADOAEgIjYErgJOBiYBs4BvNKnrXGAJsDHwNuC8iNixocx6mTmh3E6r238scBCwK7AL8EbguNW5MVXDRS+SJLVHNwXGrYArMvOZzHwYuAGohbyDgdmZOTMznwFOBXaNiO0bK4mI8cAhwMmZuSAzbwG+AxwxzHYcBZyVmQ9k5oPAWcDRq3Ffqpg9jJIkVaubAuPZwGERMS4ipgBvoAiNUATHO2oFM3Mh8EeeC5T1tgWWZ+bddfvuGKTs/RHxQERcUPZg1qxwrSHO/ZuIODYiZkXErDlz5jS/Q7WUPYySJLVHNwXGH1MEs6eAByiGnb9VHpsAzGsoPw9YZ5B6Vlb2MeClwJbA7uX+S5ucPw+YMNQ8xsw8PzOnZ+b0yZMnD3VvqoCrpCVJao+2BMaIuKlcaDLYdktEjAK+RzFPcTywIbA+cEZZxQJgYkO1E4H5g1yuadlymHpWZi7LzEeAdwGvi4iJQ5w/EViQaX9WtznqKDjoIPjoRzvdEkmS+ltbAmNm7pOZMcS2F8VCls2BczJzcWY+DlwA7FdWMZtiEQrwt3mK08r9je4GBiJim7p9uw5RFqAWBGv9VCtcayXnqoMmToSrr4ZNNul0SyRJ6m9dMSSdmY8B9wLHR8RARKxHsfikNpfwamCniDgkIsYApwC/zsy7BqlrIUVP5SciYnxEvAI4EPgaQES8LCK2i4hREbEB8DngpsysDUNfDHwgIqZExGbAicCF1dy5JElS9+uKwFg6GNgXmAPcAywD3g+QmXMoVj5/EngSeBlwWO3EiPhwRFxfV9cJwFiKx/RcDhyfmbVewq0pFtPMB+4EFgOH1537JeAa4Dfl8e+W+yRJktZI4dS81pk+fXrOmjWr082QJElaqYi4PTOnD6dsN/UwSpIkqQsZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNRWZ2ug19IyLmA7/vdDvWMBsCj3W6EWsYP/P28zNvPz/z9vMzb7/tMnOd4RQcqLola5jfZ+b0TjdiTRIRs/zM28vPvP38zNvPz7z9/MzbLyJmDbesQ9KSJElqysAoSZKkpgyMrXV+pxuwBvIzbz8/8/bzM28/P/P28zNvv2F/5i56kSRJUlP2MEqSJKkpA6MkSZKaMjC2QERMioirI2JhRNwfEf/U6Tb1u4h4V0TMiojFEXFhp9vT7yJi7Yj4Svnne35E/DIi3tDpdvW7iLgkIh6KiKci4u6IOKbTbVpTRMQ2EfFMRFzS6bb0u4i4qfysF5SbzzNug4g4LCJ+V2aXP0bEK5uV9zmMrXEusATYGNgN+G5E3JGZszvaqv72V+A/gdcDYzvcljXBAPAXYAbwZ2A/4IqI2Dkz7+tkw/rcp4D/LzMXR8T2wE0R8cvMvL3TDVsDnAv8vNONWIO8KzO/3OlGrCki4rXAGcBbgduATVd2jj2MqykixgOHACdn5oLMvAX4DnBEZ1vW3zLzqsz8FvB4p9uyJsjMhZl5ambel5nPZua1wL3A7p1uWz/LzNmZubj2ttymdbBJa4SIOAyYC/ygw02RqvJx4BOZ+b/l7/QHM/PBZicYGFfftsDyzLy7bt8dwI4dao9UuYjYmOLPvr3oFYuIL0TE08BdwEPAdR1uUl+LiInAJ4ATO92WNcynIuKxiLg1IvbpdGP6WUSsBUwHJkfEPRHxQEScExFNR+sMjKtvAjCvYd88YFjfzSj1mogYDVwKXJSZd3W6Pf0uM0+g+H3ySuAqYHHzM7SaTgO+kpl/6XRD1iD/BmwNTKF4LuA1EWFPenU2BkYDh1L8XtkNeDHw0WYnGRhX3wJgYsO+icD8DrRFqlREjAK+RjFn910dbs4aIzOXl9NdXggc3+n29KuI2A14DfCZDjdljZKZP8vM+Zm5ODMvAm6lmCetaiwqXz+fmQ9l5mPAp1nJZ+6il9V3NzAQEdtk5h/KfbviUJ36TEQE8BWKf53ul5lLO9ykNdEAzmGs0j7AVODPxR93JgBrRcTfZeZLOtiuNU0C0elG9KvMfDIiHqD4nIfNHsbVlJkLKYaJPhER4yPiFcCBFL0wqkhEDETEGGAtil/oYyLCfwBV6zxgB+CAzFy0ssJaPRGxUfnYiwkRsVZEvB44HPhhp9vWx86nCOS7ldsXge9SPI1BFYiI9SLi9bXf4RHxNmBv4HudblufuwB4d/l7Zn3gfcC1zU7wL9jWOAH4KvAoxard432kTuU+Cnys7v3bKVZ9ndqR1vS5iNgSOI5i/tzDZe8LwHGZeWnHGtbfkmL4+YsU/7i/H3hfZn67o63qY5n5NPB07X1ELACeycw5nWtV3xtN8Yi07YHlFIu7DspMn8VYrdOADSlGSZ8BrgA+2ewEv0takiRJTTkkLUmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEktEhGzI2KfNl3r7yJiVgX1XhUR+7a6Xkm9zecwStIwlQ9yrhlH8SDz5eX7tj7EPCKuBGZm5tdbXO8ewHmZuXsr65XU2wyMkrQKIuI+4JjMvLED196U4vvqN8vMZyqo/w/A4ZnZ8h5MSb3JIWlJapGIuC8iXlP+fGpEzIyISyJifkT8JiK2jYj/iIhHI+IvEfG6unPXjYivRMRDEfFgRPxnRKw1xKVeC/yiPiyW1z4pIn4dEQvLujaOiOvL699Yfmcs5ff2XhIRj0fE3Ij4eURsXFf/TcD+Lf+AJPUsA6MkVecA4GvA+sAvge9R/N6dAnwC+FJd2YuAZcCLgBcDrwOOGaLenYHBvmv3EIowuW157euBD1N8Z+wo4D1luaOAdYHNgQ2AdwKL6ur5HbDrsO9SUt8zMEpSdW7OzO9l5jJgJjAZ+K/MXAp8HZgaEeuVvXtvAN6XmQsz81HgM8BhQ9S7HjB/kP2fz8xHMvNB4GbgZ5n5y8xcDFxNEUQBllIExRdl5vLMvD0zn6qrZ355DUkCYKDTDZCkPvZI3c+LgMcyc3nde4AJwGbAaOChiKiVHwX8ZYh6nwTWGcb1Gt9PKH/+GkXv4tcjYj3gEuAjZZClrHvuUDclac1jD6Mkdd5fKFZcb5iZ65XbxMzccYjyv6YYdl4lmbk0Mz+emX8H7Am8ETiyrsgOwB2rWr+k/mNglKQOy8yHgP8HnBUREyNiVERMi4gZQ5zyfeAlETFmVa4XEa+KiJ3LRTVPUQxRL68rMoNi/qMkAQZGSeoWRwIvAH5LMeT8TWDTwQpm5iPAD4EDV/Fam5T1P0WxwOXHFMPSRMRLgYWZedsq1i2pD/kcRknqQRHxdxQrq/fIFv4iLx8I/pXMvK5VdUrqfQZGSZIkNeWQtCRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKmp/x83SsiKuLmH/QAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCTUlEQVR4nO3debgcZZ33//c3OYFsBAiELQKBCIKsSkQHkeCuKAOCC46yzPwQhHEZRZwRBVFGFObHKAqiPI4ssigREGXzERUH0BGDihJFRIERZAlLQhJCNr7PH1UtneaczjlJV295v66rrj5dddddd3XC4ZN7qY7MRJIkSRrKqE43QJIkSd3NwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJL6RkTcGBFfq3t/fkTc0Mk2SVI/MDBK6riI2CgiTo+IP0TE0xHxSET8d0QcFhEDFV/7qIj4YUQ8HhEZEXuvovzhZbkRB9GIOLk8NyPimYh4ICIujYitV/8ORtyGj0TEioj4z3Zdc5A2jI2I8yLiVxGxNCLuXkX5UeWfUUbEu9vVTknPMjBK6qiIeB7wS+Bg4NPAi4GXA/8FfATYueImjAd+BBy/qoIR8ULgs8B/r8H17gU2B54HHAbMAL4XEaPXoM6ReA9wKnBYRKzbpms2Gg0sBc4FvjmM8icBT1XaIklNGRglddo5wLrAizPz4sz8XWb+MTMvAPYA/lgrGBHvj4g7y17IP0bEx9e0BzIzv5CZnwF+2KxcRIwHLgOOA+5Zg0uuyMyHMvOvmflD4GRgF+D55XUOj4jfRcSSiLg/Iv69/h7LYfevR8TnIuLRiHgyIr4WEeNWdeGIeCWwAfAp4GGKkF5//F8jYl5ETKvb98mIeKwM9kTEy8re38UR8UREXBIRm9SVPzki7o6IA8o/q0UR8eOImF4rk5mLMvPozDwH+PMw2vxPwBGruj9J1TEwSuqYiJgM7AeclZnzG49n5rLMXFSWPZmix/FjwI7AB4GjgU+2qblnAz/PzEtbXO/i8nVMRLwJ+DrwDYoQeRzwzzz3Ht8KbAS8AngX8PfAacO41tHAxZm5HLgAOKrh+OnAz4FLI2IgIl4BfAL4x8y8PyI2A/4vcD+wJ7A/RQ/w5Q31bA4cU7ZtL4qQ+vVhtG8lEbEpxWdxWGY+NtLzJbVOpXODJGkVnk/xD9ffNStU9u59FDgoM68vd98TEZ8AvgicWGUjI+Iw4GUUw8etrHcr4F+BvwB/oOhtvTwzP1sWuasMaZ+LiFMyc2m5/3HgvZm5Avh9+Tl8KSI+VgvYg1xrCvAWiqAHRRD7TES8IDP/AJCZGRGHArdTfK77A1/OzO+W5/wz8CRwRK0tZflfR8Q+mVkbql8XODQz55ZlTgMuiYixmfn0MD+bUcDFwNcz88bhnCOpOvYwSuqkKF9zFeV2AsYBl0fEwtoGfBVYvwxD1TQw4gXA54FDhgpjI7Rt2f6ngPsoPoO3ZOYyivtsnB/5E2AsML1u361lWKy5BVinoUyjfwR+n5m3A2Tmg8APKOY0/k1mPkIxBHwM8BhFUK/ZCfifuuBKWd/88ljNX2thsfRAeZ+bMHwnUNz3p0ZwjqSK2MMoqZP+CDxDETaubFKu9o/btwF3DXL88Ra3q97fAZOB2yJq+bZoT0QsB2Zm5i0jqO8vwKsp7vuhzGxczNEYnocTqqPJMaJo+JHA88s214wCXhIRJ9SHQGAmsALYFFgfeKRJ+wbbv3SIYyPppHgNxWe/pO5zB7ggIj6RmTuMoC5Ja8geRkkdk5mPA9cB74uI9RuPR8SYiJgAzAGeBrbNzLsH2VY0nttC36GYT7h73fZdirl+uwO/GmF9y8o2/3mQsDiHIqzV24dinmP94pCXNKyq/juKkPanIa75KmBbitXnuzdsY4CDagUj4jUUc0X/nqIH9IJ4NrHNAf4uItapK78bRaicM9QNr6Z/BHZraCvAxymGyiW1kT2MkjrtWIoh1dsi4iTg1xTh52UUj7o5PDN/HRGnAqeW2eUHFL+/dgFelJn/uroXL+cIbgZsUe56fjnc/VC5mnkeMK/hnHnAxMy8Y3WvO4TPUjxi59+AKyhC0snAGQ09gBsBZ0fEmRRB8BTg/zQZMj8a+Elm/qzxQER8l2LxyzfLof1vAP9/Zl4bEb+n+PP4MHAGcBbFYqPzyz+PDYAvAzdn5k0judHyEUXrUHz260TE7uWh32Xm0sx8zkr08s/+/sz8Y+MxSdWyh1FSR2Xm/1I8e/EqinD0S+CnFHPr/gO4oyx3CvAhiqHV24Gby/f3rmET3kvRS3hN+f688v17R1JJRBxRPlh62uo2JDOvpZg/eDjFfX+eIpA1zuP7NrCA4jP4JnAtK881rG/XJsCBFI8EGsy3gH0jYjvgfIpexRPL9txD8TmcGhEzMvNh4HUUz5D8BXB12c6DB6l3Va6l+JyPBrYsf/4VzwZ3SV0kMlc111yStCoR8WmK4LRb+diaqq5zI3B3Zh5Z1TUkqZE9jJLUGm8G3ldlWJSkTnEOoyS1QGa+uNNtkKSqOCQtSZKkphySliRJUlMGRkmSJDXlHMYW2njjjXPatGmdboYkSdIq3XbbbY9m5rC+WtXA2ELTpk1j9uzZnW6GJEnSKkXEfcMt65C0JEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjCq522yCcyc2elWSJLUvwY63QBpTc2dW2ySJKkaXdPDGBELG7YVEfGluuNHRsTd5bHrI2KLJnVNi4hrI+KJiHgoIs6KiIG6Y9lwrRPrzo2IOC0iHiu30yMiqr17SZKk7tU1gTEzJ9Y2YFNgMTALICJmAqcCBwCTgXuAS5tU92XgEWBzYHdgJnBsQ5kN6q55St3+o4ADgd2AXYE3A0ev0c1JkiT1sK4JjA3eShH4birf7w/Mysw5mbkUOAXYJyKmD3H+NsBlmfl0Zj4EXA/sNMxrHw6ckZn3Z+YDwBnAEat5H5IkST2vWwPj4cCFmZnl+yg36t4D7DzE+WcCh0TE+IiYCryRIjTWuy8i7o+I8yJi47r9OwG3172/neGHTUmSpL7TdYExIraiGEK+oG73tcDbI2LXiBgHnAQkMH6Ian5CEfKeBO4HZgPfKY89CrwE2BrYA1gPuLju3InA/Lr384GJQ81jjIijImJ2RMye68oLSZLUh9oSGCPixnKhyWDbzQ3FDwNuzsx7ajsy84fAJ4HLgfuAe4EFFGGw8VqjgO8DVwATgI2BDYHTyroWZubszFyemQ8D7wNeFxGTyioWApPqqpwELKzr7VxJZp6bmTMyc8aUKVNG9LlIkiT1grYExszcNzNjiG3vhuKHsXLvYq2OszNzu8zchCI4DgB3DHK5ycCWwFmZuSQzHwPOA/Ybqnnla60HcQ7Fgpea3cp9kiRJa6WuGpKOiL2AqZSro+v2j42InctH3mwFnAucmZlPNNaRmY9SrKI+JiIGImIDijmRt5d1vTQiXhARoyJiI+CLwI2ZWRuGvhD4cERMLR/dcxxwfhX3K0mS1Au6KjBSBLsrMnNBw/6xwCUUw8W3Aj8D6p+deEJEXFdX/iDgDcBc4G5gOfCh8ti2FAtgFlD0UC4B3ll37leB7wG/LY9fU+6TJElaK8UQU/O0GmbMmJGzZ8/udDPWOrXlSP5VliRp+CLitsycMZyy3dbDKEmSpC5jYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWBU3/CbXiRJqoaBUX1jxYpOt0CSpP5kYFTfWL680y2QJKk/GRjVNwyMkiRVw8CovmFglCSpGgZG9Q0DoyRJ1TAwqm8YGCVJqoaBUX3DwChJUjUMjOobBkZJkqphYFTfWLas0y2QJKk/GRjVN+xhlCSpGgZG9Y2lSzvdAkmS+pOBUX1jyZJOt0CSpP5kYFTfsIdRkqRqGBjVNwyMkiRVw8CovuGQtCRJ1TAwqm/YwyhJUjUMjOobBkZJkqphYFTfcEhakqRqGBjVN+xhlCSpGgZG9Q0DoyRJ1TAwqm84JC1JUjUMjOp5o8q/xfYwSpJUDQOjet466xSvBkZJkqphYFTPGxgoXh2SliSpGgZG9bzM4tUeRkmSqmFgVM8zMEqSVC0Do/qGQ9KSJFXDwKieV+thNDBKklQNA6N6Xi0wrljR2XZIktSvuiYwRsTChm1FRHyp7viREXF3eez6iNiiSV3TIuLaiHgiIh6KiLMiYqA89q6G6zwVERkRe5THT46IZQ1ltq3+E9DqqgXG5cs72w5JkvpV1wTGzJxY24BNgcXALICImAmcChwATAbuAS5tUt2XgUeAzYHdgZnAseV1Lm641rHAn4Ff1p3/rfoymfnnFt6qKmIPoyRJ1eiawNjgrRSB76by/f7ArMyck5lLgVOAfSJi+hDnbwNclplPZ+ZDwPXATkOUPRy4MLPWT6VeYw+jJEnV6tbA2Bjiotyoew+w8xDnnwkcEhHjI2Iq8EaK0LiSiNga2Ae4sOHQ/hHxeETMiYhjmjU0Io6KiNkRMXvu3LnN70qVMDBKklStrguMEbEVxRDyBXW7rwXeHhG7RsQ44CQggfFDVPMTih7FJ4H7gdnAdwYpdxhwU2beU7fvMmBHYArwHuCkiHjnUO3NzHMzc0ZmzpgyZcow7lCt5qIXSZKq1ZbAGBE3lgtLBttubih+GHBzfYjLzB8CnwQuB+4D7gUWUITBxmuNAr4PXAFMADYGNgROG6Rph7FyMCUzf5eZf83MFZn5U4reyreu1o2rrexhlCSpGm0JjJm5b2bGENveDcWfE+LKOs7OzO0ycxOK4DgA3DHI5SYDWwJnZeaSzHwMOA/Yr75QRLwc2AL49qqaz8rD4eoy9jBKklStrhqSjoi9gKmUq6Pr9o+NiJ2jsBVwLnBmZj7RWEdmPkqxivqYiBiIiA0o5kTe3lD0cODyzFzQcK0DImLD8lp7Ah8ArmrRLaoCzmGUJKlaXRUYKULcFY0hDhgLXAIsBG4FfgacWDsYESdExHV15Q8C3gDMBe4GlgMfqis/Fng7g/RkAoeU5yygWAxzWmYOVk5dwh5GSZKqNdDpBtTLzKOH2D8P2LXJeac2vP81sG+T8k8DGwxxbMgFLupu9jBKklSNbuthlEbMHkZJkqplYFTfsIdRkqRqGBjV0+q/n8ceRkmSqmFgVN+wh1GSpGoYGNXT6nsYDYySJFXDwKie5pC0JEnVMzCqp9nDKElS9QyM6hv2MEqSVA0Do3qaPYySJFXPwKie5hxGSZKqZ2BUT7OHUZKk6hkY1TfsYZQkqRoGRvU0exglSaqegVE9zTmMkiRVz8CovmEPoyRJ1TAwqqfVehhHj7aHUZKkqhgY1dNqgXHMmKKHsX6IWpIktYaBUT2tFhAHBorXZ57pXFskSepXBkb1hTFjileHpSVJaj0Do3paYw+jC18kSWo9A6N6WmNgtIdRkqTWMzCqp9UvegF7GCVJqoKBUX1h9Oji1R5GSZJaz8ConuaQtCRJ1TMwqqcZGCVJqp6BUT3NwChJUvUMjOoLzmGUJKk6Bkb1NHsYJUmqnoFRPc3AKElS9QyM6mkGRkmSqmdgVF+ozWF85pnOtkOSpH5kYFRPq/UwuuhFkqTqGBjV0xySliSpegZG9TQDoyRJ1TMwqi84JC1JUnUMjOpp9jBKklQ9A6N6moFRkqTqGRjV0wyMkiRVr2sCY0QsbNhWRMSX6o4fGRF3l8euj4gtmtS1Y0T8KCLml+e8peH4qyPizoh4KiJ+HBFb1x2LiDgtIh4rt9MjIqq5a7WKcxglSapO1wTGzJxY24BNgcXALICImAmcChwATAbuAS4drJ6IGACuAq4uyx4FXBQR25fHNwauAE4sj88GvlVXxVHAgcBuwK7Am4GjW3iraqHG5zD64G5JklqvawJjg7cCjwA3le/3B2Zl5pzMXAqcAuwTEdMHOXcHYAvg85m5IjN/BNwCHFoePwiYk5mzMvNp4GRgt4jYoTx+OHBGZt6fmQ8AZwBHtPwO1RIOSUuSVL1uDYyHAxdm1uIAUW7UvQfYeZBzBxs+jrqyOwG31w5k5iLgT+X+5xwvf94JdSUDoyRJ1eu6wBgRWwEzgQvqdl8LvD0ido2IccBJQALjB6niToreyeMjYkxEvK6sr1Z2IjC/4Zz5wHpDHJ8PTBxqHmNEHBURsyNi9ty5c4d7m2ox5zBKklSdtgTGiLgxInKI7eaG4ocBN2fmPbUdmflD4JPA5cB9wL3AAuD+xmtl5jKKOYhvAh4CjgMuqyu7EJjUcNqksr7Bjk8CFtb1djZe79zMnJGZM6ZMmdLsY1AF7GGUJKl6bQmMmblvZsYQ294NxQ9j5d7FWh1nZ+Z2mbkJRXAcAO4Y4nq/ycyZmblRZr4e2Ba4tTw8h2JBCwARMQGYXu5/zvHy5zmoKxkYJUmqXlcNSUfEXsBUytXRdfvHRsTO5SNvtgLOBc7MzCeGqGfX8pzxEfERYHPg/PLwlcDOEXFwRIylGN7+TWbeWR6/EPhwREwtH91zXN256jIGRkmSqtdVgZFiscsVmbmgYf9Y4BKK4eJbgZ9RPBYHgIg4ISKuqyt/KPAgxVzGVwOvzcwlAJk5FzgY+AzwBPBS4JC6c78KfA/4LUUP5jXlPnUx5zBKklSdgU43oF5mDvq8w8ycR/FMxKHOO7Xh/fHA8U3K30Dx+J3BjiXw0XJTl2t8DqOBUZKk1uu2HkZpRBqHpH1wtyRJrWdgVF+wh1GSpOoYGNXTXPQiSVL1DIzqaQZGSZKqZ2BUTzMwSpJUPQOj+oJzGCVJqo6BUT3NHkZJkqpnYFRPMzBKklQ9A6N6mg/uliSpegZG9YVaYPTB3ZIktZ6BUT3NIWlJkqpnYFRPMzBKklQ9A6N6Wi0wjir/JhsYJUlqPQOj+kJEMY/RwChJUusZGNXTaj2MYGCUJKkqBkb1tFpgtIdRkqTqGBjV0wyMkiRVz8CovlALjD6HUZKk1jMwqqfVz2EcNcoeRkmSqmBgVE9zSFqSpOoZGNXTDIySJFXPwKi+YGCUJKk6Bkb1NJ/DKElS9QyM6mkOSUuSVD0Do3qagVGSpOoZGNUXDIySJFXHwKie1jiH0Qd3S5LUegZG9bT6IWkf3C1JUjUMjOppzmGUJKl6Bkb1BQOjJEnVMTCqp/kcRkmSqmdgVE9zSFqSpOoZGNXTDIySJFXPwKi+YGCUJKk6Bkb1NOcwSpJUPQOjelrjkLQP7pYkqfUMjOppPrhbkqTqGRjVF5zDKElSdQyM6mnOYZQkqXpdExgjYmHDtiIivlR3/MiIuLs8dn1EbNGkrh0j4kcRMb885y11x14WET+IiMcjYm5EzIqIzeuOnxwRyxrasm11d6414WN1JEmqXtcExsycWNuATYHFwCyAiJgJnAocAEwG7gEuHayeiBgArgKuLsseBVwUEduXRTYEzgWmAVsDC4DzGqr5Vn17MvPPLbtRVcLAKElSdbomMDZ4K/AIcFP5fn9gVmbOycylwCnAPhExfZBzdwC2AD6fmSsy80fALcChAJl5XWbOyswnM/Mp4Czg5RXfjyrikLQkSdXr1sB4OHBh5t/iQJQbde8Bdh7k3Bhi32BlAfYB5jTs278csp4TEccMs83qAIekJUmqXtcFxojYCpgJXFC3+1rg7RGxa0SMA04CEhg/SBV3UvROHh8RYyLidWV9zykbEbuWdR1ft/syYEdgCvAe4KSIeGeT9h4VEbMjYvbcuXNHcKdqBQOjJEnVa0tgjIgbIyKH2G5uKH4YcHNm3lPbkZk/BD4JXA7cB9xLMffw/sZrZeYy4EDgTcBDwHEUIXClshHxfOA64IOZeVPd+b/LzL+Ww9k/Bc6kGCIfVGaem5kzMnPGlClThvuRqMVqz2H0wd2SJLVeWwJjZu6bmTHEtndD8cNYuXexVsfZmbldZm5CERwHgDuGuN5vMnNmZm6Uma8HtgVurR2PiK2BG4BTMvMbq2o+gw9zqws4h1GSpOp11ZB0ROwFTKVcHV23f2xE7ByFrShWOZ+ZmU8MUc+u5TnjI+IjwObA+eWxqcCPgLMz8yuDnHtARGxYXmtP4AMUq67VhRySliSpel0VGCkWu1yRmQsa9o8FLgEWUvQU/gw4sXYwIk6IiOvqyh8KPEgxl/HVwGszc0l57EiKHsdP1j9rse7cQ4C7KYa8LwROy8zn9HiqOxgYJUmq3kCnG1AvM48eYv88YNcm553a8P54Vl7IUn/sU8CnmtQ15AIXdS8DoyRJ1em2HkZpRJzDKElS9QyM6mkOSUuSVD0Do3qagVGSpOoZGNUXDIySJFXHwKieVj+H0Qd3S5JUDQOjeppD0pIkVc/AqJ5mYJQkqXoGRvWFWmDMXHmYWpIkrTkDo3pafTgcKB9Dv3x5Z9oiSVK/MjCqp9UPSY8ZU/y8bFnn2iNJUj8yMKqnGRglSaqegVF9wcAoSVJ1DIzqafVzGA2MkiRVw8ConlY/JL3OOsXPS5d2rj2SJPUjA6N6mnMYJUmq3sBwCkXE64AjgJ2A9YAFwBzgvMz8QWWtk4bJwChJUnVWGRgj4kPAR4H/A1wOzAcmAbsBF0TEaZl5ZqWtlIbgHEZJkqo3nB7G44FXZuadDfuviIhLgR8DBkZ1hEPSkiRVbzhzGCcAfx3i2EPA+NY1RxoZA6MkSdUbTmC8HPheRLw6IqZExDoRsXFEvBq4Evh2tU2UVs3AKElSdYYTGN8L/BS4AHgYWFy+XgD8D3BMZa2TVqF+DqOP1ZEkqRqrnMOYmUuBjwEfi4gNgInAwsyc11g2Il6embe0upHSUBySliSpesN6rE5NGRLnNSlyHcUKaqktDIySJFWv1Q/ujhbXJw2LgVGSpOq0OjDmqotIreNzGCVJqp5fDaie5pC0JEnVMzCqpxkYJUmqnnMY1Td8rI4kSdUYUWCMiI0i4tCI+Gj5fouIeF7teGau1+oGSs3YwyhJUvWGHRgjYibwB+BdwInl7u2AcypolzQsBkZJkqo3kh7GLwDvyMw3AMvLfT8H9mx1o6SRMjBKklSdkQTGaZn5w/Ln2sNMljLCh39LreRXA0qSVL2RBMbfRcTrG/a9BvhtC9sjjUjjkPTo0bB4cWfbJElSvxlJ7+BxwNURcQ0wLiK+CuwPHFBJy6RhqA+MAOPGGRglSWq1YfcwZub/ALsBc4CvA/cAe2bmLypqmzRsBkZJkqozovmHmfkAcHpFbZFGLBu+jNLAKElS6zUNjBHxDYbx/dCZeVjLWiSNgEPSkiRVb1VD0ncDfyq3+cCBwGjg/vLcA4B51TVPas7AKElS9ZoGxsz8VG0DtgfelJnvyswTMvPdwJuAF7SiIRGxsGFbERFfqjt+ZETcXR67PiK2aFLXjhHxo4iYX57zlrpj0yIiG651Yt3xiIjTIuKxcjs9IvzKwy5nYJQkqTojeazOy4D/adj3c+DvWtGQzJxY24BNgcXALPjbt8ycStGjOZliwc2lg9UTEQPAVcDVZdmjgIsiYvuGohvUXfOUuv1HUfSk7gbsCrwZOLoV96jWcw6jJEnVG0lg/BVwakSMAyhfPwP8uoJ2vRV4BLipfL8/MCsz52TmUuAUYJ+ImD7IuTsAWwCfz8wVmfkj4Bbg0GFe+3DgjMy8v1zkcwZwxOrfiqrkkLQkSdUbSWA8Ang5MD8iHqaY07g3UMWCl8OBCzP/1n8U5Ubde4CdBzl3sOHjGKTsfRFxf0ScFxEb1+3fCbi97v3t5T51IQOjJEnVG8lzGO/NzL2A6cDfA8/PzL0y895WNigitgJmAhfU7b4WeHtE7Fr2bJ5EsXp7/CBV3EnRO3l8RIyJiNeV9dXKPgq8BNga2ANYD7i47vyJFGG4Zj4wcah5jBFxVETMjojZc+fOHdnNqmUMjJIkVWckPYxExIbAK4FXAfuW74dz3o3lQpPBtpsbih8G3JyZ99R2lN9h/UngcuA+4F5gAcVq7ZVk5jKKOYhvAh6i+Iaay2plM3NhZs7OzOWZ+TDwPuB1ETGprGIhMKmuyknAwrrezsbrnZuZMzJzxpQpU4bzcaiFnMMoSVL1hh0YI+LvKB6v816KxSBHA38q9zeVmftmZgyx7d1Q/DBW7l2s1XF2Zm6XmZtQBMcB4I4hrvebzJyZmRtl5uuBbYFbh2pe7RbL1zkUC15qat9uoy7UOCQ9fjw89VTn2iNJUj8ayTe9fAE4NjO/WdsREe8AvkgxxLvGImIvYCrl6ui6/WOB51MEty2Bc4EzM/OJIerZFbiLIhAfC2wOnF8eeynFsyP/CGxYtv/GzKwNQ18IfDgirqUIk8cBX0JdqTEwTpoECxfCM8/AqBH1n0uSpKGM5H+p21MM7db7NkWQa5XDgSsyc0HD/rHAJRTDxbcCPwPqn514QkRcV1f+UOBBirmMrwZem5lLymPbAtdTDGnfASwB3ll37leB7wG/LY9fU+5TF6sFxvXXL0LkwoWdbY8kSf1kJD2MfwQOoQhuNW+jGKZuicwc9HmHmTmPYhh8qPNObXh/PHD8EGUvZYhnOJbHE/houanLNc5hnFTOPp0//9mfJUnSmhlJYPwX4OqI+ADFwpNpwHYUD7aWOqJxSHr99YvX+fNhyy070yZJkvrNsANjZv60fFD2mygejP094NrMfLyqxkmrMtgcRoAnn+xMeyRJ6kcj6WGkXGRyUUVtkVbbYD2MkiSpNYYdGCNiG4qvAtyd4uHWf5OZW7W2WdLwDDWH0R5GSZJaZyQ9jJdQLHA5DvBJd+oKzeYwSpKk1hhJYNwJeHlmPlNVY6SRMjBKklS9kTyH8b+BF1XVEGlN1ALjhAnFA7sdkpYkqXVG0sN4L/D9iLiC4jua/yYzT2plo6ThapzDGFHMY7SHUZKk1hlJYJxA8SidMRRfz1eTgxeXqtc4JA1FYLSHUZKk1hnJcxj/cVVlIuKd5TepSG0xWGBcf317GCVJaqWRzGEcDr9zWR3R2MNoYJQkqXVaHRhj1UWk1mmcwwhFD6ND0pIktU6rA6PzGdVWQw1Jz5vXkeZIktSXWh0YpbYaLDBuvDE8+mhn2iNJUj9aZWCMCEOlul59YNxss2IO49NPd649kiT1k+GEwQci4vSI2HkYZf93TRskjcRgcxg33bR4ffjh9rZFkqR+NZzA+F5gG+AXEfHLiPhgREwZrGBmDidUSi0z2JC0gVGSpNZaZWDMzKsy823A5hSPzXkb8JeI+G5EHBwRY6pupLQqjUPSAA8+2Jm2SJLUb4Y9PzEz52XmVzNzb2BHYDbwecD/LatjBhuS3mab4vXPf25vWyRJ6lcj+WpAACJiXeAlwEuBTYGftrpR0nANNiS90UbFSunf/74zbZIkaXVkwrJlsHjx0NtTTzU/PpJyIzHswBgRewOHAW8HHgG+ARybmfeN7JJS6wwWGAF22AHmzGl/eyRJ/ScTlix5NoQ99dTKW+O+NXm/YsXqtXH0aBg37tlt/PiV30+evPL7cePgC18Yfv2rDIwRcTJwKDAZmAW8KTNvWb3bkarRGBj32gv+8z+Lb3yZNKkzbZIkVeuZZ4pHqA03mK1JmBtsCtSqjBlTBLfaVgty48fDlCmDHxss7A22NZYZsxorSloaGIGXAR8HvpOZPtlOXWWo/4D32w9OPx1uuAEOOqi9bZIkFZYtg0WLisC1aNGzW/37Zsfq3w8W5lb3ebtjxz43wNXeb7jh4AFvpO/HjYOBEU/8616rvJXMfEM7GiKtjqGGpPfaq/iKwKuvNjBK0lBWrBh5cBtJ6Fu2bGTtGRiACROKbfz4Z3+eMAE22WTNAlx9j9wov5JkxPoo+2ptNFRgHDMG9t8frrwSvvzl4l+TktSLMosAtnDhytuiRc/dV9s/3NC3dOnI2jJq1NCBbvLkld83Hh/O+3XWqeYz1JozMKovNAZGgH/6J7joIvjiF+GjH21/myStXTKLALaqMDfY/mbHRjp/rjGI1cLYFlsMHdaGG+jWXXfw37fqfwZG9bRmv0T33RcOPBD+7d+KX5Tvfne7WiWp22UW898WLFh5G2mYa9y/fPnw27DuujBx4rPbhAnF60YbDb6/cRtsv8OtqoqBUT1tqCHp2r5LLoE3vxkOPxzmzYNjj/WXqdSrli9/bsCr3558svnxxm24jy8ZNWrwwLbppkOHuVUFvQkTVm9Vq9QpBkb1tGaBEYp/bX/3u/C2t8H73w+XXw5f+xpMn96+Nkprq8yiB26kQW6obbgrYgcGYL31Vt4mTYKpU5+7f7CtMeA5DCsZGNUnmv0ynzABrrkGzjsPPvxh2GUXOPXUIkCOHt2+Nkq9orbI4sknYf784nV1fn7yyeHNvYsoglljcNt66+EFvMbNgCe1noFRPW24E8EjikUwr389HH00fOhD8M1vwle+ArvvXmkTpbapzcsbbqhrFvSGM1w7fnzx+KpJk4pt/fVhs82e/XnSpGd795oFvPHjnSoidTsDo3raSJ+8P3UqfO97cPHFRW/jHnvABz4An/508T8uqZOWLy+C27x5K2+N++rfN4a94Tz3buzY5wa96dNXDnqr+nm99frrocSSmvM/d/W0zJEPPUUUK6bf9Cb42MfgzDNh1qziK5IOPtihLK2+JUuGH/QG27doUfP6I4qwtsEGxbb++rDVViMPej7rTtJIGRjV81Y34G24YTEkfcQRcMwxxcKYN74RzjoLtt22pU1Uj3jmmSLAPfEEPP74yq9PPLHqMLiqRRmjRz8b9mqBb7PNnruv/n39/vXWc+hWUmcYGNXTVufL4Bu97GXwi18UQfHEE2GnneDjH4fjjy8mz6u31BZsDBb6hnqt/TxvXvO/U+us89wgt9VWg4e7wfZNmGAPtqTeZGBUT1udIenBDAzAv/xL0cv4oQ8VwfGii+Ccc+CVr1zz+jVyy5aNLPTVh79mX3c2enTRu7zhhsVXmW28MWy3XfFzbV/9a/3P48a17/4lqZsYGNXTWhUYa6ZOhcsug+uvh3/+Z3jVq+Ad74BPfAJ23rl111lbPPNMsRBjdULfwoXN6540aeUwt/POqw58kycXw7r28knSyBgY1fOq+J//G94Ad9wBn/0snHEGfOtbsP/+Re/jzJlr1zyyTFi8ePVC37x5RWgcytixK4e5adPgxS8ePOjVv26wgSt0Jamd/JWrntaKOYxDGTeueNzOBz8IZ58NX/xi8UierbaCf/gH2G+/Yv5jN3+9V2axcrfxuXvDea2f29dsiHfUqJXDnEO8ktR/uiYwRkTjANQ44MuZ+f7y+JHAvwGbATcD/5SZfx2irh2Bs4E9gLnA8Zl5ZXnsXcBX64qPKq81IzNvi4iTgY8DS+rK7JqZf16zO1QVWj0kPZiNNoKTToKPfASuugouvBD+4z/gc58rvp3iRS+C3XYrhkSnToXNNy9C09ixxVZbOLNs2XO3JUuK3rvFi4sVtrWfh9pWp0yzHr6asWOf+wiWF76weS9f7dWVu5LU/7omMGbmxNrPETEBeBiYVb6fCZwKvBL4I3AmcCkws7GeiBgArgK+Ary2LPO9iHhRZt6VmRcDF9eVPwI4EfhlXTXfysx3t/L+VI12BMaa8ePhne8stnnz4Mc/hhtugF//Gs4/f9Vz7tbUuusWPXKNWy3sbbrp4Mdr38ZRC4ONr5Mm+Vw+SVJzXRMYG7wVeAS4qXy/PzArM+cARMQpwAMRMT0z/9Rw7g7AFsDnMzOBH0XELcChFMGw0eHAhWVZ9aBOLGDYYAN4y1uKDYpevAcegL/+FR58EB59tOg9rG1QDF03buuuWwS+wYJefSAcO9ZePElS53RrYGwMcVFu1L0H2BloDIyDxYcoy668M2JrYB/gnxoO7R8RjwMPAmdl5jkja77apVti/qhRsOWWxSZJUr/puj6LiNiKYhj5grrd1wJvj4hdI2IccBKQwPhBqriTonfy+IgYExGvK+sbrOxhwE2ZeU/dvsuAHYEpwHuAkyLinU3ae1REzI6I2XPnzh32fao12jkkLUnS2qotgTEiboyIHGK7uaH4YcDN9SEuM38IfBK4HLgPuBdYANzfeK3MXAYcCLwJeAg4jiIEPqdsea36YEpm/i4z/5qZKzLzpxTzJd861L1l5rmZOSMzZ0yZMqX5B6GWMzBKklS9tgTGzNw3M2OIbe+G4s8JcWUdZ2fmdpm5CUVwHADuGOJ6v8nMmZm5UWa+HtgWuLW+TES8nGKu47dX1XwGH+ZWlzAwSpJUra4ako6IvYCplKuj6/aPjYido7AVcC5wZmY+MUQ9u5bnjI+IjwCbA+c3FDscuDwzFzSce0BEbFhea0/gAxSrrtWFumUOoyRJ/azbFr0cDlzRGOKAscAlwHSKoejzqFvxHBEnAK/IzDeWuw4FjgTGUKy0fm1mLqkrPxZ4O3DwIG04BPg6sC7FMPZpmfmcHk+119Kl8L//C/feW2z33FO8XnGF3/ghSVLVwqfJtM6MGTNy9uzZnW5GT8qEuXPh7rvhT38qtj//+dlg+MADK/cmjh5dbEuXFg+OfvLJjjVdkqSeFBG3ZeaM4ZS1b0Zts2IF3H//s4GwFg5rr/UPvo6A5z0PttkGXvWq4juGt9mmeJ02rTh2yCFw+eXOYZQkqWoGRrVUZvHQ6jvvLLY//KF4vfvuorew/juJx4yBbbeF6dNhn33g+c8vfp4+vQiHta/UkyRJnWVg1GpZtqwYMq4PhbWfH3/82XJjx8J22xXfs3zAAUUYrAXD5z2vGFZeXbWeRXsYJUmqloFRTT3zDNx3H/z2tytvd90Fy5c/W26zzWCHHeBtbytea9tWW1X3lXYGRkmS2sPAqL+ZPx9+/esiEP7mN8XrHXesPLdw2jTYZRf4+7+HHXcsQuELXgDrr9/+9hoUJUlqDwPjWmrePPjlL+G2257d7r772eOTJxfB8IgjitdddoGddoJJkzrV4ueyh1GSpPYwMK4Fli2D22+HW26Bn/3sueFwq61gjz3gH/8RXvxi2HVX2Hzz7g9iBkZJktrDwNiH5s+Hn/60CIi33AK33gpPPVUce97z4CUvKcLhHnsUAbHXvwLbwChJUrUMjH1gyZKi5/CGG4rtF78oFquMHg277w5HHgl77VVsW27Z6da2jkFRkqT2MDD2qL/8Ba66Cq6+Gv77v2Hx4iIgvvSl8IlPwL77wp57woQJnW5pdRySliSpPQyMPeT3vy++O/k734HaNxBuv33Rg/ia1xQhsZsWpVTNwChJUnsYGLvc3Llw6aVwwQXFqmaAl70MPve54kHYO+zQ2fZ1koFRkqT2MDB2ocxiscoXvlAMOy9fXixO+cIXigdjb7FFp1vYHQyKkiS1h4Gxi6xYAbNmwRlnFEPOG24IH/xg8SzEnXfudOu6l8FRkqRqGRi7QCZ897vFYpU77ii+OeWcc+DQQ/t70cqackhakqT2MDB22Jw58N73ws03w3bbwTe/WQw7V/X9y/3EwChJUnsYSzpk6dKiR3H33YvVz1/9ahEe3/EOw+JwGRQlSWoPexg74L77imD485/DYYcVcxY33rjTreo99jBKktQeBsY2+8EPirC4YgV8+9tw8MGdblHvMjBKktQeDn620cUXw377FV/P98tfGhZbxcAoSVK1DIxt8vWvw7vfDXvvXXyV3/TpnW5R7zMoSpLUHgbGNrjySnjPe+D1r4frroP11+90i/qDQ9KSJLWHgbFiP/85HHII7LknXH45jB3b6Rb1DwOjJEntYWCs0KOPFs9U3HxzuPpqH8LdagZGSZLaw1XSFTr6aHj44eJ7oTfaqNOt6T8GRUmS2sPAWJErr4QrroDPfhZmzOh0a/qbwVGSpGo5JF2BxYvh/e+H3XaD447rdGv6l0PSkiS1hz2MFTjnHHjgAbjkEhgzptOt6V8GRkmS2sMexhZbtgxOPx1e8xrYZ59Ot6a/GRQlSWoPexhb7JprioUuX/tap1vS/+xhlCSpPexhbLHzziseo/OGN3S6Jf3PwChJUnsYGFsoE264AQ46CAbsu62cgVGSpPYwMLbQU08V2777drolkiRJrWNgbKEFC4rXV7yis+1YW9jDKElSexgYW2jhQnjBC2DTTTvdkrWDgVGSpPYwMLbQ4sXwohd1uhVrDwOjJEntYWBsoaVLYYcdOt2KtYdBUZKk9jAwttgLXtDpFqw97GGUJKk9uiYwRsS0iLg2Ip6IiIci4qyIGKg7/uqIuDMinoqIH0fE1k3qmhwRV0bEooi4LyL+oeH4kHVF4bSIeKzcTo8YfiSZNm2EN641ZmCUJKlaXRMYgS8DjwCbA7sDM4FjASJiY+AK4ERgMjAb+FaTus4GlgKbAu8CzomInYZZ11HAgcBuwK7Am4Gjh3sTU6cOt6TWlD2MkiS1RzcFxm2AyzLz6cx8CLge2Kk8dhAwJzNnZebTwMnAbhHxnBmDETEBOBg4MTMXZubNwHeBQ4dZ1+HAGZl5f2Y+AJwBHDHcm9hss5HcstaEQVGSpPbopsB4JnBIRIyPiKnAGylCIxTB8fZawcxcBPyJZwNlve2BFZl5V92+2+vKrqqulY43nNvUwACMGTOckmoFexglSWqPbgqMP6EIZk8C91MMFX+nPDYRmN9Qfj6w3iD1rKrsSI/PByYONY8xIo6KiNkRMXvUqOWDFVFFDIySJLVHWwJjRNwYETnEdnNEjAK+TzG3cAKwMbAhcFpZxUJgUkO1k4AFg1xuVWVHenwSsDAzc7B7y8xzM3NGZs7YZRe/QLqdDIqSJLVHWwJjZu6bmTHEtjfF4pMtgbMyc0lmPgacB+xXVjGHYhEK8Ld5itPL/Y3uAgYiYru6fbvVlV1VXSsdbzhXXcjgKElStbpiSDozHwXuAY6JiIGI2IBi8UltLuGVwM4RcXBEjAVOAn6TmXcOUtciip7KT0fEhIh4OXAA8I1h1nUh8OGImBoRWwDHAee3/q61phySliSpPboiMJYOAt4AzAXuBpYDHwLIzLkUK58/AzwBvBQ4pHZiRJwQEdfV1XUsMI7iMT2XAsdk5pzh1AV8Ffge8FvgDuCacp+6jIFRkqT26JpJd5n5a2DfJsdvAAb94r3MPLXh/eMUz1JcnboS+Gi5qYsZFCVJao9u6mGURsQeRkmS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPMihKktQeBkb1LIekJUlqDwOjepaBUZKk9jAwqmcZFCVJag8Do3qWgVGSpPYwMEqSJKkpA6N6lj2MkiS1h4FRPasWGDM72w5JkvqdgVE9yx5GSZLaw8ConmVglCSpPQyM6lk+h1GSpPYwMKrnOYdRkqRqGRjVs+xZlCSpPQyM6lkGRkmS2sPAqJ7lY3UkSWoPA6N6loteJElqDwOjepaBUZKk9jAwqucZGCVJqpaBUT3LoChJUnsYGNWzHJKWJKk9DIzqWQZGSZLaw8ConmVglCSpPQyM6lkGRkmS2sPAKEmSpKYMjOpZ9jBKktQeBkb1LAOjJEntYWBUzzIoSpLUHgZG9Sx7GCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y6AoSVJ7GBjVsxySliSpPQyM6lkGRkmS2sPAqJ5lUJQkqT0MjOpZ9jBKktQeBkb1PAOjJEnV6prAGBHTIuLaiHgiIh6KiLMiYqDu+Ksj4s6IeCoifhwRWzepa3JEXBkRiyLivoj4h7pjL4uIH0TE4xExNyJmRcTmdcdPjohlEbGwbtu2ujvX6rKHUZKk9uiawAh8GXgE2BzYHZgJHAsQERsDVwAnApOB2cC3mtR1NrAU2BR4F3BOROxUHtsQOBeYBmwNLADOazj/W5k5sW7785renFrPwChJUnsMrLpI22wDnJWZTwMPRcT1QC3kHQTMycxZUPQCAo9GxA6ZeWd9JRExATgY2DkzFwI3R8R3gUOBf8vM6xrKnwX8pML7UkUMipIktUc39TCeCRwSEeMjYirwRuD68thOwO21gpm5CPgTzwbKetsDKzLzrrp9tw9RFmAfYE7Dvv3LIes5EXHMyG9F7WAPoyRJ7dFNgfEnFKHuSeB+imHn75THJgLzG8rPB9YbpJ5hl42IXYGTgOPrdl8G7AhMAd4DnBQR7xyq0RFxVETMjojZc+fOHaqYKmBglCSpPdoSGCPixojIIbabI2IU8H2KeYoTgI0p5hqeVlaxEJjUUO0kivmHjYZVNiKeD1wHfDAzb6rtz8zfZeZfM3NFZv6UoufzrUPdW2aem5kzMnPGlClTmn8QaikDoyRJ7dGWwJiZ+2ZmDLHtTbGQZUuKOYxLMvMxioUo+5VVzAF2q9VXzlOcznOHkgHuAgYiYru6fbvVly1XWN8AnJKZ31hV8wEjiSRJWmt1xZB0Zj4K3AMcExEDEbEBcDjPzlu8Etg5Ig6OiLEUw8i/aVzwUta1iKKn8tMRMSEiXg4cAHwDoJwf+SPg7Mz8SuP5EXFARGwYhT2BDwBXtfiW1QL2MEqS1B5dERhLBwFvAOYCdwPLgQ8BZOZcipXPnwGeAF4KHFI7MSJOiIj61c/HAuMoHtNzKXBMZtZ6GI8EtgU+Wf+sxbpzDymvvwC4EDgtMy9o8b2qBQyMkiS1R9c8Viczfw3s2+T4DcAOQxw7teH948CBQ5T9FPCpJtcZcoGLuotBUZKk9uimHkZpROxhlCSpPQyM6lkGRkmS2sPAqJ5nYJQkqVoGRvUsexglSWoPA6N6lkFRkqT2MDCqZ9nDKElSexgY1bMMjJIktYeBUT3LwChJUnsYGCVJktSUgVE9yx5GSZLaw8ConmdglCSpWgZG9azMTrdAkqS1g4FRPc8eRkmSqmVgVM+q9TAaGCVJqpaBUT3rmWeKVwOjJEnVMjCq5xkYJUmqloFRPctFL5IktYeBUT3PHkZJkqplYFTPsodRkqT2MDCqZ7lKWpKk9jAwqmcZGCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y0UvkiS1h4FRPc8eRkmSqmVgVM9yDqMkSe1hYFTP8rukJUlqDwOjep6BUZKkahkY1bNc9CJJUnsYGNXz7GGUJKlaBkb1LHsYJUlqDwOjeparpCVJag8Do3qWgVGSpPYwMKpnGRglSWoPA6N6noFRkqRqGRjVs1z0IklSexgY1fPsYZQkqVoGRvUs5zBKktQeBkb1LL9LWpKk9uiawBgR0yLi2oh4IiIeioizImKg7virI+LOiHgqIn4cEVs3qWtyRFwZEYsi4r6I+IeG62RELKzbTqw7HhFxWkQ8Vm6nRxhJupl/OpIkVatrAiPwZeARYHNgd2AmcCxARGwMXAGcCEwGZgPfalLX2cBSYFPgXcA5EbFTQ5kNMnNiuZ1St/8o4EBgN2BX4M3A0WtyY6qGi14kSWqPbgqM2wCXZebTmfkQcD1QC3kHAXMyc1ZmPg2cDOwWETs0VhIRE4CDgRMzc2Fm3gx8Fzh0mO04HDgjM+/PzAeAM4Aj1uC+VDF7GCVJqlY3BcYzgUMiYnxETAXeSBEaoQiOt9cKZuYi4E88GyjrbQ+syMy76vbdPkjZ+yLi/og4r+zBrFnpWkOc+zcRcVREzI6I2XPnzm1+h2opexglSWqPbgqMP6EIZk8C91MMO3+nPDYRmN9Qfj6w3iD1rKrso8BLgK2BPcr9Fzc5fz4wcah5jJl5bmbOyMwZU6ZMGereVAFXSUuS1B5tCYwRcWO50GSw7eaIGAV8n2Ke4gRgY2BD4LSyioXApIZqJwELBrlc07LlMPXszFyemQ8D7wNeFxGThjh/ErAw0/6sbnP44XDggfCJT3S6JZIk9be2BMbM3DczY4htb4qFLFsCZ2Xmksx8DDgP2K+sYg7FIhTgb/MUp5f7G90FDETEdnX7dhuiLEAtCNb6qVa61irOVQdNmgRXXgmbbdbplkiS1N+6Ykg6Mx8F7gGOiYiBiNiAYvFJbS7hlcDOEXFwRIwFTgJ+k5l3DlLXIoqeyk9HxISIeDlwAPANgIh4aUS8ICJGRcRGwBeBGzOzNgx9IfDhiJgaEVsAxwHnV3PnkiRJ3a8rAmPpIOANwFzgbmA58CGAzJxLsfL5M8ATwEuBQ2onRsQJEXFdXV3HAuMoHtNzKXBMZtZ6CbelWEyzALgDWAK8s+7crwLfA35bHr+m3CdJkrRWCqfmtc6MGTNy9uzZnW6GJEnSKkXEbZk5Yzhlu6mHUZIkSV3IwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqKjKz023oGxGxAPhDp9uxltkYeLTTjVjL+Jm3n595+/mZt5+fefu9IDPXG07Bgapbspb5Q2bO6HQj1iYRMdvPvL38zNvPz7z9/Mzbz8+8/SJi9nDLOiQtSZKkpgyMkiRJasrA2FrndroBayE/8/bzM28/P/P28zNvPz/z9hv2Z+6iF0mSJDVlD6MkSZKaMjBKkiSpKQNjC0TE5Ii4MiIWRcR9EfEPnW5Tv4uI90XE7IhYEhHnd7o9/S4i1o2I/yr/fi+IiF9FxBs73a5+FxEXRcSDEfFkRNwVEUd2uk1ri4jYLiKejoiLOt2WfhcRN5af9cJy83nGbRARh0TE78vs8qeIeEWz8j6HsTXOBpYCmwK7A9dExO2ZOaejrepvfwX+HXg9MK7DbVkbDAB/AWYC/wvsB1wWEbtk5r2dbFif+yzw/2XmkojYAbgxIn6Vmbd1umFrgbOBX3S6EWuR92Xm1zrdiLVFRLwWOA14B3ArsPmqzrGHcQ1FxATgYODEzFyYmTcD3wUO7WzL+ltmXpGZ3wEe63Rb1gaZuSgzT87MezPzmcy8GrgH2KPTbetnmTknM5fU3pbb9A42aa0QEYcA84AfdrgpUlU+BXw6M/+n/J3+QGY+0OwEA+Oa2x5YkZl31e27HdipQ+2RKhcRm1L83bcXvWIR8eWIeAq4E3gQuLbDTeprETEJ+DRwXKfbspb5bEQ8GhG3RMS+nW5MP4uI0cAMYEpE3B0R90fEWRHRdLTOwLjmJgLzG/bNB4b13YxSr4mIMcDFwAWZeWen29PvMvNYit8nrwCuAJY0P0Nr6BTgvzLzL51uyFrkX4FtgakUzwX8XkTYk16dTYExwFspfq/sDrwI+ESzkwyMa24hMKlh3yRgQQfaIlUqIkYB36CYs/u+DjdnrZGZK8rpLs8Djul0e/pVROwOvAb4fIebslbJzJ9n5oLMXJKZFwC3UMyTVjUWl69fyswHM/NR4D9ZxWfuopc1dxcwEBHbZeYfy3274VCd+kxEBPBfFP863S8zl3W4SWujAZzDWKV9gWnA/xZ/3ZkIjI6IF2bmizvYrrVNAtHpRvSrzHwiIu6n+JyHzR7GNZSZiyiGiT4dERMi4uXAARS9MKpIRAxExFhgNMUv9LER4T+AqnUOsCOwf2YuXlVhrZmI2KR87MXEiBgdEa8H3gn8qNNt62PnUgTy3cvtK8A1FE9jUAUiYoOIeH3td3hEvAvYB/h+p9vW584D3l/+ntkQ+Bfg6mYn+D/Y1jgW+DrwCMWq3WN8pE7lPgF8su79uylWfZ3ckdb0uYjYGjiaYv7cQ2XvC8DRmXlxxxrW35Ji+PkrFP+4vw/4l8y8qqOt6mOZ+RTwVO19RCwEns7MuZ1rVd8bQ/GItB2AFRSLuw7MTJ/FWK1TgI0pRkmfBi4DPtPsBL9LWpIkSU05JC1JkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJLRIRcyJi3zZd64URMbuCeq+IiDe0ul5Jvc3nMErSMJUPcq4ZT/Eg8xXl+7Y+xDwiLgdmZeY3W1zvnsA5mblHK+uV1NsMjJK0GiLiXuDIzLyhA9fenOL76rfIzKcrqP+PwDszs+U9mJJ6k0PSktQiEXFvRLym/PnkiJgVERdFxIKI+G1EbB8RH4uIRyLiLxHxurpz14+I/4qIByPigYj494gYPcSlXgv8sj4sltc+PiJ+ExGLyro2jYjryuvfUH5nLOX39l4UEY9FxLyI+EVEbFpX/43Am1r+AUnqWQZGSarO/sA3gA2BXwHfp/i9OxX4NPDVurIXAMuB5wMvAl4HHDlEvbsAg33X7sEUYXL78trXASdQfGfsKOADZbnDgfWBLYGNgPcCi+vq+T2w27DvUlLfMzBKUnVuyszvZ+ZyYBYwBfhcZi4DvglMi4gNyt69NwL/kpmLMvMR4PPAIUPUuwGwYJD9X8rMhzPzAeAm4OeZ+avMXAJcSRFEAZZRBMXnZ+aKzLwtM5+sq2dBeQ1JAmCg0w2QpD72cN3Pi4FHM3NF3XuAicAWwBjgwYiolR8F/GWIep8A1hvG9RrfTyx//gZF7+I3I2ID4CLg42WQpax73lA3JWntYw+jJHXeXyhWXG+cmRuU26TM3GmI8r+hGHZeLZm5LDM/lZkvBPYC3gwcVldkR+D21a1fUv8xMEpSh2Xmg8D/Bc6IiEkRMSoipkfEzCFO+QHw4ogYuzrXi4hXRsQu5aKaJymGqFfUFZlJMf9RkgADoyR1i8OAdYDfUQw5fxvYfLCCmfkw8CPggNW81mZl/U9SLHD5CcWwNBHxEmBRZt66mnVL6kM+h1GSelBEvJBiZfWe2cJf5OUDwf8rM69tVZ2Sep+BUZIkSU05JC1JkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElq6v8BRMCWhg/IaU4AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCkUlEQVR4nO3debgcZZ33//c3OYFsBAgECBEIIAiyKhEdRIK7ogwILriwzPwQhHFHnNERRBlRmIdRFER5HFlkUSLggoCPqDiAjhhUkCgiCih7WBKSELLx/f1R1dJpzumck3T1lvfruurq01V33XVXE04+uZfqyEwkSZKkoYzqdAMkSZLU3QyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoqW9ExHUR8bW69+dFxLWdbJMk9QMDo6SOi4iNIuK0iPhjRDwVEQ9HxP9ExGERMVDxtY+KiB9HxGMRkRGx9yBlziuPNW4jaltEnFR37tMRcV9EXBIRW7XujlbZho9ExIqI+K92XXOQNoyNiHMj4jcRsTQi7hyi3GCf+YXtbq8kA6OkDouI5wC/Bg4GPg28EHgp8N/AR4CdK27CeOAnwPGrKHc9MLV+y8zlq3G9u8vznwMcBswAvh8Ro1ejrtXxbuAU4LCIWLdN12w0GlgKnAN8cxVl38vKn/u/VNs0SYMxMErqtLOBdYEXZuZFmfn7zPxTZp4P7AH8qVYwIt4XEbeXvZB/ioh/X9MeyMz8QmZ+BvjxKoouzcwH67fVvOSK8vz7M/PHwEnALsBzASLi8Ij4fUQsiYh7I+I/6u+xHHb/ekR8LiIeiYgnIuJrETFuVReOiJcDGwCfAh6iCOn1x/81IuZFxPS6fZ+MiEfLYE9EvKTs/V0cEY9HxMURsUld+ZMi4s6IOKD8b7UoIn4aEdvWymTmosw8OjPPBv6yimbPb/jc56/qPiW1noFRUsdExGRgP+DMwYJAZi7LzEVl2ZMoehw/BuwIfAA4Gvhkm5q7Z0Q8GBF3RcRlEbFTi+pdXL6OiYg3AF8HvkERIo+j6FFrvMc3AxsBLwPeCfwjcOowrnU0cFHZM3o+cFTD8dOAXwKXRMRARLwM+ATwT5l5b0RsBvw/4F5gT2B/ih7gyxrqmQocU7ZtL4qQ+vVhtG8wp5aB9ZaIODkixq9mPZLWQKVzgyRpFZ5L8Q/X3zcrVIaEjwIHZeY15e67IuITwBeBEyptJVwDXE7RG7ZZ2ZZfRcSemXnb6lYaEVsC/wr8DfgjRW/rZZn52bLIHWVI+1xEnJyZS8v9jwHvycwVwB/Kz+FLEfGxWsAe5FpTgDdRBD0oQulnIuJ5mflHgMzMiDgUuIXic90f+HJmfq8851+AJ4Ajam0py/82IvbJzP8py60LHJqZc8sypwIXR8TYzHxqBB/RicBPy2vOAD4DzIyImZmZI6hH0hqyh1FSJ0X5uqq//HcCxgGXRcTC2gZ8FVi/DEOVycxvZub3MvO2zLwWeCNwP/D+1ahum7L9TwL3UHwGb8rMZRT3+T8N5X8GjAW2rdt3UxkWa24E1mko0+ifgD9k5i3lPT0A/IhiTuPfZebDwD9T9BA+ShGOa3YC/rcuuFLWN788VnN/LSyW7ivvcxNGIDNPzswbMvPWzPw6RY/ly4B/GEk9ktacPYySOulPwNMUYeOKJuVq/7h9C3DHIMcfa3G7msrMpRExG5i+Gqf/DXglxX0/mJlPNlbf8H44oTqaHCMiAjgSeG5E1C/UGQW8KCI+Xh8CgZnACmBTYH3g4SbtG2z/0iGOrWknxc/L1+l1P0tqA3sYJXVMZj4GXA28NyLWbzweEWMiYgIwB3gK2CYz7xxkW9F4bpXKFc27UoS/kVpWtvkvg4TFORRhrd4+FPMc6xeHvKhhVfU/UIS0Pw9xzVcA21CsPt+9YRsDHFQrGBGvopgr+o8UPaDnl4Gz1r5/iIh16srvRhEq5wx1wy30gvJ1dT53SWvAHkZJnXYsxZDqzRFxIvBbivDzEopH3Ryemb+NiFOAU8rs8iOK31+7AC/IzH9d3YuXcwQ3AzYvdz23HO5+MDMfjIiJFI/7uYxiaHWTsl3bAO9a3esO4bMUj9j5N4o5k7tTrKI+vaEHcCPgrIg4o2zHycD/HWr+IsVil59l5i8aD0TE9ygWv3yzHNr/BvB/MvOqiPgDxX+PDwOnA2dSLDY6r/zvsQHwZeCGzLx+JDcaEc+nGEbfDFgnInYvD/2+7MHdH5hG0ZO4gCIs/h/gJoo/L5LayMAoqaMy868R8ULg3yjC0ZYUixz+APwncFtZ7uSIuB94H0VwWEwxPH3eGjbhPay8Cvnc8vVTZXtWAM8H3gFMBuYCNwN7ZeavaydFxBHluVtn5t2r05AypP0zxWfx6fJaXy7bUu/bFCHqBorQNYuV5xr+XfnImwMpPrfBfIsipG4HfIGiV/GEsj13RcR7KALizzJzdkS8hmI19a+AJcBVwAdX43avAuofWP6b8nVrimdVLqUYRj+Nohf0r2VbP5eZT6/G9SStgXChmSStuYj4NMVzDXdbzQd6D/c61wF3ZuaRVV1Dkho5h1GSWuONwHurDIuS1CkOSUtSC2TmCzvdBkmqikPSkiRJasohaUmSJDVlYJQkSVJTzmFsoY033jinT5/e6WZIkiSt0s033/xIZg7rq1UNjC00ffp0Zs+e3elmSJIkrVJE3DPcsg5JS5IkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjet4mm8DMmZ1uhSRJ/Wug0w2Q1tTcucUmSZKq0TU9jBGxsGFbERFfqjt+ZETcWR67JiI2b1LX9Ii4KiIej4gHI+LMiBioO5YN1zqh7tyIiFMj4tFyOy0iotq7lyRJ6l5dExgzc2JtAzYFFgOzACJiJnAKcAAwGbgLuKRJdV8GHgamArsDM4FjG8psUHfNk+v2HwUcCOwG7Aq8ETh6jW5OkiSph3VNYGzwZorAd335fn9gVmbOycylwMnAPhGx7RDnbw1cmplPZeaDwDXATsO89uHA6Zl5b2beB5wOHLGa9yFJktTzujUwHg5ckJlZvo9yo+49wM5DnH8GcEhEjI+IacDrKUJjvXsi4t6IODciNq7bvxNwS937Wxh+2JQkSeo7XRcYI2JLiiHk8+t2XwW8NSJ2jYhxwIlAAuOHqOZnFCHvCeBeYDbwnfLYI8CLgK2APYD1gIvqzp0IzK97Px+YONQ8xog4KiJmR8Tsua68kCRJfagtgTEirisXmgy23dBQ/DDghsy8q7YjM38MfBK4DLgHuBtYQBEGG681CvghcDkwAdgY2BA4taxrYWbOzszlmfkQ8F7gNRExqaxiITCprspJwMK63s6VZOY5mTkjM2dMmTJlRJ+LJElSL2hLYMzMfTMzhtj2bih+GCv3LtbqOCszt8vMTSiC4wBw2yCXmwxsAZyZmUsy81HgXGC/oZpXvtZ6EOdQLHip2a3cJ0mStFbqqiHpiNgLmEa5Orpu/9iI2Ll85M2WwDnAGZn5eGMdmfkIxSrqYyJiICI2oJgTeUtZ14sj4nkRMSoiNgK+CFyXmbVh6AuAD0fEtPLRPccB51Vxv5IkSb2gqwIjRbC7PDMXNOwfC1xMMVx8E/ALoP7ZiR+PiKvryh8EvA6YC9wJLAc+VB7bhmIBzAKKHsolwNvrzv0q8H3gd+XxH5T7JEmS1koxxNQ8rYYZM2bk7NmzO92MtU5tOZJ/lCVJGr6IuDkzZwynbLf1MEqSJKnLGBglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkY1Tf8phdJkqphYFTfWLGi0y2QJKk/GRjVN5Yv73QLJEnqTwZG9Q0DoyRJ1TAwqm8YGCVJqoaBUX3DwChJUjUMjOobBkZJkqphYFTfMDBKklQNA6P6hoFRkqRqGBjVN5Yt63QLJEnqTwZG9Q17GCVJqoaBUX1j6dJOt0CSpP5kYFTfWLKk0y2QJKk/GRjVN+xhlCSpGgZG9Q0DoyRJ1TAwqm84JC1JUjUMjOob9jBKklQNA6P6hoFRkqRqGBjVNxySliSpGgZG9Q17GCVJqoaBUX3DwChJUjUMjOobDklLklQNA6N63qjyT7E9jJIkVcPAqJ63zjrFq4FRkqRqGBjV8wYGileHpCVJqoaBUT0vs3i1h1GSpGoYGNXzDIySJFXLwKi+4ZC0JEnVMDCq59V6GA2MkiRVw8ConlcLjCtWdLYdkiT1q64JjBGxsGFbERFfqjt+ZETcWR67JiI2b1LX9Ii4KiIej4gHI+LMiBgoj72z4TpPRkRGxB7l8ZMiYllDmW2q/wS0umqBcfnyzrZDkqR+1TWBMTMn1jZgU2AxMAsgImYCpwAHAJOBu4BLmlT3ZeBhYCqwOzATOLa8zkUN1zoW+Avw67rzv1VfJjP/0sJbVUXsYZQkqRpdExgbvJki8F1fvt8fmJWZczJzKXAysE9EbDvE+VsDl2bmU5n5IHANsNMQZQ8HLsis9VOp19jDKElStbo1MDaGuCg36t4D7DzE+WcAh0TE+IiYBryeIjSuJCK2AvYBLmg4tH9EPBYRcyLimGYNjYijImJ2RMyeO3du87tSJQyMkiRVq+sCY0RsSTGEfH7d7quAt0bErhExDjgRSGD8ENX8jKJH8QngXmA28J1Byh0GXJ+Zd9XtuxTYEZgCvBs4MSLePlR7M/OczJyRmTOmTJkyjDtUq7noRZKkarUlMEbEdeXCksG2GxqKHwbcUB/iMvPHwCeBy4B7gLuBBRRhsPFao4AfApcDE4CNgQ2BUwdp2mGsHEzJzN9n5v2ZuSIzf07RW/nm1bpxtZU9jJIkVaMtgTEz983MGGLbu6H4s0JcWcdZmbldZm5CERwHgNsGudxkYAvgzMxckpmPAucC+9UXioiXApsD315V81l5OFxdxh5GSZKq1VVD0hGxFzCNcnV03f6xEbFzFLYEzgHOyMzHG+vIzEcoVlEfExEDEbEBxZzIWxqKHg5clpkLGq51QERsWF5rT+D9wHdbdIuqgHMYJUmqVlcFRooQd3ljiAPGAhcDC4GbgF8AJ9QORsTHI+LquvIHAa8D5gJ3AsuBD9WVHwu8lUF6MoFDynMWUCyGOTUzByunLmEPoyRJ1RrodAPqZebRQ+yfB+za5LxTGt7/Fti3SfmngA2GODbkAhd1N3sYJUmqRrf1MEojZg+jJEnVMjCqb9jDKElSNQyM6mn1389jD6MkSdUwMKpv2MMoSVI1DIzqafU9jAZGSZKqYWBUT3NIWpKk6hkY1dPsYZQkqXoGRvUNexglSaqGgVE9zR5GSZKqZ2BUT3MOoyRJ1TMwqqfZwyhJUvUMjOob9jBKklQNA6N6mj2MkiRVz8ConuYcRkmSqmdgVN+wh1GSpGoYGNXTaj2Mo0fbwyhJUlUMjOpptcA4ZkzRw1g/RC1JklrDwKieVguIAwPF69NPd64tkiT1KwOj+sKYMcWrw9KSJLWegVE9rbGH0YUvkiS1noFRPa0xMNrDKElS6xkY1dPqF72APYySJFXBwKi+MHp08WoPoyRJrWdgVE9zSFqSpOoZGNXTDIySJFXPwKieZmCUJKl6Bkb1BecwSpJUHQOjepo9jJIkVc/AqJ5mYJQkqXoGRvU0A6MkSdUzMKov1OYwPv10Z9shSVI/MjCqp9V6GF30IklSdQyM6mkOSUuSVD0Do3qagVGSpOoZGNUXHJKWJKk6Bkb1NHsYJUmqnoFRPc3AKElS9QyM6mkGRkmSqtc1gTEiFjZsKyLiS3XHj4yIO8tj10TE5k3q2jEifhIR88tz3tRw/JURcXtEPBkRP42IreqORUScGhGPlttpERHV3LVaxTmMkiRVp2sCY2ZOrG3ApsBiYBZARMwETgEOACYDdwGXDFZPRAwA3wWuLMseBVwYEduXxzcGLgdOKI/PBr5VV8VRwIHAbsCuwBuBo1t4q2qhxucw+uBuSZJar2sCY4M3Aw8D15fv9wdmZeaczFwKnAzsExHbDnLuDsDmwOczc0Vm/gS4ETi0PH4QMCczZ2XmU8BJwG4RsUN5/HDg9My8NzPvA04Hjmj5HaolHJKWJKl63RoYDwcuyKzFAaLcqHsPsPMg5w42fBx1ZXcCbqkdyMxFwJ/L/c86Xv68E+pKBkZJkqrXdYExIrYEZgLn1+2+CnhrROwaEeOAE4EExg9Sxe0UvZPHR8SYiHhNWV+t7ERgfsM584H1hjg+H5g41DzGiDgqImZHxOy5c+cO9zbVYs5hlCSpOm0JjBFxXUTkENsNDcUPA27IzLtqOzLzx8AngcuAe4C7gQXAvY3XysxlFHMQ3wA8CBwHXFpXdiEwqeG0SWV9gx2fBCys6+1svN45mTkjM2dMmTKl2cegCtjDKElS9doSGDNz38yMIba9G4ofxsq9i7U6zsrM7TJzE4rgOADcNsT1bs3MmZm5UWa+FtgGuKk8PIdiQQsAETEB2Lbc/6zj5c9zUFcyMEqSVL2uGpKOiL2AaZSro+v2j42InctH3mwJnAOckZmPD1HPruU54yPiI8BU4Lzy8BXAzhFxcESMpRjevjUzby+PXwB8OCKmlY/uOa7uXHUZA6MkSdXrqsBIsdjl8sxc0LB/LHAxxXDxTcAvKB6LA0BEfDwirq4rfyjwAMVcxlcCr87MJQCZORc4GPgM8DjwYuCQunO/Cnwf+B1FD+YPyn3qYs5hlCSpOgOdbkC9zBz0eYeZOY/imYhDnXdKw/vjgeOblL+W4vE7gx1L4KPlpi7X+BxGA6MkSa3XbT2M0og0Dkn74G5JklrPwKi+YA+jJEnVMTCqp7noRZKk6hkY1dMMjJIkVc/AqJ5mYJQkqXoGRvUF5zBKklQdA6N6mj2MkiRVz8ConmZglCSpegZG9TQf3C1JUvUMjOoLtcDog7slSWo9A6N6mkPSkiRVz8ConmZglCSpegZG9bRaYBxV/kk2MEqS1HoGRvWFiGIeo4FRkqTWMzCqp9V6GMHAKElSVQyM6mm1wGgPoyRJ1TEwqqcZGCVJqp6BUX2hFhh9DqMkSa1nYFRPq5/DOGqUPYySJFXBwKie5pC0JEnVMzCqpxkYJUmqnoFRfcHAKElSdQyM6mk+h1GSpOoZGNXTHJKWJKl6Bkb1NAOjJEnVMzCqLxgYJUmqjoFRPa1xDqMP7pYkqfUMjOpp9UPSPrhbkqRqGBjV05zDKElS9QyM6gsGRkmSqmNgVE/zOYySJFXPwKie5pC0JEnVMzCqpxkYJUmqnoFRfcHAKElSdQyM6mnOYZQkqXoGRvW0xiFpH9wtSVLrGRjV03xwtyRJ1TMwqi84h1GSpOoYGNXTnMMoSVL1uiYwRsTChm1FRHyp7viREXFneeyaiNi8SV07RsRPImJ+ec6b6o69JCJ+FBGPRcTciJgVEVPrjp8UEcsa2rJNdXeuNeFjdSRJql7XBMbMnFjbgE2BxcAsgIiYCZwCHABMBu4CLhmsnogYAL4LXFmWPQq4MCK2L4tsCJwDTAe2AhYA5zZU86369mTmX1p2o6qEgVGSpOp0TWBs8GbgYeD68v3+wKzMnJOZS4GTgX0iYttBzt0B2Bz4fGauyMyfADcChwJk5tWZOSszn8jMJ4EzgZdWfD+qiEPSkiRVr1sD4+HABZl/jwNRbtS9B9h5kHNjiH2DlQXYB5jTsG//csh6TkQcM8w2qwMckpYkqXpdFxgjYktgJnB+3e6rgLdGxK4RMQ44EUhg/CBV3E7RO3l8RIyJiNeU9T2rbETsWtZ1fN3uS4EdgSnAu4ETI+LtTdp7VETMjojZc+fOHcGdqhUMjJIkVa8tgTEirouIHGK7oaH4YcANmXlXbUdm/hj4JHAZcA9wN8Xcw3sbr5WZy4ADgTcADwLHUYTAlcpGxHOBq4EPZOb1def/PjPvL4ezfw6cQTFEPqjMPCczZ2TmjClTpgz3I1GL1Z7D6IO7JUlqvbYExszcNzNjiG3vhuKHsXLvYq2OszJzu8zchCI4DgC3DXG9WzNzZmZulJmvBbYBbqodj4itgGuBkzPzG6tqPoMPc6sLOIdRkqTqddWQdETsBUyjXB1dt39sROwchS0pVjmfkZmPD1HPruU54yPiI8BU4Lzy2DTgJ8BZmfmVQc49ICI2LK+1J/B+ilXX6kIOSUuSVL2uCowUi10uz8wFDfvHAhcDCyl6Cn8BnFA7GBEfj4ir68ofCjxAMZfxlcCrM3NJeexIih7HT9Y/a7Hu3EOAOymGvC8ATs3MZ/V4qjsYGCVJqt5ApxtQLzOPHmL/PGDXJued0vD+eFZeyFJ/7FPAp5rUNeQCF3UvA6MkSdXpth5GaUScwyhJUvUMjOppDklLklQ9A6N6moFRkqTqGRjVFwyMkiRVx8ConlY/h9EHd0uSVA0Do3qaQ9KSJFXPwKieZmCUJKl6Bkb1hVpgzFx5mFqSJK05A6N6Wn04HCgfQ798eWfaIklSvzIwqqfVD0mPGVP8vGxZ59ojSVI/MjCqpxkYJUmqnoFRfcHAKElSdQyM6mn1cxgNjJIkVcPAqJ5WPyS9zjrFz0uXdq49kiT1IwOjeppzGCVJqt7AcApFxGuAI4CdgPWABcAc4NzM/FFlrZOGycAoSVJ1VhkYI+JDwEeB/wtcBswHJgG7AedHxKmZeUalrZSG4BxGSZKqN5wexuOBl2fm7Q37L4+IS4CfAgZGdYRD0pIkVW84cxgnAPcPcexBYHzrmiONjIFRkqTqDScwXgZ8PyJeGRFTImKdiNg4Il4JXAF8u9omSqtmYJQkqTrDCYzvAX4OnA88BCwuX88H/hc4prLWSatQP4fRx+pIklSNVc5hzMylwMeAj0XEBsBEYGFmzmssGxEvzcwbW91IaSgOSUuSVL1hPVanpgyJ85oUuZpiBbXUFgZGSZKq1+oHd0eL65OGxcAoSVJ1Wh0Yc9VFpNbxOYySJFXPrwZUT3NIWpKk6hkY1dMMjJIkVc85jOobPlZHkqRqjCgwRsRGEXFoRHy0fL95RDyndjwz12t1A6Vm7GGUJKl6ww6METET+CPwTuCEcvd2wNkVtEsaFgOjJEnVG0kP4xeAt2Xm64Dl5b5fAnu2ulHSSBkYJUmqzkgC4/TM/HH5c+1hJksZ4cO/pVbyqwElSareSALj7yPitQ37XgX8roXtkUakcUh69GhYvLizbZIkqd+MpHfwOODKiPgBMC4ivgrsDxxQScukYagPjADjxhkYJUlqtWH3MGbm/wK7AXOArwN3AXtm5q8qaps0bAZGSZKqM6L5h5l5H3BaRW2RRiwbvozSwChJUus1DYwR8Q2G8f3QmXlYy1okjYBD0pIkVW9VQ9J3An8ut/nAgcBo4N7y3AOAedU1T2rOwChJUvWaBsbM/FRtA7YH3pCZ78zMj2fmu4A3AM9rRUMiYmHDtiIivlR3/MiIuLM8dk1EbN6krh0j4icRMb885011x6ZHRDZc64S64xERp0bEo+V2WkT4lYddzsAoSVJ1RvJYnZcA/9uw75fAP7SiIZk5sbYBmwKLgVnw92+ZOYWiR3MyxYKbSwarJyIGgO8CV5ZljwIujIjtG4puUHfNk+v2H0XRk7obsCvwRuDoVtyjWs85jJIkVW8kgfE3wCkRMQ6gfP0M8NsK2vVm4GHg+vL9/sCszJyTmUuBk4F9ImLbQc7dAdgc+HxmrsjMnwA3AocO89qHA6dn5r3lIp/TgSNW/1ZUJYekJUmq3kgC4xHAS4H5EfEQxZzGvYEqFrwcDlyQ+ff+oyg36t4D7DzIuYMNH8cgZe+JiHsj4tyI2Lhu/07ALXXvbyn3qQsZGCVJqt5InsN4d2buBWwL/CPw3MzcKzPvbmWDImJLYCZwft3uq4C3RsSuZc/miRSrt8cPUsXtFL2Tx0fEmIh4TVlfrewjwIuArYA9gPWAi+rOn0gRhmvmAxOHmscYEUdFxOyImD137tyR3axaxsAoSVJ1RtLDSERsCLwceAWwb/l+OOddVy40GWy7oaH4YcANmXlXbUf5HdafBC4D7gHuBhZQrNZeSWYuo5iD+AbgQYpvqLm0VjYzF2bm7MxcnpkPAe8FXhMRk8oqFgKT6qqcBCys6+1svN45mTkjM2dMmTJlOB+HWsg5jJIkVW/YgTEi/oHi8TrvoVgMcjTw53J/U5m5b2bGENveDcUPY+XexVodZ2Xmdpm5CUVwHABuG+J6t2bmzMzcKDNfC2wD3DRU82q3WL7OoVjwUlP7dht1ocYh6fHj4cknO9ceSZL60Ui+6eULwLGZ+c3ajoh4G/BFiiHeNRYRewHTKFdH1+0fCzyXIrhtAZwDnJGZjw9Rz67AHRSB+FhgKnBeeezFFM+O/BOwYdn+6zKzNgx9AfDhiLiKIkweB3wJdaXGwDhpEixcCE8/DaNG1H8uSZKGMpK/UrenGNqt922KINcqhwOXZ+aChv1jgYsphotvAn4B1D878eMRcXVd+UOBByjmMr4SeHVmLimPbQNcQzGkfRuwBHh73blfBb4P/K48/oNyn7pYLTCuv34RIhcu7Gx7JEnqJyPpYfwTcAhFcKt5C8UwdUtk5qDPO8zMeRTD4EOdd0rD++OB44coewlDPMOxPJ7AR8tNXa5xDuOkcvbp/PnP/CxJktbMSALjB4ErI+L9FAtPpgPbUTzYWuqIxiHp9dcvXufPhy226EybJEnqN8MOjJn58/JB2W+geDD294GrMvOxqhonrcpgcxgBnniiM+2RJKkfjaSHkXKRyYUVtUVabYP1MEqSpNYYdmCMiK0pvgpwd4qHW/9dZm7Z2mZJwzPUHEZ7GCVJap2R9DBeTLHA5TjAJ92pKzSbwyhJklpjJIFxJ+Clmfl0VY2RRsrAKElS9UbyHMb/AV5QVUOkNVELjBMmFA/sdkhakqTWGUkP493ADyPicorvaP67zDyxlY2ShqtxDmNEMY/RHkZJklpnJIFxAsWjdMZQfD1fTQ5eXKpe45A0FIHRHkZJklpnJM9h/KdVlYmIt5ffpCK1xWCBcf317WGUJKmVRjKHcTj8zmV1RGMPo4FRkqTWaXVgjFUXkVqncQ4jFD2MDklLktQ6rQ6MzmdUWw01JD1vXkeaI0lSX2p1YJTaarDAuPHG8MgjnWmPJEn9aJWBMSIMlep69YFxs82KOYxPPdW59kiS1E+GEwbvi4jTImLnYZT965o2SBqJweYwbrpp8frQQ+1tiyRJ/Wo4gfE9wNbAryLi1xHxgYiYMljBzBxOqJRaZrAhaQOjJEmttcrAmJnfzcy3AFMpHpvzFuBvEfG9iDg4IsZU3UhpVRqHpAEeeKAzbZEkqd8Me35iZs7LzK9m5t7AjsBs4POAfy2rYwYbkt566+L1L39pb1skSepXI/lqQAAiYl3gRcCLgU2Bn7e6UdJwDTYkvdFGxUrpP/yhM22SJGl1ZMKyZbB48dDbk082Pz6SciMx7MAYEXsDhwFvBR4GvgEcm5n3jOySUusMFhgBdtgB5sxpf3skSf0nE5YseSaEPfnkylvjvjV5v2LF6rVx9GgYN+6Zbfz4ld9Pnrzy+3Hj4AtfGH79qwyMEXEScCgwGZgFvCEzb1y925Gq0RgY99oL/uu/im98mTSpM22SJFXr6aeLR6gNN5itSZgbbArUqowZUwS32lYLcuPHw5Qpgx8bLOwNtjWWGbMaK0paGhiBlwD/DnwnM32ynbrKUP8D77cfnHYaXHstHHRQe9skSSosW1aErUWLntlW9/1gYW51n7c7duyzA1zt/YYbDh7wRvp+3DgYGPHEv+61ylvJzNe1oyHS6hhqSHqvvYqvCLzySgOjJA1lxYqVA9qqwttIA9+yZSNrz8AATJhQbOPHP/PzhAmwySZrFuDqe+RG+ZUkI9ZH2Vdro6EC45gxsP/+cMUV8OUvF/+alKRelFn0rC1c+Oxt0aLB9w033C1ZMrK2jBo1dKCbPHnl943Hh/N+nXWq+Qy15gyM6guNgRHgn/8ZLrwQvvhF+OhH298mSWufpUtHFuyGU3bRopHNn2sMYrUwNnXq0GFtuIFu3XUH/32r/mdgVE9r9kt0333hwAPh3/4NNt8c3vWudrVKUrfLLOa/LViw8jbcsDfU/uXLh9+GddeFiROf2SZMKF432mjw/Y3bYPsdblVVDIzqaUMNSdf2XXwxvPGNcPjhMG8eHHusv0ylXrV8+bMDXv32xBPNjzduw318yahRgwe2TTYpvihgsGOrCnoTJqzeqlapUwyM6mnNAiMU/9r+3vfgLW+B970PLrsMvvY12Hbb9rVRWltlFr1wIw1yQ23DXRE7MADrrbfyNmkSTJv27P2DbY0Bz2FYycCoPtHsl/mECfCDH8C558KHPwy77AKnnFIEyNGj29dGqVdkFosjnngC5s8vXlfn5yeeGN7cu4gimDUGt622Gl7Aa9wMeFLrGRjV04Y7ETyiWATz2tfC0UfDhz4E3/wmfOUrsPvulTZRapvavLzhhrpmQW84w7XjxxePr5o0qdjWXx822+yZnydNeqZ3r1nAGz/eqSJStzMwqqeN9Mn706bB978PF11U9DbusQe8//3w6U8Xf3FJnbR8eRHc5s1beWvcV/++MewN57l3Y8euHPImTYJttnl2+Kt/bfx50qT+eiixpOb83109LXPkQ08RxYrpN7wBPvYxOOMMmDWr+Iqkgw92KEurb8mS4Qe9wfYtWrTqa6y/PmywQbGtvz5ssQXstNPQwa7x59qQrSSNhIFRPW91A96GGxZD0kccAcccUyyMef3r4cwzi94WrX2efroIcI8/Do89tvLr44+vOgyualHG6NHPBL1a6Ntss5Xf14fBxvfrree8W0mdYWBUT1udL4Nv9JKXwK9+VQTFE04oemv+/d/h+OPtielFtQUbg4W+oV5rP8+b1/zP1DrrPDvEbbnlqoNe7ecJE+zBltSbDIzqaaszJD2YgQH44AeLXsYPfagIjhdeCGefDS9/+ZrXr5Fbtmxkoa8+/C1dOnS9o0cXvcsbblh8ldnGG8N22xU/1/bVv9b/PHasgU/S2snAqJ7WqsBYM20aXHopXHMN/Mu/wCteAW97G3ziE7Dzzq27ztri6aeLhRirE/oWLmxe96RJK4e5nXdedeCbPLkY1jX0SdLIGBjV86r4y/91r4PbboPPfhZOPx2+9S3Yf/+i93HmzLXrESCZsHjx6oW+efOK0DiUsWNXDnPTp8MLXzh40Kt/3WADV+hKUjv5K1c9rRVzGIcyblzxuJ0PfADOOgu++MXikTxbbgnveAfst18x/7Gbv94rs1i52/jcveG81s/tazbEO2rUymFuJEO848a177OQJK2+rgmMEdE4ADUO+HJmvq88fiTwb8BmwA3AP2fm/UPUtSNwFrAHMBc4PjOvKI+9E/hqXfFR5bVmZObNEXES8O/Akroyu2bmX9bsDlWFVg9JD2ajjeDEE+EjH4HvfhcuuAD+8z/hc58rvp3iBS+A3XYrhkSnTYOpU4vQNHZssdUWzixb9uxtyZKi927x4mKFbe3nobbVKdOsh6+m9ly++kewPP/5zXv5aq/rrbd29bhK0tqoawJjZk6s/RwRE4CHgFnl+5nAKcDLgT8BZwCXADMb64mIAeC7wFeAV5dlvh8RL8jMOzLzIuCiuvJHACcAv66r5luZ+a5W3p+q0Y7AWDN+PLz97cU2bx789Kdw7bXw29/Ceeetes7dmlp33aJHrnGrhb1NNx38eO3bOBofxFwfDtdZp9q2S5J6W9cExgZvBh4Gri/f7w/Mysw5ABFxMnBfRGybmX9uOHcHYHPg85mZwE8i4kbgUIpg2Ohw4IKyrHpQJxYwbLABvOlNxQZFL95998H998MDD8AjjxS9h7UNiqHrxm3ddYvAN1jQqw+EY8faiydJ6pxuDYyNIS7Kjbr3ADsDjYFxsPgQZdmVd0ZsBewD/HPDof0j4jHgAeDMzDx7ZM1Xu3RLzB81qvjGjS226HRLJElqva7rs4iILSmGkc+v230V8NaI2DUixgEnAgmMH6SK2yl6J4+PiDER8ZqyvsHKHgZcn5l31e27FNgRmAK8GzgxIt7epL1HRcTsiJg9d+7cYd+nWqOdQ9KSJK2t2hIYI+K6iMghthsaih8G3FAf4jLzx8AngcuAe4C7gQXAvY3XysxlwIHAG4AHgeMoQuCzypbXqg+mZObvM/P+zFyRmT+nmC/55qHuLTPPycwZmTljypQpzT8ItZyBUZKk6rUlMGbmvpkZQ2x7NxR/Vogr6zgrM7fLzE0oguMAcNsQ17s1M2dm5kaZ+VpgG+Cm+jIR8VKKuY7fXlXzGXyYW13CwChJUrW6akg6IvYCplGujq7bPzYido7ClsA5wBmZ+fgQ9exanjM+Ij4CTAXOayh2OHBZZi5oOPeAiNiwvNaewPspVl2rC3XLHEZJkvpZty16ORy4vDHEAWOBi4FtKYaiz6VuxXNEfBx4WWa+vtx1KHAkMIZipfWrM3NJXfmxwFuBgwdpwyHA14F1KYaxT83MZ/V4qr2WLoW//hXuvrvY7rqreL38cr/xQ5KkqoVPk2mdGTNm5OzZszvdjJ6UCXPnwp13wp//XGx/+cszwfC++1buTRw9utiWLi0eHP3EEx1ruiRJPSkibs7MGcMpa9+M2mbFCrj33mcCYS0c1l7rH3wdAc95Dmy9NbziFcV3DG+9dfE6fXpx7JBD4LLLnMMoSVLVDIxqqcziodW3315sf/xj8XrnnUVvYf13Eo8ZA9tsA9tuC/vsA899bvHzttsW4bD2lXqSJKmzDIxaLcuWFUPG9aGw9vNjjz1TbuxY2G674nuWDzigCIO1YPic5xTDyqur1rNoD6MkSdUyMKqpp5+Ge+6B3/1u5e2OO2D58mfKbbYZ7LADvOUtxWtt23LL6r7SzsAoSVJ7GBj1d/Pnw29/WwTCW28tXm+7beW5hdOnwy67wD/+I+y4YxEKn/c8WH/99rfXoChJUnsYGNdS8+bBr38NN9/8zHbnnc8cnzy5CIZHHFG87rIL7LQTTJrUqRY/mz2MkiS1h4FxLbBsGdxyC9x4I/ziF88Oh1tuCXvsAf/0T/DCF8Kuu8LUqd0fxAyMkiS1h4GxD82fDz//eREQb7wRbroJnnyyOPac58CLXlSEwz32KAJir38FtoFRkqRqGRj7wJIlRc/htdcW269+VSxWGT0adt8djjwS9tqr2LbYotOtbR2DoiRJ7WFg7FF/+xt897tw5ZXwP/8DixcXAfHFL4ZPfAL23Rf23BMmTOh0S6vjkLQkSe1hYOwhv/998d3J3/lOMQ8RYPvtix7EV72qCIndtCilagZGSZLaw8DY5ebOhUsugfPPL1Y1A7zkJfC5zxUPwt5hh862r5MMjJIktYeBsQtlFotVvvCFYth5+fJiccoXvlA8GHvzzTvdwu5gUJQkqT0MjF1kxQqYNQtOPx1mz4YNN4QPfKB4FuLOO3e6dd3L4ChJUrUMjF0gE773vWKxym23Fd+ccvbZcOih/b1oZU05JC1JUnsYGDtszhx4z3vghhtgu+3gm98shp2r+v7lfmJglCSpPYwlHbJ0adGjuPvu8Ic/wFe/WoTHt73NsDhcBkVJktrDHsYOuOeeIhj+8pdw2GHFnMWNN+50q3qPPYySJLWHgbHNfvSjIiyuWAHf/jYcfHCnW9S7DIySJLWHg59tdNFFsN9+xdfz/frXhsVWMTBKklQtA2ObfP3r8K53wd57F1/lt+22nW5R7zMoSpLUHgbGNrjiCnj3u+G1r4Wrr4b11+90i/qDQ9KSJLWHgbFiv/wlHHII7LknXHYZjB3b6Rb1DwOjJEntYWCs0COPFM9UnDoVrrzSh3C3moFRkqT2cJV0hY4+Gh56qPhe6I026nRr+o9BUZKk9jAwVuSKK+Dyy+Gzn4UZMzrdmv5mcJQkqVoOSVdg8WJ43/tgt93guOM63Zr+5ZC0JEntYQ9jBc4+G+67Dy6+GMaM6XRr+peBUZKk9rCHscWWLYPTToNXvQr22afTrelvBkVJktrDHsYW+8EPioUuX/tap1vS/+xhlCSpPexhbLFzzy0eo/O613W6Jf3PwChJUnsYGFsoE669Fg46CAbsu62cgVGSpPYwMLbQk08W2777drolkiRJrWNgbKEFC4rXl72ss+1YW9jDKElSexgYW2jhQnje82DTTTvdkrWDgVGSpPYwMLbQ4sXwghd0uhVrDwOjJEntYWBsoaVLYYcdOt2KtYdBUZKk9jAwttjzntfpFqw97GGUJKk9uiYwRsT0iLgqIh6PiAcj4syIGKg7/sqIuD0inoyIn0bEVk3qmhwRV0TEooi4JyLe0XB8yLqicGpEPFpup0UMP5JMnz7CG9caMzBKklStrgmMwJeBh4GpwO7ATOBYgIjYGLgcOAGYDMwGvtWkrrOApcCmwDuBsyNip2HWdRRwILAbsCvwRuDo4d7EtGnDLak1ZQ+jJEnt0U2BcWvg0sx8KjMfBK4BdiqPHQTMycxZmfkUcBKwW0Q8a8ZgREwADgZOyMyFmXkD8D3g0GHWdThwembem5n3AacDRwz3JjbbbCS3rDVhUJQkqT26KTCeARwSEeMjYhrweorQCEVwvKVWMDMXAX/mmUBZb3tgRWbeUbfvlrqyq6prpeMN5zY1MABjxgynpFrBHkZJktqjmwLjzyiC2RPAvRRDxd8pj00E5jeUnw+sN0g9qyo70uPzgYlDzWOMiKMiYnZEzB41avlgRVQRA6MkSe3RlsAYEddFRA6x3RARo4AfUswtnABsDGwInFpWsRCY1FDtJGDBIJdbVdmRHp8ELMzMHOzeMvOczJyRmTN22cUvkG4ng6IkSe3RlsCYmftmZgyx7U2x+GQL4MzMXJKZjwLnAvuVVcyhWIQC/H2e4rbl/kZ3AAMRsV3dvt3qyq6qrpWON5yrLmRwlCSpWl0xJJ2ZjwB3AcdExEBEbECx+KQ2l/AKYOeIODgixgInArdm5u2D1LWIoqfy0xExISJeChwAfGOYdV0AfDgipkXE5sBxwHmtv2utKYekJUlqj64IjKWDgNcBc4E7geXAhwAycy7FyufPAI8DLwYOqZ0YER+PiKvr6joWGEfxmJ5LgGMyc85w6gK+Cnwf+B1wG/CDcp+6jIFRkqT26JpJd5n5W2DfJsevBQb94r3MPKXh/WMUz1JcnboS+Gi5qYsZFCVJao9u6mGURsQeRkmS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPMihKktQeBkb1LIekJUlqDwOjepaBUZKk9jAwqmcZFCVJag8Do3qWgVGSpPYwMEqSJKkpA6N6lj2MkiS1h4FRPasWGDM72w5JkvqdgVE9yx5GSZLaw8ConmVglCSpPQyM6lk+h1GSpPYwMKrnOYdRkqRqGRjVs+xZlCSpPQyM6lkGRkmS2sPAqJ7lY3UkSWoPA6N6loteJElqDwOjepaBUZKk9jAwqucZGCVJqpaBUT3LoChJUnsYGNWzHJKWJKk9DIzqWQZGSZLaw8ConmVglCSpPQyM6lkGRkmS2sPAKEmSpKYMjOpZ9jBKktQeBkb1LAOjJEntYWBUzzIoSpLUHgZG9Sx7GCVJag8Do3qWgVGSpPYwMKrnGRglSaqWgVE9y6AoSVJ7GBjVsxySliSpPQyM6lkGRkmS2sPAqJ5lUJQkqT0MjOpZ9jBKktQeBkb1PAOjJEnV6prAGBHTI+KqiHg8Ih6MiDMjYqDu+Csj4vaIeDIifhoRWzWpa3JEXBERiyLinoh4R92xl0TEjyLisYiYGxGzImJq3fGTImJZRCys27ap7s61uuxhlCSpPbomMAJfBh4GpgK7AzOBYwEiYmPgcuAEYDIwG/hWk7rOApYCmwLvBM6OiJ3KYxsC5wDTga2ABcC5Ded/KzMn1m1/WdObU+sZGCVJao+BVRdpm62BMzPzKeDBiLgGqIW8g4A5mTkLil5A4JGI2CEzb6+vJCImAAcDO2fmQuCGiPgecCjwb5l5dUP5M4GfVXhfqohBUZKk9uimHsYzgEMiYnxETANeD1xTHtsJuKVWMDMXAX/mmUBZb3tgRWbeUbfvliHKAuwDzGnYt385ZD0nIo4Z+a2oHexhlCSpPbopMP6MItQ9AdxLMez8nfLYRGB+Q/n5wHqD1DPsshGxK3AicHzd7kuBHYEpwLuBEyPi7UM1OiKOiojZETF77ty5QxVTBQyMkiS1R1sCY0RcFxE5xHZDRIwCfkgxT3ECsDHFXMNTyyoWApMaqp1EMf+w0bDKRsRzgauBD2Tm9bX9mfn7zLw/M1dk5s8pej7fPNS9ZeY5mTkjM2dMmTKl+QehljIwSpLUHm0JjJm5b2bGENveFAtZtqCYw7gkMx+lWIiyX1nFHGC3Wn3lPMVtefZQMsAdwEBEbFe3b7f6suUK62uBkzPzG6tqPmAkkSRJa62uGJLOzEeAu4BjImIgIjYADueZeYtXADtHxMERMZZiGPnWxgUvZV2LKHoqPx0REyLipcABwDcAyvmRPwHOysyvNJ4fEQdExIZR2BN4P/DdFt+yWsAeRkmS2qMrAmPpIOB1wFzgTmA58CGAzJxLsfL5M8DjwIuBQ2onRsTHI6J+9fOxwDiKx/RcAhyTmbUexiOBbYBP1j9rse7cQ8rrLwAuAE7NzPNbfK9qAQOjJEnt0TWP1cnM3wL7Njl+LbDDEMdOaXj/GHDgEGU/BXyqyXWGXOCi7mJQlCSpPbqph1EaEXsYJUlqDwOjepaBUZKk9jAwqucZGCVJqpaBUT3LHkZJktrDwKieZVCUJKk9DIzqWfYwSpLUHgZG9SwDoyRJ7WFgVM8yMEqS1B4GRkmSJDVlYFTPsodRkqT2MDCq5xkYJUmqloFRPSuz0y2QJGntYGBUz7OHUZKkahkY1bNqPYwGRkmSqmVgVM96+uni1cAoSVK1DIzqeQZGSZKqZWBUz3LRiyRJ7WFgVM+zh1GSpGoZGNWz7GGUJKk9DIzqWa6SliSpPQyM6lkGRkmS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPctGLJEntYWBUz7OHUZKkahkY1bOcwyhJUnsYGNWz/C5pSZLaw8ConmdglCSpWgZG9SwXvUiS1B4GRvU8exglSaqWgVE9yx5GSZLaw8ConuUqaUmS2sPAqJ5lYJQkqT0MjOpZBkZJktrDwKieZ2CUJKlaBkb1LBe9SJLUHgZG9Tx7GCVJqpaBUT3LOYySJLWHgVE9y++SliSpPbomMEbE9Ii4KiIej4gHI+LMiBioO/7KiLg9Ip6MiJ9GxFZN6pocEVdExKKIuCci3tFwnYyIhXXbCXXHIyJOjYhHy+20CCNJN/O/jiRJ1eqawAh8GXgYmArsDswEjgWIiI2By4ETgMnAbOBbTeo6C1gKbAq8Ezg7InZqKLNBZk4st5Pr9h8FHAjsBuwKvBE4ek1uTNVw0YskSe3RTYFxa+DSzHwqMx8ErgFqIe8gYE5mzsrMp4CTgN0iYofGSiJiAnAwcEJmLszMG4DvAYcOsx2HA6dn5r2ZeR9wOnDEGtyXKmYPoyRJ1eqmwHgGcEhEjI+IacDrKUIjFMHxllrBzFwE/JlnAmW97YEVmXlH3b5bBil7T0TcGxHnlj2YNStda4hz/y4ijoqI2RExe+7cuc3vUC1lD6MkSe3RTYHxZxTB7AngXoph5++UxyYC8xvKzwfWG6SeVZV9BHgRsBWwR7n/oibnzwcmDjWPMTPPycwZmTljypQpQ92bKuAqaUmS2qMtgTEirisXmgy23RARo4AfUsxTnABsDGwInFpWsRCY1FDtJGDBIJdrWrYcpp6dmcsz8yHgvcBrImLSEOdPAhZm2p/VbQ4/HA48ED7xiU63RJKk/taWwJiZ+2ZmDLHtTbGQZQvgzMxckpmPAucC+5VVzKFYhAL8fZ7ituX+RncAAxGxXd2+3YYoC1ALgrV+qpWutYpz1UGTJsEVV8Bmm3W6JZIk9beuGJLOzEeAu4BjImIgIjagWHxSm0t4BbBzRBwcEWOBE4FbM/P2QepaRNFT+emImBARLwUOAL4BEBEvjojnRcSoiNgI+CJwXWbWhqEvAD4cEdMiYnPgOOC8au5ckiSp+3VFYCwdBLwOmAvcCSwHPgSQmXMpVj5/BngceDFwSO3EiPh4RFxdV9exwDiKx/RcAhyTmbVewm0oFtMsAG4DlgBvrzv3q8D3gd+Vx39Q7pMkSVorhVPzWmfGjBk5e/bsTjdDkiRplSLi5sycMZyy3dTDKEmSpC5kYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1FZnZ6Tb0jYhYAPyx0+1Yy2wMPNLpRqxl/Mzbz8+8/fzM28/PvP2el5nrDafgQNUtWcv8MTNndLoRa5OImO1n3l5+5u3nZ95+fubt52fefhExe7hlHZKWJElSUwZGSZIkNWVgbK1zOt2AtZCfefv5mbefn3n7+Zm3n595+w37M3fRiyRJkpqyh1GSJElNGRglSZLUlIGxBSJickRcERGLIuKeiHhHp9vU7yLivRExOyKWRMR5nW5Pv4uIdSPiv8s/3wsi4jcR8fpOt6vfRcSFEfFARDwREXdExJGdbtPaIiK2i4inIuLCTrel30XEdeVnvbDcfJ5xG0TEIRHxhzK7/DkiXtasvM9hbI2zgKXApsDuwA8i4pbMnNPRVvW3+4H/AF4LjOtwW9YGA8DfgJnAX4H9gEsjYpfMvLuTDetznwX+v8xcEhE7ANdFxG8y8+ZON2wtcBbwq043Yi3y3sz8WqcbsbaIiFcDpwJvA24Cpq7qHHsY11BETAAOBk7IzIWZeQPwPeDQzrasv2Xm5Zn5HeDRTrdlbZCZizLzpMy8OzOfzswrgbuAPTrdtn6WmXMyc0ntbblt28EmrRUi4hBgHvDjDjdFqsqngE9n5v+Wv9Pvy8z7mp1gYFxz2wMrMvOOun23ADt1qD1S5SJiU4o/+/aiVywivhwRTwK3Aw8AV3W4SX0tIiYBnwaO63Rb1jKfjYhHIuLGiNi3043pZxExGpgBTImIOyPi3og4MyKajtYZGNfcRGB+w775wLC+m1HqNRExBrgIOD8zb+90e/pdZh5L8fvkZcDlwJLmZ2gNnQz8d2b+rdMNWYv8K7ANMI3iuYDfjwh70quzKTAGeDPF75XdgRcAn2h2koFxzS0EJjXsmwQs6EBbpEpFxCjgGxRzdt/b4easNTJzRTnd5TnAMZ1uT7+KiN2BVwGf73BT1iqZ+cvMXJCZSzLzfOBGinnSqsbi8vVLmflAZj4C/Ber+Mxd9LLm7gAGImK7zPxTuW83HKpTn4mIAP6b4l+n+2Xmsg43aW00gHMYq7QvMB34a/HHnYnA6Ih4fma+sIPtWtskEJ1uRL/KzMcj4l6Kz3nY7GFcQ5m5iGKY6NMRMSEiXgocQNELo4pExEBEjAVGU/xCHxsR/gOoWmcDOwL7Z+biVRXWmomITcrHXkyMiNER8Vrg7cBPOt22PnYORSDfvdy+AvyA4mkMqkBEbBARr639Do+IdwL7AD/sdNv63LnA+8rfMxsCHwSubHaCf8G2xrHA14GHKVbtHuMjdSr3CeCTde/fRbHq66SOtKbPRcRWwNEU8+ceLHtfAI7OzIs61rD+lhTDz1+h+Mf9PcAHM/O7HW1VH8vMJ4Ena+8jYiHwVGbO7Vyr+t4Yikek7QCsoFjcdWBm+izGap0MbEwxSvoUcCnwmWYn+F3SkiRJasohaUmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRklqkYiYExH7tulaz4+I2RXUe3lEvK7V9UrqbT6HUZKGqXyQc814igeZryjft/Uh5hFxGTArM7/Z4nr3BM7OzD1aWa+k3mZglKTVEBF3A0dm5rUduPZUiu+r3zwzn6qg/j8Bb8/MlvdgSupNDklLUotExN0R8ary55MiYlZEXBgRCyLidxGxfUR8LCIejoi/RcRr6s5dPyL+OyIeiIj7IuI/ImL0EJd6NfDr+rBYXvv4iLg1IhaVdW0aEVeX17+2/M5Yyu/tvTAiHo2IeRHxq4jYtK7+64A3tPwDktSzDIySVJ39gW8AGwK/AX5I8Xt3GvBp4Kt1Zc8HlgPPBV4AvAY4coh6dwEG+67dgynC5Pblta8GPk7xnbGjgPeX5Q4H1ge2ADYC3gMsrqvnD8Buw75LSX3PwChJ1bk+M3+YmcuBWcAU4HOZuQz4JjA9IjYoe/deD3wwMxdl5sPA54FDhqh3A2DBIPu/lJkPZeZ9wPXALzPzN5m5BLiCIogCLKMIis/NzBWZeXNmPlFXz4LyGpIEwECnGyBJfeyhup8XA49k5oq69wATgc2BMcADEVErPwr42xD1Pg6sN4zrNb6fWP78DYrexW9GxAbAhcC/l0GWsu55Q92UpLWPPYyS1Hl/o1hxvXFmblBukzJzpyHK30ox7LxaMnNZZn4qM58P7AW8ETisrsiOwC2rW7+k/mNglKQOy8wHgP8HnB4RkyJiVERsGxEzhzjlR8ALI2Ls6lwvIl4eEbuUi2qeoBiiXlFXZCbF/EdJAgyMktQtDgPWAX5PMeT8bWDqYAUz8yHgJ8ABq3mtzcr6n6BY4PIzimFpIuJFwKLMvGk165bUh3wOoyT1oIh4PsXK6j2zhb/IyweC/3dmXtWqOiX1PgOjJEmSmnJIWpIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktTU/w9ZL9pRuOE4lQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCxklEQVR4nO3debgcZZ33//c3nEA2whq2CIQdBgSUiA4gwXFBQQYEVFBZZgZhYFxGEZ9xAVFGFObHKAqiPI7soGQAldVHVBzABYMKEkVEgRFkCUtCEkI2vr8/qlo6zTmdc5Ku3vJ+XVddfbrqrrvuasLJJ/dSHZmJJEmSNJRRnW6AJEmSupuBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJfWNiLglIr5e9/7CiLi5k22SpH5gYJTUcRGxXkScGRG/j4jnI+KJiPifiDgyIgYqvvaxEfGDiHg6IjIi9hqi3OYRcVlEPFm28b6IOGiE1zq1vEZGxAsR8UhEXBERm7fkZobXho9ExNKI+M92XXOQNoyJiAsi4lcRsSgi7m9S9qCI+HlEPBcRcyLi1oiY2M72SjIwSuqwiHgZ8EvgEOAzwCuBPYH/Aj4C7FRxE8YBPwROatLGycDPgADeCmwPvBf48wpc70FgY+BlwJHAVODaiFhtBepaEe8FTgeOjIg12nTNRqsBi4DzgW8OVSgi/gm4GLgM2A14NfAlYGkb2iipjoFRUqedB6wBvDIzL8vM32bmHzLzIoqQ8IdawYh4f0TcW/bw/SEiPrGyPZCZ+cXM/CzwgybFTgcezMx3ZebPMvPBzPxxZt65ApdcmpmPZeZfMvMHwKnAy4GtASLiqIj4bUQsjIiHI+Lf6++xHHb/RkR8vuztfDYivh4RY5d34Yh4HbA28GngcYqQXn/8/0TE7IiYUrfvUxHxVBnsiYjXlL2/CyLimYi4PCI2qCt/akTcHxEHlv+t5kfEjyJiq1qZzJyfmcdl5nnAn4Zo60TgC8BJmfmlzPxdZt6bmdMzc/7y7lVSaxkYJXVMRKwL7Aeck5lzGo9n5uJaOIiIUyl6HD8G7AB8EDgO+FTFbRwFHAT8tBw+fiIifhMRH2vRcPmC8nV0ROwPfAO4hCJEngj8Cy+9x0OB9YDXAu8G/h44YxjXOg64LDOXABcBxzYcPxP4OXBFRAxExGuBTwL/kJkPR8RGwP8DHgZ2Bw6g6AG+qqGejYHjy7btQRFSvzGM9tV7E7AmsCAiZkTE42VYfu0I65HUAgZGSZ20NcXvod82KxQR44CPAsdl5jWZ+UBm3kARZt5fcRsnAROBEyiGoPcFPk8xhP3plak4IjYD/k9Z7++BfwOuyszPZeZ9mfktih7Ij0TE6nWnPg38c9nrdi3F53BcRIxvcq1JwNsogiIUoXTPiNiuViYzEzgCmEIx9Hs58JXM/G5Z5F+AZ4GjM/M3mXlbWX6viNi77nJrAEdk5p2ZeRdFmH1tRIwZwcdT65H8LEWQfQvwG+AHEbHjCOqR1AIGRkmdFOVrLqfcjsBY4KqImFfbgK8Ba5VhqCq1uYV3Z+ZHM/NXmXkZxTD1+1agvi3L9j8HPETxGbwtMxdT3Of/NJT/MTCGFwMUwB2ZWT+P73Zg9YYyjf4B+F0Z4MjMR4HvU8xp/KvMfAL4R4oewqcognrNjsDPMnNRXfm7gDnlsZq/ZOasuvePlPe5AcNX+9w/l5lXZuYvM/P9FMH6uBHUI6kFKl19KEnL8QfgBYqwcU2TcrV/3L4duG+Q40+3uF31ZgGLeWkv6ExgYkSsk5nPjKC+PwOvp7jvxzLzuYbjjeF5OKE6mhwjIgI4Btg6IpbUHRoFvCoiPl4fAoFpFAtLNgTWAp5o0r7B9i8a4thIOin+Ur42fu6/Bdq2qlxSwR5GSR2TmU8DNwLvi4i1Go9HxOhymHUm8DywZWbeP8hW2arZsufv58B2DYe2A+aMMCwCLC7b/KdBwuJMirBWb2+KeY71i0Ne1bCq+m8pQtofh7jm3wFbUqw+37VhGw0cXCsYEW+gmCv69xQ9oBeVgbPWvr+tHx6PiF0oQuXMoW54Bd1avg72uT/Y4mtJWg4Do6ROO4GiB+/OiHhXRPxNRGwdEe8BZgDbZOY8iiHg0yPifRGxXUTsGBGHRcRwFnsMKSI2iohdgb8pd20dEbuWCzxqPge8OiJOKdv298AngLNX5tqD+BxwSET8W0RsGxHvoJjDeFZDD+B6wLkRsUO5UOY04P82WT18HPDjzPxpZt5Tt90NfJdy8Us5tH8J8P+Vc0QPp1i08uGynnMo5nNeGBE7RfHMykuA2zLzVkag/O+8K7ARsHr5me9aC6OZ+UfgSuCUiNgvIraJiM9RPNLoqyO5lqQWyEw3Nze3jm4UC0vOohhufp5iCPTHwHuAgbpy/wT8uizzDEXP3/F1x28Bvl73/kLg5uVc+1SKIdPG7dSGcu8E7imv/QeKBSr1bTu6PG/Kcq51/3LacxTwO4oew0coFn0MNNzjN4D/oJhjOLd8P26I+jYo6zpuiOP7UwyPbwNcT/G8ydF1xw8HFgJTy/evoZhnuQCYTbEwZoNm9wjs1fjZUPQSDva515cZB3y5/PMwl6LXcc9O/3l1c1sVt8hc3lxzSdLyRMRnKJ5ruEsWj62p6jq3UASyY6q6hiQ1ckhaklrjrcD7qgyLktQprpKWpBbIzFd2ug2SVBWHpCVJktSUQ9KSJElqysAoSZKkppzD2ELrr79+TpkypdPNkCRJWq4777zzycwc1lerGhhbaMqUKcyYMaPTzZAkSVquiHhouGUdkpYkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRvW8DTaAadM63QpJkvrXQKcbIK2sWbOKTZIkVaNrehgjYl7DtjQivlx3/JiIuL88dlNEbNKkrikRcUNEPBMRj0XEORExUHcsG651ct25ERFnRMRT5XZmRES1dy9JktS9uiYwZuaE2gZsCCwApgNExDTgdOBAYF3gAeCKJtV9BXgC2BjYFZgGnNBQZu26a55Wt/9Y4CBgF2Bn4K3AcSt1c5IkST2sawJjg0MpAt+t5fsDgOmZOTMzFwGnAXtHxFZDnL8FcGVmPp+ZjwE3ATsO89pHAWdl5sOZ+QhwFnD0Ct6HJElSz+vWwHgUcHFmZvk+yo269wA7DXH+2cBhETEuIiYDb6EIjfUeioiHI+KCiFi/bv+OwF117+9i+GFTkiSp73RdYIyIzSiGkC+q230D8I6I2DkixgKnAAmMG6KaH1OEvGeBh4EZwLfLY08CrwI2B3YD1gQuqzt3AjCn7v0cYMJQ8xgj4tiImBERM2a58kKSJPWhtgTGiLilXGgy2HZbQ/Ejgdsy84Hajsz8AfAp4CrgIeBBYC5FGGy81ijge8DVwHhgfWAd4IyyrnmZOSMzl2Tm48D7gDdFxMSyinnAxLoqJwLz6no7l5GZ52fm1MycOmnSpBF9LpIkSb2gLYExM/fJzBhi26uh+JEs27tYq+PczNwmMzegCI4DwD2DXG5dYFPgnMxcmJlPARcA+w3VvPK11oM4k2LBS80u5T5JkqRVUlcNSUfEHsBkytXRdfvHRMRO5SNvNgPOB87OzGca68jMJylWUR8fEQMRsTbFnMi7yrpeHRHbRcSoiFgP+BJwS2bWhqEvBj4cEZPLR/ecCFxYxf1KkiT1gq4KjBTB7urMnNuwfwxwOcVw8R3AT4H6Zyd+PCJurCt/MPBmYBZwP7AE+FB5bEuKBTBzKXooFwKH1537NeBa4Dfl8evLfZIkSaukGGJqnlbA1KlTc8aMGZ1uxiqnthzJP8qSJA1fRNyZmVOHU7bbehglSZLUZQyMkiRJasrAKEmSpKYMjJIkSWrKwChJkqSmDIySJElqysAoSZKkpgyMkiRJasrAKEmSpKYMjOobftOLJEnVMDCqbyxd2ukWSJLUnwyM6htLlnS6BZIk9ScDo/qGgVGSpGoYGNU3DIySJFXDwKi+YWCUJKkaBkb1DQOjJEnVMDCqbxgYJUmqhoFRfcPAKElSNQyM6huLF3e6BZIk9ScDo/qGPYySJFXDwKi+sWhRp1sgSVJ/MjCqbyxc2OkWSJLUnwyM6hv2MEqSVA0Do/qGgVGSpGoYGNU3HJKWJKkaBkb1DXsYJUmqhoFRfcPAKElSNQyM6hsOSUuSVA0Do/qGPYySJFXDwKi+YWCUJKkaBkb1DYekJUmqhoFRPW9U+afYHkZJkqphYFTPW3314tXAKElSNQyM6nkDA8WrQ9KSJFXDwKiel1m82sMoSVI1DIzqeQZGSZKqZWBU33BIWpKkahgY1fNqPYwGRkmSqmFgVM+rBcalSzvbDkmS+lXXBMaImNewLY2IL9cdPyYi7i+P3RQRmzSpa0pE3BARz0TEYxFxTkQMlMfe3XCd5yIiI2K38vipEbG4ocyW1X8CWlG1wLhkSWfbIUlSv+qawJiZE2obsCGwAJgOEBHTgNOBA4F1gQeAK5pU9xXgCWBjYFdgGnBCeZ3LGq51AvAn4Jd153+rvkxm/qmFt6qK2MMoSVI1uiYwNjiUIvDdWr4/AJiemTMzcxFwGrB3RGw1xPlbAFdm5vOZ+RhwE7DjEGWPAi7OrPVTqdfYwyhJUrW6NTA2hrgoN+reA+w0xPlnA4dFxLiImAy8hSI0LiMiNgf2Bi5uOHRARDwdETMj4vhmDY2IYyNiRkTMmDVrVvO7UiUMjJIkVavrAmNEbEYxhHxR3e4bgHdExM4RMRY4BUhg3BDV/JiiR/FZ4GFgBvDtQcodCdyamQ/U7bsS2AGYBLwXOCUiDh+qvZl5fmZOzcypkyZNGsYdqtVc9CJJUrXaEhgj4pZyYclg220NxY8EbqsPcZn5A+BTwFXAQ8CDwFyKMNh4rVHA94CrgfHA+sA6wBmDNO1Ilg2mZOZvM/Mvmbk0M39C0Vt56ArduNrKHkZJkqrRlsCYmftkZgyx7dVQ/CUhrqzj3MzcJjM3oAiOA8A9g1xuXWBT4JzMXJiZTwEXAPvVF4qIPYFNgP9eXvNZdjhcXcYeRkmSqtVVQ9IRsQcwmXJ1dN3+MRGxUxQ2A84Hzs7MZxrryMwnKVZRHx8RAxGxNsWcyLsaih4FXJWZcxuudWBErFNea3fgA8B3WnSLqoBzGCVJqlZXBUaKEHd1Y4gDxgCXA/OAO4CfAifXDkbExyPixrryBwNvBmYB9wNLgA/VlR8DvINBejKBw8pz5lIshjkjMwcrpy5hD6MkSdUa6HQD6mXmcUPsnw3s3OS80xve/xrYp0n554G1hzg25AIXdTd7GCVJqka39TBKI2YPoyRJ1TIwqm/YwyhJUjUMjOpp9d/PYw+jJEnVMDCqb9jDKElSNQyM6mn1PYwGRkmSqmFgVE9zSFqSpOoZGNXT7GGUJKl6Bkb1DXsYJUmqhoFRPc0eRkmSqmdgVE9zDqMkSdUzMKqn2cMoSVL1DIzqG/YwSpJUDQOjepo9jJIkVc/AqJ7mHEZJkqpnYFTfsIdRkqRqGBjV02o9jKutZg+jJElVMTCqp9UC4+jRRQ9j/RC1JElqDQOjelotIA4MFK8vvNC5tkiS1K8MjOoLo0cXrw5LS5LUegZG9bTGHkYXvkiS1HoGRvW0xsBoD6MkSa1nYFRPq1/0AvYwSpJUBQOj+sJqqxWv9jBKktR6Bkb1NIekJUmqnoFRPc3AKElS9QyM6mkGRkmSqmdgVF9wDqMkSdUxMKqn2cMoSVL1DIzqaQZGSZKqZ2BUTzMwSpJUPQOj+kJtDuMLL3S2HZIk9SMDo3parYfRRS+SJFXHwKie5pC0JEnVMzCqpxkYJUmqnoFRfcEhaUmSqmNgVE+zh1GSpOoZGNXTDIySJFXPwKieZmCUJKl6XRMYI2Jew7Y0Ir5cd/yYiLi/PHZTRGzSpK4dIuKHETGnPOdtDcdfHxH3RsRzEfGjiNi87lhExBkR8VS5nRkRUc1dq1WcwyhJUnW6JjBm5oTaBmwILACmA0TENOB04EBgXeAB4IrB6omIAeA7wHVl2WOBSyNi2/L4+sDVwMnl8RnAt+qqOBY4CNgF2Bl4K3BcC29VLdT4HEYf3C1JUut1TWBscCjwBHBr+f4AYHpmzszMRcBpwN4RsdUg524PbAJ8ITOXZuYPgduBI8rjBwMzM3N6Zj4PnArsEhHbl8ePAs7KzIcz8xHgLODolt+hWsIhaUmSqtetgfEo4OLMWhwgyo269wA7DXLuYMPHUVd2R+Cu2oHMnA/8sdz/kuPlzzuirmRglCSpel0XGCNiM2AacFHd7huAd0TEzhExFjgFSGDcIFXcS9E7eVJEjI6IN5X11cpOAOY0nDMHWHOI43OACUPNY4yIYyNiRkTMmDVr1nBvUy3mHEZJkqrTlsAYEbdERA6x3dZQ/Ejgtsx8oLYjM38AfAq4CngIeBCYCzzceK3MXEwxB3F/4DHgRODKurLzgIkNp00s6xvs+ERgXl1vZ+P1zs/MqZk5ddKkSc0+BlXAHkZJkqrXlsCYmftkZgyx7dVQ/EiW7V2s1XFuZm6TmRtQBMcB4J4hrnd3Zk7LzPUyc19gS+CO8vBMigUtAETEeGCrcv9Ljpc/z0RdycAoSVL1umpIOiL2ACZTro6u2z8mInYqH3mzGXA+cHZmPjNEPTuX54yLiI8AGwMXloevAXaKiEMiYgzF8PbdmXlvefxi4MMRMbl8dM+JdeeqyxgYJUmqXlcFRorFLldn5tyG/WOAyymGi+8AfkrxWBwAIuLjEXFjXfkjgEcp5jK+HnhjZi4EyMxZwCHAZ4FngFcDh9Wd+zXgWuA3FD2Y15f71MWcwyhJUnUGOt2Aepk56PMOM3M2xTMRhzrv9Ib3JwEnNSl/M8XjdwY7lsBHy01drvE5jAZGSZJar9t6GKURaRyS9sHdkiS1noFRfcEeRkmSqmNgVE9z0YskSdUzMKqnGRglSaqegVE9zcAoSVL1DIzqC85hlCSpOgZG9TR7GCVJqp6BUT3NwChJUvUMjOppPrhbkqTqGRjVF2qB0Qd3S5LUegZG9TSHpCVJqp6BUT3NwChJUvUMjOpptcA4qvyTbGCUJKn1DIzqCxHFPEYDoyRJrWdgVE+r9TCCgVGSpKoYGNXTaoHRHkZJkqpjYFRPMzBKklQ9A6P6Qi0w+hxGSZJaz8ConlY/h3HUKHsYJUmqgoFRPc0haUmSqmdgVE8zMEqSVD0Do/qCgVGSpOoYGNXTfA6jJEnVMzCqpzkkLUlS9QyM6mkGRkmSqmdgVF8wMEqSVB0Do3pa4xxGH9wtSVLrGRjV0+qHpH1wtyRJ1TAwqqc5h1GSpOoZGNUXDIySJFXHwKie5nMYJUmqnoFRPc0haUmSqmdgVE8zMEqSVD0Do/qCgVGSpOoYGNXTnMMoSVL1DIzqaY1D0j64W5Kk1jMwqqf54G5JkqpnYFRfcA6jJEnVMTCqpzmHUZKk6nVNYIyIeQ3b0oj4ct3xYyLi/vLYTRGxSZO6doiIH0bEnPKct9Ude01EfD8ino6IWRExPSI2rjt+akQsbmjLltXduVaGj9WRJKl6XRMYM3NCbQM2BBYA0wEiYhpwOnAgsC7wAHDFYPVExADwHeC6suyxwKURsW1ZZB3gfGAKsDkwF7igoZpv1bcnM//UshtVJQyMkiRVp2sCY4NDgSeAW8v3BwDTM3NmZi4CTgP2joitBjl3e2AT4AuZuTQzfwjcDhwBkJk3Zub0zHw2M58DzgH2rPh+VBGHpCVJql63BsajgIsz/xoHotyoew+w0yDnxhD7BisLsDcws2HfAeWQ9cyIOH6YbVYHOCQtSVL1ui4wRsRmwDTgorrdNwDviIidI2IscAqQwLhBqriXonfypIgYHRFvKut7SdmI2Lms66S63VcCOwCTgPcCp0TE4U3ae2xEzIiIGbNmzRrBnaoVDIySJFWvLYExIm6JiBxiu62h+JHAbZn5QG1HZv4A+BRwFfAQ8CDF3MOHG6+VmYuBg4D9gceAEylC4DJlI2Jr4Ebgg5l5a935v83Mv5TD2T8BzqYYIh9UZp6fmVMzc+qkSZOG+5GoxWrPYfTB3ZIktV5bAmNm7pOZMcS2V0PxI1m2d7FWx7mZuU1mbkARHAeAe4a43t2ZOS0z18vMfYEtgTtqxyNic+Bm4LTMvGR5zWfwYW51AecwSpJUva4ako6IPYDJlKuj6/aPiYidorAZxSrnszPzmSHq2bk8Z1xEfATYGLiwPDYZ+CFwbmZ+dZBzD4yIdcpr7Q58gGLVtbqQQ9KSJFWvqwIjxWKXqzNzbsP+McDlwDyKnsKfAifXDkbExyPixrryRwCPUsxlfD3wxsxcWB47hqLH8VP1z1qsO/cw4H6KIe+LgTMy8yU9nuoOBkZJkqo30OkG1MvM44bYPxvYucl5pze8P4llF7LUH/s08OkmdQ25wEXdy8AoSVJ1uq2HURoR5zBKklQ9A6N6mkPSkiRVz8ConmZglCSpegZG9QUDoyRJ1TEwqqfVz2H0wd2SJFXDwKie5pC0JEnVMzCqpxkYJUmqnoFRfaEWGDOXHaaWJEkrz8ConlYfDgfKx9AvWdKZtkiS1K8MjOpp9UPSo0cXPy9e3Ln2SJLUjwyM6mkGRkmSqmdgVF8wMEqSVB0Do3pa/RxGA6MkSdUwMKqn1Q9Jr7568fOiRZ1rjyRJ/cjAqJ7mHEZJkqo3MJxCEfEm4GhgR2BNYC4wE7ggM79fWeukYTIwSpJUneUGxoj4EPBR4P8CVwFzgInALsBFEXFGZp5daSulITiHUZKk6g2nh/Ek4HWZeW/D/qsj4grgR4CBUR3hkLQkSdUbzhzG8cBfhjj2GDCudc2RRsbAKElS9YYTGK8Cro2I10fEpIhYPSLWj4jXA9cA/11tE6XlMzBKklSd4QTGfwZ+AlwEPA4sKF8vAn4GHF9Z66TlqJ/D6GN1JEmqxnLnMGbmIuBjwMciYm1gAjAvM2c3lo2IPTPz9lY3UhqKQ9KSJFVvWI/VqSlD4uwmRW6kWEEttYWBUZKk6rX6wd3R4vqkYTEwSpJUnVYHxlx+Eal1fA6jJEnV86sB1dMckpYkqXoGRvU0A6MkSdVzDqP6ho/VkSSpGiMKjBGxXkQcEREfLd9vEhEvqx3PzDVb3UCpGXsYJUmq3rADY0RMA34PvBs4udy9DXBeBe2ShsXAKElS9UbSw/hF4J2Z+WZgSbnv58DurW6UNFIGRkmSqjOSwDglM39Q/lx7mMkiRvjwb6mV/GpASZKqN5LA+NuI2Ldh3xuA37SwPdKINA5Jr7YaLFjQ2TZJktRvRtI7eCJwXURcD4yNiK8BBwAHVtIyaRjqAyPA2LEGRkmSWm3YPYyZ+TNgF2Am8A3gAWD3zPxFRW2Ths3AKElSdUY0/zAzHwHOrKgt0ohlw5dRGhglSWq9poExIi5hGN8PnZlHtqxF0gg4JC1JUvWWNyR9P/DHcpsDHASsBjxcnnsgMLu65knNGRglSape08CYmZ+ubcC2wP6Z+e7M/HhmvgfYH9iuFQ2JiHkN29KI+HLd8WMi4v7y2E0RsUmTunaIiB9GxJzynLfVHZsSEdlwrZPrjkdEnBERT5XbmRHhVx52OQOjJEnVGcljdV4D/Kxh38+Bv21FQzJzQm0DNgQWANPhr98yczpFj+a6FAturhisnogYAL4DXFeWPRa4NCK2bSi6dt01T6vbfyxFT+ouwM7AW4HjWnGPaj3nMEqSVL2RBMZfAadHxFiA8vWzwK8raNehwBPAreX7A4DpmTkzMxcBpwF7R8RWg5y7PbAJ8IXMXJqZPwRuB44Y5rWPAs7KzIfLRT5nAUev+K2oSg5JS5JUvZEExqOBPYE5EfE4xZzGvYAqFrwcBVyc+df+oyg36t4D7DTIuYMNH8cgZR+KiIcj4oKIWL9u/47AXXXv7yr3qQsZGCVJqt5InsP4YGbuAWwF/D2wdWbukZkPtrJBEbEZMA24qG73DcA7ImLnsmfzFIrV2+MGqeJeit7JkyJidES8qayvVvZJ4FXA5sBuwJrAZXXnT6AIwzVzgAlDzWOMiGMjYkZEzJg1a9bIblYtY2CUJKk6I+lhJCLWAV4H/B2wT/l+OOfdUi40GWy7raH4kcBtmflAbUf5HdafAq4CHgIeBOZSrNZeRmYuppiDuD/wGMU31FxZK5uZ8zJzRmYuyczHgfcBb4qIiWUV84CJdVVOBObV9XY2Xu/8zJyamVMnTZo0nI9DLeQcRkmSqjfswBgRf0vxeJ1/plgMchzwx3J/U5m5T2bGENteDcWPZNnexVod52bmNpm5AUVwHADuGeJ6d2fmtMxcLzP3BbYE7hiqebVbLF9nUix4qal9u426UOOQ9Lhx8NxznWuPJEn9aCTf9PJF4ITM/GZtR0S8E/gSxRDvSouIPYDJlKuj6/aPAbamCG6bAucDZ2fmM0PUszNwH0UgPgHYGLiwPPZqimdH/gFYp2z/LZlZG4a+GPhwRNxAESZPBL6MulJjYJw4EebNgxdegFEj6j+XJElDGclfqdtSDO3W+2+KINcqRwFXZ+bchv1jgMsphovvAH4K1D878eMRcWNd+SOARynmMr4eeGNmLiyPbQncRDGkfQ+wEDi87tyvAdcCvymPX1/uUxerBca11ipC5Lx5nW2PJEn9ZCQ9jH8ADqMIbjVvpximbonMHPR5h5k5m2IYfKjzTm94fxJw0hBlr2CIZziWxxP4aLmpyzXOYZxYzj6dM+fFnyVJ0soZSWD8V+C6iPgAxcKTKcA2FA+2ljqicUh6rbWK1zlzYNNNO9MmSZL6zbADY2b+pHxQ9v4UD8a+FrghM5+uqnHS8gw2hxHg2Wc70x5JkvrRSHoYKReZXFpRW6QVNlgPoyRJao1hB8aI2ILiqwB3pXi49V9l5matbZY0PEPNYbSHUZKk1hlJD+PlFAtcTgR80p26QrM5jJIkqTVGEhh3BPbMzBeqaow0UgZGSZKqN5LnMP4P8IqqGiKtjFpgHD++eGC3Q9KSJLXOSHoYHwS+FxFXU3xH819l5imtbJQ0XI1zGCOKeYz2MEqS1DojCYzjKR6lM5ri6/lqcvDiUvUah6ShCIz2MEqS1DojeQ7jPyyvTEQcXn6TitQWgwXGtdayh1GSpFYayRzG4fA7l9URjT2MBkZJklqn1YExll9Eap3GOYxQ9DA6JC1JUuu0OjA6n1FtNdSQ9OzZHWmOJEl9qdWBUWqrwQLj+uvDk092pj2SJPWj5QbGiDBUquvVB8aNNirmMD7/fOfaI0lSPxlOGHwkIs6MiJ2GUfZ/V7ZB0kgMNodxww2L18cfb29bJEnqV8MJjP8MbAH8IiJ+GREfjIhJgxXMzOGESqllBhuSNjBKktRayw2MmfmdzHw7sDHFY3PeDvw5Ir4bEYdExOiqGyktT+OQNMCjj3amLZIk9Zthz0/MzNmZ+bXM3AvYAZgBfAHwr2V1zGBD0ltsUbz+6U/tbYskSf1qJF8NCEBErAG8Cng1sCHwk1Y3ShquwYak11uvWCn9u991pk2SJK2ITFi8GBYsGHp77rnmx0dSbiSGHRgjYi/gSOAdwBPAJcAJmfnQyC4ptc5ggRFg++1h5sz2t0eS1H8yYeHCF0PYc88tuzXuW5n3S5euWBtXWw3Gjn1xGzdu2ffrrrvs+7Fj4YtfHH79yw2MEXEqcASwLjAd2D8zb1+x25Gq0RgY99gD/vM/i298mTixM22SJFXrhReKR6gNN5itTJgbbArU8oweXQS32lYLcuPGwaRJgx8bLOwNtjWWGb0CK0paGhiB1wCfAL6dmT7ZTl1lqP+B99sPzjwTbr4ZDj64vW2SJBUWL4b584vANX/+i1v9+2bH6t8PFuZW9Hm7Y8a8NMDV3q+zzuABb6Tvx46FgRFP/Otey72VzHxzOxoirYihhqT32KP4isDrrjMwStJQli4deXAbSehbvHhk7RkYgPHji23cuBd/Hj8eNthg5QJcfY/cKL+SZMT6KPtqVTRUYBw9Gg44AK65Br7yleJfk5LUizKLADZv3rLb/Pkv3VfbP9zQt2jRyNoyatTQgW7ddZd933h8OO9XX72az1Arz8CovtAYGAH+8R/h0kvhS1+Cj360/W2StGrJLALY8sLcYPubHRvp/LnGIFYLY5tsMnRYG26gW2ONwX/fqv8ZGNXTmv0S3WcfOOgg+Ld/K35Rvuc97WqVpG6XWcx/mzt32W2kYa5x/5Ilw2/DGmvAhAkvbuPHF6/rrTf4/sZtsP0Ot6oqBkb1tKGGpGv7Lr8c3vpWOOoomD0bTjjBX6ZSr1qy5KUBr3579tnmxxu34T6+ZNSowQPbhhsOHeaWF/TGj1+xVa1SpxgY1dOaBUYo/rX93e/C298O738/XHUVfP3rsNVW7WujtKrKLHrgRhrkhtqGuyJ2YADWXHPZbeJEmDz5pfsH2xoDnsOwkoFRfaLZL/Px4+H66+GCC+DDH4aXvxxOP70IkKut1r42Sr2itsji2WdhzpzidUV+fvbZ4c29iyiCWWNw23zz4QW8xs2AJ7WegVE9bbgTwSOKRTD77gvHHQcf+hB885vw1a/CrrtW2kSpbWrz8oYb6poFveEM144bVzy+auLEYltrLdhooxd/njjxxd69ZgFv3DinikjdzsConjbSJ+9PngzXXguXXVb0Nu62G3zgA/CZzxR/cUmdtGRJEdxmz152a9xX/74x7A3nuXdjxrw06G211bJBb3k/r7lmfz2UWFJz/u+unpY58qGniGLF9P77w8c+BmefDdOnF1+RdMghDmVpxS1cOPygN9i++fOb1x9RhLW11y62tdaCzTYbedDzWXeSRsrAqJ63ogFvnXWKIemjj4bjjy8WxrzlLXDOObDlli1tonrECy8UAe6ZZ+Dpp5d9feaZ5YfB5S3KWG21F8NeLfBttNFL99W/r9+/5poO3UrqDAOjetqKfBl8o9e8Bn7xiyIonnwy7LgjfOITcNJJxeR59Zbago3BQt9Qr7WfZ89u/mdq9dVfGuQ222zwcDfYvvHj7cGW1JsMjOppKzIkPZiBAfjXfy16GT/0oSI4XnopnHcevO51K1+/Rm7x4pGFvvrw1+zrzlZbrehdXmed4qvM1l8fttmm+Lm2r/61/uexY9t3/5LUTQyM6mmtCow1kyfDlVfCTTfBv/wL/N3fwTvfCZ/8JOy0U+uus6p44YViIcaKhL5585rXPXHismFup52WH/jWXbcY1rWXT5JGxsConlfFX/5vfjPccw987nNw1lnwrW/BAQcUvY/Tpq1a88gyYcGCFQt9s2cXoXEoY8YsG+amTIFXvnLwoFf/uvbartCVpHbyV656WivmMA5l7NjicTsf/CCcey586UvFI3k22wze9S7Yb79i/mM3f71XZrFyt/G5e8N5rZ/bN9Ih3m23Hbq3zyFeSeo9XRMYI6JxAGos8JXMfH95/Bjg34CNgNuAf8zMvwxR1w7AucBuwCzgpMy8pjz2buBrdcVHldeampl3RsSpwCeAhXVlds7MP63cHaoKrR6SHsx668Epp8BHPgLf+Q5cfDH8x3/A5z9ffDvFK14Bu+xSDIlOngwbb1yEpjFjiq22cGbx4pduCxcWvXcLFhQrbGs/D7WtSJlmPXw1Y8e+9BEsO+7YvJfPIV5JWnV0TWDMzAm1nyNiPPA4ML18Pw04HXgd8AfgbOAKYFpjPRExAHwH+CrwxrLMtRHxisy8LzMvAy6rK380cDLwy7pqvpWZ72nl/aka7QiMNePGweGHF9vs2fCjH8HNN8Ovfw0XXrj8OXcra8yYItiNHbvsz2PHvvh4lvp9ta32bRy1MNj46nP5JEnL0zWBscGhwBPAreX7A4DpmTkTICJOAx6JiK0y848N524PbAJ8ITMT+GFE3A4cQREMGx0FXFyWVQ/qRO/W2mvD295WbFD04j3yCPzlL/Doo/DUU0Xv4cKFLz6bb/Tol25rrPHS8DfYtsYaq9a8SUlSd+nWwNgY4qLcqHsPsBPQGBgHiw9Rll12Z8TmwN7APzYcOiAingYeBc7JzPNG1ny1S7fE/FGjYNNNi02SpH7TdX0WEbEZxTDyRXW7bwDeERE7R8RY4BQggXGDVHEvRe/kSRExOiLeVNY3WNkjgVsz84G6fVcCOwCTgPcCp0TE4U3ae2xEzIiIGbNmzRr2fao12jkkLUnSqqotgTEibomIHGK7raH4kcBt9SEuM38AfAq4CngIeBCYCzzceK3MXAwcBOwPPAacSBECX1K2vFZ9MCUzf5uZf8nMpZn5E4r5kocOdW+ZeX5mTs3MqZMmTWr+QajlDIySJFWvLYExM/fJzBhi26uh+EtCXFnHuZm5TWZuQBEcB4B7hrje3Zk5LTPXy8x9gS2BO+rLRMSeFHMd/3t5zWfwYW51CQOjJEnV6qoh6YjYA5hMuTq6bv+YiNgpCpsB5wNnZ+YzQ9Szc3nOuIj4CLAxcGFDsaOAqzJzbsO5B0bEOuW1dgc+QLHqWl2oW+YwSpLUz7pt0ctRwNWNIQ4YA1wObEUxFH0BdSueI+LjwGsz8y3lriOAY4DRFCut35iZC+vKjwHeARwySBsOA74BrEExjH1GZr6kx1PttWgR/O//woMPFtsDDxSvV1/tN35IklS18GkyrTN16tScMWNGp5vRkzJh1iy4/3744x+L7U9/ejEYPvLIsr2Jq61WbIsWFc8RfPbZjjVdkqSeFBF3ZubU4ZS1b0Zts3QpPPzwi4GwFg5rr/UPvo6Al70MttgC/u7viu8Y3mKL4nXKlOLYYYfBVVc5h1GSpKoZGNVSmfDkk3DvvcX2+98Xr/ffX/QW1n8n8ejRsOWWsNVWsPfesPXWxc9bbVWEw9pX6kmSpM4yMGqFLF5cDBnXh8Laz08//WK5MWNgm22K71k+8MAiDNaC4cteVgwrr6haz6I9jJIkVcvAqKZeeAEeegh+85tlt/vugyVLXiy30Uaw/fbw9rcXr7Vts82q+0o7A6MkSe1hYNRfzZkDv/51EQjvvrt4veeeZecWTpkCL385/P3fww47FKFwu+1grbXa316DoiRJ7WFgXEXNng2//CXceeeL2/33v3h83XWLYHj00cXry18OO+4IEyd2qsUvZQ+jJEntYWBcBSxeDHfdBbffDj/96UvD4WabwW67wT/8A7zylbDzzrDxxt0fxAyMkiS1h4GxD82ZAz/5SREQb78d7rgDnnuuOPayl8GrXlWEw912KwJir38FtoFRkqRqGRj7wMKFRc/hzTcX2y9+USxWWW012HVXOOYY2GOPYtt00063tnUMipIktYeBsUf9+c/wne/AddfB//wPLFhQBMRXvxo++UnYZx/YfXcYP77TLa2OQ9KSJLWHgbGH/O53xXcnf/vbUPsGwm23LXoQ3/CGIiR206KUqhkYJUlqDwNjl5s1C664Ai66qFjVDPCa18DnP188CHv77Tvbvk4yMEqS1B4Gxi6UWSxW+eIXi2HnJUuKxSlf/GLxYOxNNul0C7uDQVGSpPYwMHaRpUth+nQ466xiyHmddeCDHyyehbjTTp1uXfcyOEqSVC0DYxfIhGuvhU98ovhmle22g/POgyOO6O9FKyvLIWlJktrDwNhhM2fC8cfDrbfCNtvAN79ZDDtX9f3L/cTAKElSexhLOmTRouLxN7vuWoTGr32teH3nOw2Lw2VQlCSpPexh7ICHHiqC4c9/Xgw7n3VW73/bSifYwyhJUnsYGNvs+98vwmJtgcuhh3a6Rb3LwChJUns4+NlGl10G++1XfD3fL39pWGwVA6MkSdUyMLbJN74B73kP7LVX8VV+W23V6Rb1PoOiJEntYWBsg2uugfe+F/bdF268EdZaq9Mt6g8OSUuS1B4GxordcQccfjjsvjtcdRWMGdPpFvUPA6MkSe1hYKzQk08W8xQ32giuu86HcLeagVGSpPZwlXSFjjsOHn+8+F7o9dbrdGv6j0FRkqT2MDBW5Jpr4Oqr4XOfg6lTO92a/mZwlCSpWg5JV2DBAnj/+2GXXeDEEzvdmv7lkLQkSe1hD2MFzjsPHnkELr8cRo/udGv6l4FRkqT2sIexxRYvhjPPhDe8Afbeu9Ot6W8GRUmS2sMexha7/vpiocvXv97plvQ/exglSWoPexhb7IILYOON4c1v7nRL+p+BUZKk9jAwtlAm3HwzHHwwDNh3WzkDoyRJ7WFgbKHnniu2ffbpdEskSZJax8DYQnPnFq+vfW1n27GqsIdRkqT2MDC20Lx5sN12sOGGnW7JqsHAKElSexgYW2jBAnjFKzrdilWHgVGSpPYwMLbQokWw/fadbsWqw6AoSVJ7GBhbbLvtOt2CVYc9jJIktUfXBMaImBIRN0TEMxHxWEScExEDdcdfHxH3RsRzEfGjiNi8SV3rRsQ1ETE/Ih6KiHc1HB+yriicERFPlduZEcOPJFOmjPDGtdIMjJIkVatrAiPwFeAJYGNgV2AacAJARKwPXA2cDKwLzAC+1aSuc4FFwIbAu4HzImLHYdZ1LHAQsAuwM/BW4Ljh3sTkycMtqZVlD6MkSe3RTYFxC+DKzHw+Mx8DbgJ2LI8dDMzMzOmZ+TxwKrBLRLxkxmBEjAcOAU7OzHmZeRvwXeCIYdZ1FHBWZj6cmY8AZwFHD/cmNtpoJLeslWFQlCSpPbopMJ4NHBYR4yJiMvAWitAIRXC8q1YwM+cDf+TFQFlvW2BpZt5Xt++uurLLq2uZ4w3nNjUwAKNHD6ekWsEeRkmS2qObAuOPKYLZs8DDFEPF3y6PTQDmNJSfA6w5SD3LKzvS43OACUPNY4yIYyNiRkTMGDVqyWBFVBEDoyRJ7dGWwBgRt0REDrHdFhGjgO9RzC0cD6wPrAOcUVYxD5jYUO1EYO4gl1te2ZEenwjMy8wc7N4y8/zMnJqZU1/+cr9Aup0MipIktUdbAmNm7pOZMcS2F8Xik02BczJzYWY+BVwA7FdWMZNiEQrw13mKW5X7G90HDETENnX7dqkru7y6ljnecK66kMFRkqRqdcWQdGY+CTwAHB8RAxGxNsXik9pcwmuAnSLikIgYA5wC3J2Z9w5S13yKnsrPRMT4iNgTOBC4ZJh1XQx8OCImR8QmwInAha2/a60sh6QlSWqPrgiMpYOBNwOzgPuBJcCHADJzFsXK588CzwCvBg6rnRgRH4+IG+vqOgEYS/GYniuA4zNz5nDqAr4GXAv8BrgHuL7cpy5jYJQkqT26ZtJdZv4a2KfJ8ZuBQb94LzNPb3j/NMWzFFekrgQ+Wm7qYgZFSZLao5t6GKURsYdRkqT2MDCqZxkYJUlqDwOjep6BUZKkahkY1bMMipIktYeBUT3LIWlJktrDwKieZWCUJKk9DIzqWQZFSZLaw8ConmVglCSpPQyMkiRJasrAqJ5lD6MkSe1hYFTPqgXGzM62Q5KkfmdgVM+yh1GSpPYwMKpnGRglSWoPA6N6ls9hlCSpPQyM6nnOYZQkqVoGRvUsexYlSWoPA6N6loFRkqT2MDCqZ/lYHUmS2sPAqJ7lohdJktrDwKieZWCUJKk9DIzqeQZGSZKqZWBUzzIoSpLUHgZG9SyHpCVJag8Do3qWgVGSpPYwMKpnGRglSWoPA6N6loFRkqT2MDBKkiSpKQOjepY9jJIktYeBUT3LwChJUnsYGNWzDIqSJLWHgVE9yx5GSZLaw8ConmVglCSpPQyM6nkGRkmSqmVgVM8yKEqS1B4GRvUsh6QlSWoPA6N6loFRkqT2MDCqZxkUJUlqDwOjepY9jJIktYeBUT3PwChJUrW6JjBGxJSIuCEinomIxyLinIgYqDv++oi4NyKei4gfRcTmTepaNyKuiYj5EfFQRLyr7thrIuL7EfF0RMyKiOkRsXHd8VMjYnFEzKvbtqzuzrWi7GGUJKk9uiYwAl8BngA2BnYFpgEnAETE+sDVwMnAusAM4FtN6joXWARsCLwbOC8idiyPrQOcD0wBNgfmAhc0nP+tzJxQt/1pZW9OrWdglCSpPQaWX6RttgDOyczngcci4iagFvIOBmZm5nQoegGBJyNi+8y8t76SiBgPHALslJnzgNsi4rvAEcC/ZeaNDeXPAX5c4X2pIgZFSZLao5t6GM8GDouIcRExGXgLcFN5bEfgrlrBzJwP/JEXA2W9bYGlmXlf3b67higLsDcws2HfAeWQ9cyIOH7kt6J2sIdRkqT26KbA+GOKUPcs8DDFsPO3y2MTgDkN5ecAaw5Sz7DLRsTOwCnASXW7rwR2ACYB7wVOiYjDh2p0RBwbETMiYsasWbOGKqYKGBglSWqPtgTGiLglInKI7baIGAV8j2Ke4nhgfYq5hmeUVcwDJjZUO5Fi/mGjYZWNiK2BG4EPZuattf2Z+dvM/EtmLs3Mn1D0fB461L1l5vmZOTUzp06aNKn5B6GWMjBKktQebQmMmblPZsYQ214UC1k2pZjDuDAzn6JYiLJfWcVMYJdafeU8xa146VAywH3AQERsU7dvl/qy5Qrrm4HTMvOS5TUfMJJIkqRVVlcMSWfmk8ADwPERMRARawNH8eK8xWuAnSLikIgYQzGMfHfjgpeyrvkUPZWfiYjxEbEncCBwCUA5P/KHwLmZ+dXG8yPiwIhYJwq7Ax8AvtPiW1YL2MMoSVJ7dEVgLB0MvBmYBdwPLAE+BJCZsyhWPn8WeAZ4NXBY7cSI+HhE1K9+PgEYS/GYniuA4zOz1sN4DLAl8Kn6Zy3WnXtYef25wMXAGZl5UYvvVS1gYJQkqT265rE6mflrYJ8mx28Gth/i2OkN758GDhqi7KeBTze5zpALXNRdDIqSJLVHN/UwSiNiD6MkSe1hYFTPMjBKktQeBkb1PAOjJEnVMjCqZ9nDKElSexgY1bMMipIktYeBUT3LHkZJktrDwKieZWCUJKk9DIzqWQZGSZLaw8AoSZKkpgyM6ln2MEqS1B4GRvU8A6MkSdUyMKpnZXa6BZIkrRoMjOp59jBKklQtA6N6Vq2H0cAoSVK1DIzqWS+8ULwaGCVJqpaBUT3PwChJUrUMjOpZLnqRJKk9DIzqefYwSpJULQOjepY9jJIktYeBUT3LVdKSJLWHgVE9y8AoSVJ7GBjVswyMkiS1h4FRPc/AKElStQyM6lkuepEkqT0MjOp59jBKklQtA6N6lnMYJUlqDwOjepbfJS1JUnsYGNXzDIySJFXLwKie5aIXSZLaw8ConmcPoyRJ1TIwqmfZwyhJUnsYGNWzXCUtSVJ7GBjVswyMkiS1h4FRPcvAKElSexgY1fMMjJIkVcvAqJ7lohdJktrDwKieZw+jJEnVMjCqZzmHUZKk9jAwqmf5XdKSJLVH1wTGiJgSETdExDMR8VhEnBMRA3XHXx8R90bEcxHxo4jYvEld60bENRExPyIeioh3NVwnI2Je3XZy3fGIiDMi4qlyOzPCSNLN/K8jSVK1uiYwAl8BngA2BnYFpgEnAETE+sDVwMnAusAM4FtN6joXWARsCLwbOC8idmwos3ZmTii30+r2HwscBOwC7Ay8FThuZW5M1XDRiyRJ7dFNgXEL4MrMfD4zHwNuAmoh72BgZmZOz8zngVOBXSJi+8ZKImI8cAhwcmbOy8zbgO8CRwyzHUcBZ2Xmw5n5CHAWcPRK3JcqZg+jJEnV6qbAeDZwWESMi4jJwFsoQiMUwfGuWsHMnA/8kRcDZb1tgaWZeV/dvrsGKftQRDwcEReUPZg1y1xriHP/KiKOjYgZETFj1qxZze9QLWUPoyRJ7dFNgfHHFMHsWeBhimHnb5fHJgBzGsrPAdYcpJ7llX0SeBWwObBbuf+yJufPASYMNY8xM8/PzKmZOXXSpElD3Zsq4CppSZLaoy2BMSJuKReaDLbdFhGjgO9RzFMcD6wPrAOcUVYxD5jYUO1EYO4gl2tathymnpGZSzLzceB9wJsiYuIQ508E5mXan9VtjjoKDjoIPvnJTrdEkqT+1pbAmJn7ZGYMse1FsZBlU+CczFyYmU8BFwD7lVXMpFiEAvx1nuJW5f5G9wEDEbFN3b5dhigLUAuCtX6qZa61nHPVQRMnwjXXwEYbdbolkiT1t64Yks7MJ4EHgOMjYiAi1qZYfFKbS3gNsFNEHBIRY4BTgLsz895B6ppP0VP5mYgYHxF7AgcClwBExKsjYruIGBUR6wFfAm7JzNow9MXAhyNickRsApwIXFjNnUuSJHW/rgiMpYOBNwOzgPuBJcCHADJzFsXK588CzwCvBg6rnRgRH4+IG+vqOgEYS/GYniuA4zOz1ku4JcVimrnAPcBC4PC6c78GXAv8pjx+fblPkiRplRROzWudqVOn5owZMzrdDEmSpOWKiDszc+pwynZTD6MkSZK6kIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1FRkZqfb0DciYi7w+063YxWzPvBkpxuxivEzbz8/8/bzM28/P/P22y4z1xxOwYGqW7KK+X1mTu10I1YlETHDz7y9/Mzbz8+8/fzM28/PvP0iYsZwyzokLUmSpKYMjJIkSWrKwNha53e6AasgP/P28zNvPz/z9vMzbz8/8/Yb9mfuohdJkiQ1ZQ+jJEmSmjIwSpIkqSkDYwtExLoRcU1EzI+IhyLiXZ1uU7+LiPdFxIyIWBgRF3a6Pf0uItaIiP8q/3zPjYhfRcRbOt2ufhcRl0bEoxHxbETcFxHHdLpNq4qI2CYino+ISzvdln4XEbeUn/W8cvN5xm0QEYdFxO/K7PLHiHhts/I+h7E1zgUWARsCuwLXR8RdmTmzo63qb38B/h3YFxjb4basCgaAPwPTgP8F9gOujIiXZ+aDnWxYn/sc8E+ZuTAitgduiYhfZeadnW7YKuBc4BedbsQq5H2Z+fVON2JVERFvBM4A3gncAWy8vHPsYVxJETEeOAQ4OTPnZeZtwHeBIzrbsv6WmVdn5reBpzrdllVBZs7PzFMz88HMfCEzrwMeAHbrdNv6WWbOzMyFtbfltlUHm7RKiIjDgNnADzrcFKkqnwY+k5k/K3+nP5KZjzQ7wcC48rYFlmbmfXX77gJ27FB7pMpFxIYUf/btRa9YRHwlIp4D7gUeBW7ocJP6WkRMBD4DnNjptqxiPhcRT0bE7RGxT6cb088iYjVgKjApIu6PiIcj4pyIaDpaZ2BceROAOQ375gDD+m5GqddExGjgMuCizLy30+3pd5l5AsXvk9cCVwMLm5+hlXQa8F+Z+edON2QV8n+ALYHJFM8FvDYi7EmvzobAaOBQit8ruwKvAD7Z7CQD48qbB0xs2DcRmNuBtkiViohRwCUUc3bf1+HmrDIyc2k53eVlwPGdbk+/iohdgTcAX+hwU1YpmfnzzJybmQsz8yLgdop50qrGgvL1y5n5aGY+Cfwny/nMXfSy8u4DBiJim8z8Q7lvFxyqU5+JiAD+i+Jfp/tl5uION2lVNIBzGKu0DzAF+N/ijzsTgNUi4m8y85UdbNeqJoHodCP6VWY+ExEPU3zOw2YP40rKzPkUw0SfiYjxEbEncCBFL4wqEhEDETEGWI3iF/qYiPAfQNU6D9gBOCAzFyyvsFZORGxQPvZiQkSsFhH7AocDP+x02/rY+RSBfNdy+ypwPcXTGFSBiFg7Ivat/Q6PiHcDewPf63Tb+twFwPvL3zPrAP8KXNfsBP+CbY0TgG8AT1Cs2j3eR+pU7pPAp+rev4di1depHWlNn4uIzYHjKObPPVb2vgAcl5mXdaxh/S0php+/SvGP+4eAf83M73S0VX0sM58Dnqu9j4h5wPOZOatzrep7oykekbY9sJRicddBmemzGKt1GrA+xSjp88CVwGebneB3SUuSJKkph6QlSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglqUUiYmZE7NOma/1NRMyooN6rI+LNra5XUm/zOYySNEzlg5xrxlE8yHxp+b6tDzGPiKuA6Zn5zRbXuztwXmbu1sp6JfU2A6MkrYCIeBA4JjNv7sC1N6b4vvpNMvP5Cur/A3B4Zra8B1NSb3JIWpJaJCIejIg3lD+fGhHTI+LSiJgbEb+JiG0j4mMR8URE/Dki3lR37loR8V8R8WhEPBIR/x4Rqw1xqTcCv6wPi+W1T4qIuyNiflnXhhFxY3n9m8vvjKX83t5LI+KpiJgdEb+IiA3r6r8F2L/lH5CknmVglKTqHABcAqwD/Ar4HsXv3cnAZ4Cv1ZW9CFgCbA28AngTcMwQ9b4cGOy7dg+hCJPblte+Efg4xXfGjgI+UJY7ClgL2BRYD/hnYEFdPb8Ddhn2XUrqewZGSarOrZn5vcxcAkwHJgGfz8zFwDeBKRGxdtm79xbgXzNzfmY+AXwBOGyIetcG5g6y/8uZ+XhmPgLcCvw8M3+VmQuBayiCKMBiiqC4dWYuzcw7M/PZunrmlteQJAAGOt0ASepjj9f9vAB4MjOX1r0HmABsAowGHo2IWvlRwJ+HqPcZYM1hXK/x/YTy50soehe/GRFrA5cCnyiDLGXds4e6KUmrHnsYJanz/kyx4nr9zFy73CZm5o5DlL+bYth5hWTm4sz8dGb+DbAH8FbgyLoiOwB3rWj9kvqPgVGSOiwzHwX+H3BWREyMiFERsVVETBvilO8Dr4yIMStyvYh4XUS8vFxU8yzFEPXSuiLTKOY/ShJgYJSkbnEksDrwW4oh5/8GNh6sYGY+DvwQOHAFr7VRWf+zFAtcfkwxLE1EvAqYn5l3rGDdkvqQz2GUpB4UEX9DsbJ692zhL/LygeD/lZk3tKpOSb3PwChJkqSmHJKWJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNfX/A+02bx2fjDjWAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCQElEQVR4nO3debgcZZ33//c3C2QjrGGLQFgFiYASl0GG4LiDDAguoLKMPwRhXMYFn9ERRBkZYYZRFER5HNlBiIAom4+oOICOGBeQKCIKjCBL2EISQja+vz+qWjrN6c45SVdveb+uq64+XXXXXXc14eSTe6mOzESSJElqZlS3GyBJkqTeZmCUJElSSwZGSZIktWRglCRJUksGRkmSJLVkYJQkSVJLBkZJAyMiboyIr9e9PzcibuhmmyRpEBgYJXVdRGwYEadGxO8j4pmIeCQi/jsiDouIMRVf+6iI+EFEPB4RGRF7DlEmm2zXjPBaJ9ad+2xEPBARl0TEVu27o5W24WMRsTwi/rNT1xyiDeMi4pyI+FVELImIu4coc0SLz/1t3Wi3tCYzMErqqoh4AfBL4CDgs8BLgVcB/wV8DJhecRMmAD8EjmtRZrOG7W/K/d9chevdW9bxAuAwYAbw3YgYvQp1rYr3AicDh0XE2h26ZqPRwBLgbJp/hpfy/M/9C8BTwLUdaKOkOgZGSd12FrA28NLMvCgzf5uZf8jM84DdgT/UCkbEByLizrIX8g8R8S+r2wOZmV/MzM8BP2hR5qH6DdgPeByYtQqXXF7W85fM/AFwIvBiYDuAiDg8In4bEYsj4v6I+Nf6eyyH3b8REZ+PiEcj4qmI+HpEjF/ZhSPi1cB6wGeAhylCev3x/xMRT0bEtLp9n46Ix8pgT0S8suz9XRQRT0TExRGxcV35EyPi7ojYv/xvtTAifhQR29bKZObCzDw6M88C/jRUWzNzUcNn/gjwVuDCzFy4snuV1F4GRkldExEbAPsAZ2TmvMbjmbm0Fg4i4kSKHsdPADsBHwKOBj7dsQYX7RgLvAc4LzOfaUOVi8rXsRGxL/AN4AKKEPlR4B95/j2+FdgQ+FvgXcDfA6cM41pHAxdl5jLgPOCohuOnAj8DLomIMRHxt8CngH/IzPsjYlPg/wH3Ay+nCM7Tgcsb6tkMOKZs2x4UIfUbw2hfK/sCWwBfW816JK2CSucGSdJKbEfxD9fftioUEROAjwMHZub15e57IuJTwJeA4ytt5Yr2BzalGE5dLRGxJfB/gD8Dv6fobb08M/+tLHJXGdI+HxEnZeaScv/jwPsycznwu/Jz+HJEfKJZ71tETAHeQhH0oAiln4uIF2bm7wEyMyPiUOA2is91P+Armfmd8px/pBgSPqLWlrL8ryNir8z877Lc2sChmTm3LHMKcHFEjFuNkH008D+Zefsqni9pNdjDKKmbonzNlZTbGRgPXB4RC2obRW/TumUY6pSjgR9n5p2reP42ZfufBu6j+AzekplLKe7zvxvK/xgYB2xbt+/WMizW3AKs1VCm0T8Av8vM2wAy80Hg+xRzGv8qMx+h6EE9BniMIqjX7EwR2pbUlb8NmFceq/lLLSyWHijvc2NWQRms34S9i1LX2MMoqZv+ADxLETaubFGu9o/btwF3DXH88Ta3a0gRsR3wGuCdq1HNn8s6ngUeysynG443hufhhOpocYyICOBIYLuIWFZ3aBTwsoj4ZH0IBGYCy4FNgHUp5g82a99Q+5c0ObaqnRTvpejZvHQVz5e0muxhlNQ1mfk4cB3w/ohYt/F4RIyNiInAHOAZYJvMvHuIbXnjuRU5iqLX7YrVqGNp2eY/DREW51CEtXp7UcxzrF8c8rKGVdV/QxHS/tjkmn8HbEOx+ny3hm0scGCtYES8lmKu6N9T9ICeVwbOWvv+JiLWqiu/K0WonNPshldHueDnPcD5mbloZeUlVcPAKKnbjgWWAr+IiHdGxIsiYruIeDcwG9g+MxdQPArm5Ih4f0S8MCJ2joiDy/lxqywiNo2I3YAXlbu2i4jdyrmD9eXWAo4AzmnojWunfwMOioh/jogdIuLtFKuoT2u45obAmRGxU7lQ5iTg/7ZYPVwbRv9pZt5Rt90OfIdy8Us5tH8B8B+ZeS1wCMWilY+U9ZwBTAbOjYjpUTyz8gLg5sy8aSQ3Wv533o1iPuha5We+W30YLe0HbE4b5oxKWnUGRkldlZn/S/HsxasowtEvgZ9QDEP+O3BHWe4k4MMUQ6u3ATeX7+9dzSa8D/gVUHsI9znl+/c1lDsQ2IgmwaXuQdPTVrUhZUh7D3A4xX1/AfgKxWNw6n0LmE/xGXyT4rmEH2cI5SNvDgAua3LZS4G9I2J74FyKXsXjy/bcQ/E5nBwRMzLzYeD1FM+Q/DlwddnOg4aod2Wupficj6ZY/fyrctu8odzRFIG0kh5MScMTmSubay5JWpmI+CxFcNq1fGxNVde5Ebg7M4+s6hqS1MgeRklqjzcD768yLEpSt7hKWpLaIDNf2u02SFJVHJKWJElSSw5JS5IkqSUDoyRJklpyDmMbbbTRRjlt2rRuN0OSJGmlfvGLXzyamcP6alUDYxtNmzaN2bNnd7sZkiRJKxUR9w23rEPSkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycAoSZKklgyMkiRJasnAKEmSpJYMjJIkSWrJwChJkqSWDIySJElqycCovrfxxjBzZrdbIUnS4BrT7QZIq2vu3GKTJEnV6JkexohY0LAtj4gv1x0/MiLuLo9dHxGbt6hrWkRcGxFPRMRDEXFGRIypO5YN1zq+7tyIiFMi4rFyOzUiotq7lyRJ6l09Exgzc1JtAzYBFgGzACJiJnAysD+wAXAPcEmL6r4CPAJsBuwGzASObSizXt01T6rbfxRwALArsAvwZuDo1bo5SZKkPtYzgbHBWykC303l+/2AWZk5JzOXACcBe0XEtk3O3xq4LDOfycyHgOuBnYd57cOB0zLz/sx8ADgNOGIV70OSJKnv9WpgPBw4PzOzfB/lRt17gOlNzj8dODgiJkTEVOBNFKGx3n0RcX9EnBMRG9Xt3xm4re79bQw/bEqSJA2cnguMEbElxRDyeXW7rwXeHhG7RMR44AQggQlNqvkxRch7CrgfmA18uzz2KPAyYCtgd2Ad4KK6cycB8+rezwMmNZvHGBFHRcTsiJg915UXkiRpAHUkMEbEjeVCk6G2mxuKHwbcnJn31HZk5g+ATwOXA/cB9wLzKcJg47VGAd8DrgAmAhsB6wOnlHUtyMzZmbksMx8G3g+8PiIml1UsACbXVTkZWFDX27mCzDw7M2dk5owpU6aM6HORJEnqBx0JjJm5d2ZGk23PhuKHsWLvYq2OMzNz+8zcmCI4jgHuGOJyGwBbAGdk5uLMfAw4B9inWfPK11oP4hyKBS81u5b7JEmS1kg9NSQdEXsAUylXR9ftHxcR08tH3mwJnA2cnplPNNaRmY9SrKI+JiLGRMR6FHMibyvrekVEvDAiRkXEhsCXgBszszYMfT7wkYiYWj6656PAuVXcryRJUj/oqcBIEeyuyMz5DfvHARdTDBffCvwUqH924icj4rq68gcCbwTmAncDy4APl8e2oVgAM5+ih3IxcEjduV8Dvgv8pjx+TblPkiRpjRRNpuZpFcyYMSNnz57d7WascWrLkfyjLEnS8EXELzJzxnDK9loPoyRJknqMgVGSJEktGRglSZLUkoFRkiRJLRkYJUmS1JKBUZIkSS0ZGCVJktSSgVGSJEktGRglSZLUkoFRA8NvepEkqRoGRg2M5cu73QJJkgaTgVEDY9mybrdAkqTBZGDUwDAwSpJUDQOjBoaBUZKkahgYNTAMjJIkVcPAqIFhYJQkqRoGRg0MA6MkSdUwMGpgGBglSaqGgVEDY+nSbrdAkqTBZGDUwLCHUZKkahgYNTCWLOl2CyRJGkwGRg2MxYu73QJJkgaTgVEDwx5GSZKqYWDUwDAwSpJUDQOjBoZD0pIkVcPAqIFhD6MkSdUwMGpgGBglSaqGgVEDwyFpSZKqYWDUwLCHUZKkahgYNTAMjJIkVcPAqIHhkLQkSdUwMKrvjSr/FNvDKElSNQyM6ntrrVW8GhglSaqGgVF9b8yY4tUhaUmSqmFgVN/LLF7tYZQkqRoGRvU9A6MkSdUyMGpgOCQtSVI1DIzqe7UeRgOjJEnVMDCq79UC4/Ll3W2HJEmDqmcCY0QsaNiWR8SX644fGRF3l8euj4jNW9Q1LSKujYgnIuKhiDgjIsaUx97VcJ2nIyIjYvfy+IkRsbShzDbVfwJaVbXAuGxZd9shSdKg6pnAmJmTahuwCbAImAUQETOBk4H9gQ2Ae4BLWlT3FeARYDNgN2AmcGx5nYsarnUs8Cfgl3XnX1pfJjP/1MZbVUXsYZQkqRo9ExgbvJUi8N1Uvt8PmJWZczJzCXASsFdEbNvk/K2ByzLzmcx8CLge2LlJ2cOB8zNr/VTqN/YwSpJUrV4NjI0hLsqNuvcA05ucfzpwcERMiIipwJsoQuMKImIrYC/g/IZD+0XE4xExJyKOWdWbUGcYGCVJqlbPBcaI2JJiCPm8ut3XAm+PiF0iYjxwApDAhCbV/JiiR/Ep4H5gNvDtIcodBtyUmffU7bsM2AmYArwXOCEiDmnR3qMiYnZEzJ47d+4w7lDt5qIXSZKq1ZHAGBE3lgtLhtpubih+GHBzfYjLzB8AnwYuB+4D7gXmU4TBxmuNAr4HXAFMBDYC1gdOGaJph7FiMCUzf5uZf8nM5Zn5E4reyrc2u7fMPDszZ2TmjClTpqzkk1CV7GGUJKkaHQmMmbl3ZkaTbc+G4s8LcWUdZ2bm9pm5MUVwHAPcMcTlNgC2AM7IzMWZ+RhwDrBPfaGIeBWwOfCtlTWfFYfD1WPsYZQkqVo9NSQdEXsAUylXR9ftHxcR06OwJXA2cHpmPtFYR2Y+SrGK+piIGBMR61HMibytoejhwOWZOb/hWvtHxPrltV4OfBC4qk23qAo4h1GSpGr1VGCkCHFXNIY4YBxwMbAAuBX4KXB87WBEfDIirqsrfyDwRmAucDewDPhwXflxwNsZoicTOLg8Zz7FYphTMnOocuoR9jBKklStMd1uQL3MPLrJ/ieBXVqcd3LD+18De7co/wywXpNjTRe4qLfZwyhJUjV6rYdRGjF7GCVJqpaBUQPDHkZJkqphYFRfq/9+HnsYJUmqhoFRA8MeRkmSqmFgVF+r72E0MEqSVA0Do/qaQ9KSJFXPwKi+Zg+jJEnVMzBqYNjDKElSNQyM6mv2MEqSVD0Do/qacxglSaqegVF9zR5GSZKqZ2DUwLCHUZKkahgY1dfsYZQkqXoGRvU15zBKklQ9A6MGhj2MkiRVw8CovlbrYRw92h5GSZKqYmBUX6sFxrFjix7G+iFqSZLUHgZG9bVaQBwzpnh99tnutUWSpEFlYNRAGDu2eHVYWpKk9jMwqq819jC68EWSpPYzMKqvNQZGexglSWo/A6P6Wv2iF7CHUZKkKhgYNRBGjy5e7WGUJKn9DIzqaw5JS5JUPQOj+pqBUZKk6hkY1dcMjJIkVc/AqIHgHEZJkqpjYFRfs4dRkqTqGRjV1wyMkiRVz8CovmZglCSpegZGDYTaHMZnn+1uOyRJGkQGRvW1Wg+ji14kSaqOgVF9zSFpSZKqZ2BUXzMwSpJUPQOjBoJD0pIkVcfAqL5mD6MkSdUzMKqvGRglSaqegVF9zcAoSVL1eiYwRsSChm15RHy57viREXF3eez6iNi8RV07RcQPI2Jeec5bGo6/JiLujIinI+JHEbFV3bGIiFMi4rFyOzUiopq7Vrs4h1GSpOr0TGDMzEm1DdgEWATMAoiImcDJwP7ABsA9wCVD1RMRY4CrgKvLskcBF0bEDuXxjYArgOPL47OBS+uqOAo4ANgV2AV4M3B0G29VbdT4HEYf3C1JUvv1TGBs8FbgEeCm8v1+wKzMnJOZS4CTgL0iYtshzt0R2Bz4QmYuz8wfArcAh5bHDwTmZOaszHwGOBHYNSJ2LI8fDpyWmfdn5gPAacARbb9DtYVD0pIkVa9XA+PhwPmZtThAlBt17wGmD3HuUMPHUVd2Z+C22oHMXAj8sdz/vOPlzzujnmRglCSpej0XGCNiS2AmcF7d7muBt0fELhExHjgBSGDCEFXcSdE7eVxEjI2I15f11cpOAuY1nDMPWKfJ8XnApGbzGCPiqIiYHRGz586dO9zbVJs5h1GSpOp0JDBGxI0RkU22mxuKHwbcnJn31HZk5g+ATwOXA/cB9wLzgfsbr5WZSynmIO4LPAR8FLisruwCYHLDaZPL+oY6PhlYUNfb2Xi9szNzRmbOmDJlSquPQRWwh1GSpOp1JDBm5t6ZGU22PRuKH8aKvYu1Os7MzO0zc2OK4DgGuKPJ9W7PzJmZuWFmvgHYBri1PDyHYkELABExEdi23P+84+XPc1BPMjBKklS9nhqSjog9gKmUq6Pr9o+LiOnlI2+2BM4GTs/MJ5rUs0t5zoSI+BiwGXBuefhKYHpEHBQR4yiGt2/PzDvL4+cDH4mIqeWjez5ad656jIFRkqTq9VRgpFjsckVmzm/YPw64mGK4+FbgpxSPxQEgIj4ZEdfVlT8UeJBiLuNrgNdl5mKAzJwLHAR8DngCeAVwcN25XwO+C/yGogfzmnKfephzGCVJqs6YbjegXmYO+bzDzHyS4pmIzc47ueH9ccBxLcrfQPH4naGOJfDxclOPa3wOo4FRkqT267UeRmlEGoekfXC3JEntZ2DUQLCHUZKk6hgY1ddc9CJJUvUMjOprBkZJkqpnYFRfMzBKklQ9A6MGgnMYJUmqjoFRfc0eRkmSqmdgVF8zMEqSVD0Do/qaD+6WJKl6BkYNhFpg9MHdkiS1n4FRfc0haUmSqmdgVF8zMEqSVD0Do/paLTCOKv8kGxglSWo/A6MGQkQxj9HAKElS+xkY1ddqPYxgYJQkqSoGRvW1WmC0h1GSpOoYGNXXDIySJFXPwKiBUAuMPodRkqT2MzCqr9XPYRw1yh5GSZKqYGBUX3NIWpKk6hkY1dcMjJIkVc/AqIFgYJQkqToGRvU1n8MoSVL1DIzqaw5JS5JUPQOj+pqBUZKk6hkYNRAMjJIkVcfAqL7WOIfRB3dLktR+Bkb1tfohaR/cLUlSNQyM6mvOYZQkqXoGRg0EA6MkSdUxMKqv+RxGSZKqZ2BUX3NIWpKk6hkY1dcMjJIkVc/AqIFgYJQkqToGRvU15zBKklQ9A6P6WuOQtA/uliSp/QyM6ms+uFuSpOoZGDUQnMMoSVJ1DIzqa85hlCSpej0TGCNiQcO2PCK+XHf8yIi4uzx2fURs3qKunSLihxExrzznLXXHXhkR34+IxyNibkTMiojN6o6fGBFLG9qyTXV3rtXhY3UkSapezwTGzJxU24BNgEXALICImAmcDOwPbADcA1wyVD0RMQa4Cri6LHsUcGFE7FAWWR84G5gGbAXMB85pqObS+vZk5p/adqOqhIFRkqTq9ExgbPBW4BHgpvL9fsCszJyTmUuAk4C9ImLbIc7dEdgc+EJmLs/MHwK3AIcCZOZ1mTkrM5/KzKeBM4BXVXw/qohD0pIkVa9XA+PhwPmZf40DUW7UvQeYPsS50WTfUGUB9gLmNOzbrxyynhMRxwyzzeoCh6QlSapezwXGiNgSmAmcV7f7WuDtEbFLRIwHTgASmDBEFXdS9E4eFxFjI+L1ZX3PKxsRu5R1HVe3+zJgJ2AK8F7ghIg4pEV7j4qI2RExe+7cuSO4U7WDgVGSpOp1JDBGxI0RkU22mxuKHwbcnJn31HZk5g+ATwOXA/cB91LMPby/8VqZuRQ4ANgXeAj4KEUIXKFsRGwHXAd8KDNvqjv/t5n5l3I4+yfA6RRD5EPKzLMzc0ZmzpgyZcpwPxK1We05jD64W5Kk9utIYMzMvTMzmmx7NhQ/jBV7F2t1nJmZ22fmxhTBcQxwR5Pr3Z6ZMzNzw8x8A7ANcGvteERsBdwAnJSZF6ys+Qw9zK0e4BxGSZKq11ND0hGxBzCVcnV03f5xETE9CltSrHI+PTOfaFLPLuU5EyLiY8BmwLnlsanAD4EzM/OrQ5y7f0SsX17r5cAHKVZdqwc5JC1JUvV6KjBSLHa5IjPnN+wfB1wMLKDoKfwpcHztYER8MiKuqyt/KPAgxVzG1wCvy8zF5bEjKXocP13/rMW6cw8G7qYY8j4fOCUzn9fjqd5gYJQkqXpjut2Aepl5dJP9TwK7tDjv5Ib3x7HiQpb6Y58BPtOirqYLXNS7DIySJFWn13oYpRFxDqMkSdUzMKqvOSQtSVL1DIzqawZGSZKqZ2DUQDAwSpJUHQOj+lr9HEYf3C1JUjUMjOprDklLklQ9A6P6moFRkqTqGRg1EGqBMXPFYWpJkrT6DIzqa/XhcEz5GPply7rTFkmSBpWBUX2tfkh67Nji56VLu9ceSZIGkYFRfc3AKElS9QyMGggGRkmSqmNgVF+rn8NoYJQkqRoGRvW1+iHptdYqfl6ypHvtkSRpEBkY1decwyhJUvXGDKdQRLweOALYGVgHmA/MAc7JzO9X1jppmAyMkiRVZ6WBMSI+DHwc+L/A5cA8YDKwK3BeRJySmadX2kqpCecwSpJUveH0MB4HvDoz72zYf0VEXAL8CDAwqisckpYkqXrDmcM4EfhLk2MPARPa1xxpZAyMkiRVbziB8XLguxHxmoiYEhFrRcRGEfEa4ErgW9U2UVo5A6MkSdUZTmB8H/AT4DzgYWBR+Xoe8D/AMZW1TlqJ+jmMPlZHkqRqrHQOY2YuAT4BfCIi1gMmAQsy88nGshHxqsy8pd2NlJpxSFqSpOoN67E6NWVIfLJFkesoVlBLHWFglCSpeu1+cHe0uT5pWAyMkiRVp92BMVdeRGofn8MoSVL1/GpA9TWHpCVJqp6BUX3NwChJUvWcw6iB4WN1JEmqxogCY0RsGBGHRsTHy/ebR8QLasczc512N1BqxR5GSZKqN+zAGBEzgd8D7wKOL3dvD5xVQbukYTEwSpJUvZH0MH4ReEdmvhFYVu77GfDydjdKGikDoyRJ1RlJYJyWmT8of649zGQJI3z4t9ROfjWgJEnVG0lg/G1EvKFh32uB37SxPdKINA5Jjx4NixZ1t02SJA2akfQOfhS4OiKuAcZHxNeA/YD9K2mZNAz1gRFg/HgDoyRJ7TbsHsbM/B9gV2AO8A3gHuDlmfnzitomDZuBUZKk6oxo/mFmPgCcWlFbpBHLhi+jNDBKktR+LQNjRFzAML4fOjMPa1uLpBFwSFqSpOqtbEj6buCP5TYPOAAYDdxfnrs/8GR1zZNaMzBKklS9loExMz9T24AdgH0z812Z+cnMfDewL/DCdjQkIhY0bMsj4st1x4+MiLvLY9dHxOYt6topIn4YEfPKc95Sd2xaRGTDtY6vOx4RcUpEPFZup0aEX3nY4wyMkiRVZySP1Xkl8D8N+34G/E07GpKZk2obsAmwCJgFf/2WmZMpejQ3oFhwc8lQ9UTEGOAq4Oqy7FHAhRGxQ0PR9equeVLd/qMoelJ3BXYB3gwc3Y57VPs5h1GSpOqNJDD+Cjg5IsYDlK+fA35dQbveCjwC3FS+3w+YlZlzMnMJcBKwV0RsO8S5OwKbA1/IzOWZ+UPgFuDQYV77cOC0zLy/XORzGnDEqt+KquSQtCRJ1RtJYDwCeBUwLyIeppjTuCdQxYKXw4HzM//afxTlRt17gOlDnDvU8HEMUfa+iLg/Is6JiI3q9u8M3Fb3/rZyn3qQgVGSpOqN5DmM92bmHsC2wN8D22XmHpl5bzsbFBFbAjOB8+p2Xwu8PSJ2KXs2T6BYvT1hiCrupOidPC4ixkbE68v6amUfBV4GbAXsDqwDXFR3/iSKMFwzD5jUbB5jRBwVEbMjYvbcuXNHdrNqGwOjJEnVGUkPIxGxPvBq4O+Avcv3wznvxnKhyVDbzQ3FDwNuzsx7ajvK77D+NHA5cB9wLzCfYrX2CjJzKcUcxH2Bhyi+oeayWtnMXJCZszNzWWY+DLwfeH1ETC6rWABMrqtyMrCgrrez8XpnZ+aMzJwxZcqU4XwcaiPnMEqSVL1hB8aI+BuKx+u8j2IxyNHAH8v9LWXm3pkZTbY9G4ofxoq9i7U6zszM7TNzY4rgOAa4o8n1bs/MmZm5YWa+AdgGuLVZ82q3WL7OoVjwUlP7dhv1oMYh6QkT4Omnu9ceSZIG0Ui+6eWLwLGZ+c3ajoh4B/AliiHe1RYRewBTKVdH1+0fB2xHEdy2AM4GTs/MJ5rUswtwF0UgPhbYDDi3PPYKimdH/gFYv2z/jZlZG4Y+H/hIRFxLESY/CnwZ9aTGwDh5MixYAM8+C6NG1H8uSZKaGclfqTtQDO3W+xZFkGuXw4ErMnN+w/5xwMUUw8W3Aj8F6p+d+MmIuK6u/KHAgxRzGV8DvC4zF5fHtgGupxjSvgNYDBxSd+7XgO8CvymPX1PuUw+rBcZ11y1C5IIF3W2PJEmDZCQ9jH8ADqYIbjVvoximbovMHPJ5h5n5JMUweLPzTm54fxxwXJOyl9DkGY7l8QQ+Xm7qcY1zGCeXs0/nzXvuZ0mStHpGEhj/Cbg6Ij5IsfBkGrA9xYOtpa5oHJJed93idd482GKL7rRJkqRBM+zAmJk/KR+UvS/Fg7G/C1ybmY9X1ThpZYaawwjw1FPdaY8kSYNoJD2MlItMLqyoLdIqG6qHUZIktcewA2NEbE3xVYC7UTzc+q8yc8v2NksanmZzGO1hlCSpfUbSw3gxxQKXjwI+6U49odUcRkmS1B4jCYw7A6/KzGeraow0UgZGSZKqN5LnMP438JKqGiKtjlpgnDixeGC3Q9KSJLXPSHoY7wW+FxFXUHxH819l5gntbJQ0XI1zGCOKeYz2MEqS1D4jCYwTKR6lM5bi6/lqcujiUvUah6ShCIz2MEqS1D4jeQ7jP6ysTEQcUn6TitQRQwXGdde1h1GSpHYayRzG4fA7l9UVjT2MBkZJktqn3YExVl5Eap/GOYxQ9DA6JC1JUvu0OzA6n1Ed1WxI+sknu9IcSZIGUrsDo9RRQwXGjTaCRx/tTnskSRpEKw2MEWGoVM+rD4ybblrMYXzmme61R5KkQTKcMPhARJwaEdOHUfZ/V7dB0kgMNYdxk02K14cf7mxbJEkaVMMJjO8DtgZ+HhG/jIgPRcSUoQpm5nBCpdQ2Qw1JGxglSWqvlQbGzLwqM98GbEbx2Jy3AX+OiO9ExEERMbbqRkor0zgkDfDgg91piyRJg2bY8xMz88nM/Fpm7gnsBMwGvgD417K6Zqgh6a23Ll7/9KfOtkWSpEE1kq8GBCAi1gZeBrwC2AT4SbsbJQ3XUEPSG25YrJT+3e+60yZJklZFJixdCosWNd+efrr18ZGUG4lhB8aI2BM4DHg78AhwAXBsZt43sktK7TNUYATYcUeYM6fz7ZEkDZ5MWLz4uRD29NMrbo37Vuf98uWr1sbRo2H8+Oe2CRNWfL/BBiu+Hz8evvjF4de/0sAYEScChwIbALOAfTPzllW7HakajYFxjz3gP/+z+MaXyZO70yZJUrWefbZ4hNpwg9nqhLmhpkCtzNixRXCrhbfazxMmwJQpK76vD3mNYW+orbHM2FVYUdLWwAi8EvgX4NuZ6ZPt1FOa/Q+8zz5w6qlwww1w4IGdbZMkqbB0aRG2Fi58blvV90OFuVV93u7aazcPcuuv//x9I31f2zdmxBP/etdKbyUz39iJhkirotmQ9B57FF8RePXVBkZJamb58hUD2srC20gD39KlI2vP6NEwcWKxTZiw4s9TpjQPZiN5P25ccR2NzABlX62JmgXGsWNhv/3gyivhK18pfkFIUj/KLHrWFix4/rZw4dD7hhvuFi8eWVsingtxjcFugw1WDHmNoW8478eOff7vc/UGA6MGwlC/YN7zHrjwQvjSl+DjH+98mySteZYsGVmwG07ZhQtHNn+uMYTVgtlmmw0vuLU6tvbaBro1lYFRfa3VL9G994YDDoB//mfYfHN497s71SpJvS6zmP82f/6K23DDXrP9y5YNvw1rrw2TJj23TZxYvG644dD7G7eh9o8fD6OG/YRlafgMjOprzYaka/suvhje/GY4/HB48kk49lh/mUr9atmy5we8+u2pp1ofb9yG+/iSUaOGDmwbb1x8UcBQx1YW9GrDr1K/MDCqr7UKjFD8a/s734G3vQ0+8AG4/HL4+tdh220710ZpTZVZ9MKNNMg124a7InbMGFhnnRW3yZNh6tTn7x9qawx4DsNKBkYNiFa/zCdOhGuugXPOgY98BF78Yjj55CJAulJOer7MYnHEU0/BvHnF66r8/NRTw5t7F1EEs8bgttVWwwt4jZsBT2o/A6P62nAngkcUi2De8AY4+mj48Ifhm9+Er34Vdtut0iZKHVOblzfcUNcq6A1nuHbChOLxVZMnF9u668Kmmz738+TJz/XutQp4EyY4VUTqdQZG9bWRPnl/6lT47nfhoouK3sbdd4cPfhA++9niLy6pm5YtK4Lbk0+uuDXuq3/fGPaG89y7ceNWDHmTJ8M22zw//NW/Nv48efJgPZRYUmv+766+ljnyoaeIYsX0vvvCJz4Bp58Os2YVX5F00EEOZWnVLV48/KA31L6FC1d+jXXXhfXWK7Z114UttoCdd24e7Bp/rg3ZStJIGBjV91Y14K2/fjEkfcQRcMwxxcKYN70Jzjij6G3RmufZZ4sA98QT8PjjK74+8cTKw+DKFmWMHv1c0KuFvk03XfF9fRhsfL/OOs67ldQdBkb1tVX5MvhGr3wl/PznRVA8/viit+Zf/gWOO86emH5UW7AxVOhr9lr7+cknW/+ZWmut54e4LbdcedCr/Txxoj3YkvqTgVF9bVWGpIcyZgz80z8VvYwf/nARHC+8EM46C1796tWvXyO3dOnIQl99+FuypHm9o0cXvcvrr198ldlGG8H22xc/1/bVv9b/PG6cgU/SmsnAqL7WrsBYM3UqXHYZXH89/OM/wt/9HbzjHfCpT8H06e27zpri2WeLhRirEvoWLGhd9+TJK4a56dNXHvg22KAY1jX0SdLIGBjV96r4y/+Nb4Q77oB/+zc47TS49FLYb7+i93HmzDXrESCZsGjRqoW+J58sQmMz48atGOamTYOXvnTooFf/ut56rtCVpE7yV676WjvmMDYzfnzxuJ0PfQjOPBO+9KXikTxbbgnvfCfss08x/7GXv94rs1i52/jcveG81s/tazXEO2rUimFuJEO848d37rOQJK26ngmMEdE4ADUe+EpmfqA8fiTwz8CmwM3AezLzL03q2gk4E9gdmAscl5lXlsfeBXytrvio8lozMvMXEXEi8C/A4royu2Tmn1bvDlWFdg9JD2XDDeGEE+BjH4OrroLzz4d//3f4/OeLb6d4yUtg112LIdGpU2GzzYrQNG5csdUWzixd+vxt8eKi927RomKFbe3nZtuqlGnVw1dTey5f/SNYXvSi1r18tdd11lmzelwlaU3UM4ExMyfVfo6IicDDwKzy/UzgZODVwB+A04FLgJmN9UTEGOAq4KvA68oy342Il2TmXZl5EXBRXfkjgOOBX9ZVc2lmvrud96dqdCIw1kyYAIccUmxPPgk/+hHccAP8+tdw7rkrn3O3utZeu+iRa9xqYW+TTYY+Xvs2jsYHMdeHw7XWqrbtkqT+1jOBscFbgUeAm8r3+wGzMnMOQEScBDwQEdtm5h8bzt0R2Bz4QmYm8MOIuAU4lCIYNjocOL8sqz7UjQUM660Hb3lLsUHRi/fAA/CXv8CDD8Kjjxa9h7UNiqHrxm3ttYvAN1TQqw+E48bZiydJ6p5eDYyNIS7Kjbr3ANOBxsA4VHyIsuyKOyO2AvYC3tNwaL+IeBx4EDgjM88aWfPVKb0S80eNKr5xY4stut0SSZLar+f6LCJiS4ph5PPqdl8LvD0idomI8cAJQAIThqjiToreyeMiYmxEvL6sb6iyhwE3ZeY9dfsuA3YCpgDvBU6IiENatPeoiJgdEbPnzp077PtUe3RySFqSpDVVRwJjRNwYEdlku7mh+GHAzfUhLjN/AHwauBy4D7gXmA/c33itzFwKHADsCzwEfJQiBD6vbHmt+mBKZv42M/+Smcsz8ycU8yXf2uzeMvPszJyRmTOmTJnS+oNQ2xkYJUmqXkcCY2bunZnRZNuzofjzQlxZx5mZuX1mbkwRHMcAdzS53u2ZOTMzN8zMNwDbALfWl4mIV1HMdfzWyprP0MPc6hEGRkmSqtVTQ9IRsQcwlXJ1dN3+cRExPQpbAmcDp2fmE03q2aU8Z0JEfAzYDDi3odjhwOWZOb/h3P0jYv3yWi8HPkix6lo9qFfmMEqSNMh6bdHL4cAVjSEOGAdcDGxLMRR9DnUrniPik8DfZuabyl2HAkcCYylWWr8uMxfXlR8HvB04aIg2HAx8A1ibYhj7lMx8Xo+nOmvJEvjf/4V77y22e+4pXq+4wm/8kCSpauHTZNpnxowZOXv27G43oy9lwty5cPfd8Mc/Ftuf/vRcMHzggRV7E0ePLrYlS4oHRz/1VNeaLklSX4qIX2TmjOGUtW9GHbN8Odx//3OBsBYOa6/1D76OgBe8ALbeGv7u74rvGN566+J12rTi2MEHw+WXO4dRkqSqGRjVVpnFQ6vvvLPYfv/74vXuu4vewvrvJB47FrbZBrbdFvbaC7bbrvh5222LcFj7Sj1JktRdBkatkqVLiyHj+lBY+/nxx58rN24cbL998T3L++9fhMFaMHzBC4ph5VVV61m0h1GSpGoZGNXSs8/CfffBb36z4nbXXbBs2XPlNt0UdtwR3va24rW2bblldV9pZ2CUJKkzDIz6q3nz4Ne/LgLh7bcXr3fcseLcwmnT4MUvhr//e9hppyIUvvCFsO66nW+vQVGSpM4wMK6hnnwSfvlL+MUvntvuvvu54xtsUATDI44oXl/8Yth5Z5g8uVstfj57GCVJ6gwD4xpg6VK47Ta45Rb46U+fHw633BJ23x3+4R/gpS+FXXaBzTbr/SBmYJQkqTMMjANo3jz4yU+KgHjLLXDrrfD008WxF7wAXvayIhzuvnsREPv9K7ANjJIkVcvAOAAWLy56Dm+4odh+/vNiscro0bDbbnDkkbDHHsW2xRbdbm37GBQlSeoMA2Of+vOf4aqr4Oqr4b//GxYtKgLiK14Bn/oU7L03vPzlMHFit1taHYekJUnqDANjH/ntb4vvTv72t4t5iAA77FD0IL72tUVI7KVFKVUzMEqS1BkGxh43dy5ccgmcd16xqhngla+Ez3++eBD2jjt2t33dZGCUJKkzDIw9KLNYrPLFLxbDzsuWFYtTvvjF4sHYm2/e7Rb2BoOiJEmdYWDsIcuXw6xZcNppMHs2rL8+fOhDxbMQp0/vdut6l8FRkqRqGRh7QCZ85zvFYpU77ii+OeWss+DQQwd70crqckhakqTOMDB22Zw58L73wc03w/bbwze/WQw7V/X9y4PEwChJUmcYS7pkyZKiR3G33eB3v4Ozzy5WQb/jHYbF4TIoSpLUGfYwdsF99xXB8Gc/g8MPh//4D9hoo263qv/YwyhJUmcYGDvs+98vwuLy5fCtb8FBB3W7Rf3LwChJUmc4+NlBF10E++xTfD3fL39pWGwXA6MkSdUyMHbIN74B73437Lln8VV+227b7Rb1P4OiJEmdYWDsgCuvhPe+F97wBrjuOlh33W63aDA4JC1JUmcYGCv2s5/BwQfDy18Ol18O48Z1u0WDw8AoSVJnGBgr9OijxTMVN9sMrr7ah3C3m4FRkqTOcJV0hY4+Gh5+uPhe6A037HZrBo9BUZKkzjAwVuTKK+GKK+Dzn4cZM7rdmsFmcJQkqVoOSVdg0SL4wAeKb3H5yEe63ZrB5ZC0JEmdYQ9jBc46Cx54AC6+GMaO7XZrBpeBUZKkzrCHsc2WLoVTT4XXvhb22qvbrRlsBkVJkjrDHsY2u+aaYqHL17/e7ZYMPnsYJUnqDHsY2+ycc4rH6Lzxjd1uyeAzMEqS1BkGxjbKhBtuKL4jeox9t5UzMEqS1BkGxjZ6+ulimzmz2y2RJElqHwNjG82fX7y62KUz7GGUJKkzDIxttGABvPCFsPHG3W7JmsHAKElSZxgY22jRInjJS7rdijWHgVGSpM4wMLbRkiWw447dbsWaw6AoSVJnGBjb7IUv7HYL1hz2MEqS1Bk9ExgjYlpEXBsRT0TEQxFxRkSMqTv+moi4MyKejogfRcRWLeraICKujIiFEXFfRLyz4XjTuqJwSkQ8Vm6nRgw/kkybNsIb12ozMEqSVK2eCYzAV4BHgM2A3YCZwLEAEbERcAVwPLABMBu4tEVdZwJLgE2AdwFnRcTOw6zrKOAAYFdgF+DNwNHDvYmpU4dbUqvLHkZJkjqjlwLj1sBlmflMZj4EXA/sXB47EJiTmbMy8xngRGDXiHjejMGImAgcBByfmQsy82bgO8Chw6zrcOC0zLw/Mx8ATgOOGO5NbLrpSG5Zq8OgKElSZ/RSYDwdODgiJkTEVOBNFKERiuB4W61gZi4E/shzgbLeDsDyzLyrbt9tdWVXVtcKxxvObWnMGBg7djgl1Q72MEqS1Bm9FBh/TBHMngLupxgq/nZ5bBIwr6H8PGCdIepZWdmRHp8HTGo2jzEijoqI2RExe9SoZUMVUUUMjJIkdUZHAmNE3BgR2WS7OSJGAd+jmFs4EdgIWB84paxiATC5odrJwPwhLreysiM9PhlYkJk51L1l5tmZOSMzZ7z4xX6BdCcZFCVJ6oyOBMbM3Dszo8m2J8Xiky2AMzJzcWY+BpwD7FNWMYdiEQrw13mK25b7G90FjImI7ev27VpXdmV1rXC84Vz1IIOjJEnV6okh6cx8FLgHOCYixkTEehSLT2pzCa8EpkfEQRExDjgBuD0z7xyiroUUPZWfjYiJEfEqYH/ggmHWdT7wkYiYGhGbAx8Fzm3/XWt1OSQtSVJn9ERgLB0IvBGYC9wNLAM+DJCZcylWPn8OeAJ4BXBw7cSI+GREXFdX17HAeIrH9FwCHJOZc4ZTF/A14LvAb4A7gGvKfeoxBkZJkjqjZybdZeavgb1bHL8BGPKL9zLz5Ib3j1M8S3FV6krg4+WmHmZQlCSpM3qph1EaEXsYJUnqDAOj+paBUZKkzjAwqu8ZGCVJqpaBUX3LoChJUmcYGNW3HJKWJKkzDIzqWwZGSZI6w8CovmVQlCSpMwyM6lsGRkmSOsPAKEmSpJYMjOpb9jBKktQZBkb1rVpgzOxuOyRJGnQGRvUtexglSeoMA6P6loFRkqTOMDCqb/kcRkmSOsPAqL7nHEZJkqplYFTfsmdRkqTOMDCqbxkYJUnqDAOj+paP1ZEkqTMMjOpbLnqRJKkzDIzqWwZGSZI6w8CovmdglCSpWgZG9S2DoiRJnWFgVN9ySFqSpM4wMKpvGRglSeoMA6P6loFRkqTOMDCqbxkYJUnqDAOjJEmSWjIwqm/ZwyhJUmcYGNW3DIySJHWGgVF9y6AoSVJnGBjVt+xhlCSpMwyM6lsGRkmSOsPAqL5nYJQkqVoGRvUtg6IkSZ1hYFTfckhakqTOMDCqbxkYJUnqDAOj+pZBUZKkzjAwqm/ZwyhJUmcYGNX3DIySJFWrZwJjREyLiGsj4omIeCgizoiIMXXHXxMRd0bE0xHxo4jYqkVdG0TElRGxMCLui4h31h17ZUR8PyIej4i5ETErIjarO35iRCyNiAV12zbV3blWlT2MkiR1Rs8ERuArwCPAZsBuwEzgWICI2Ai4Ajge2ACYDVzaoq4zgSXAJsC7gLMiYufy2PrA2cA0YCtgPnBOw/mXZuakuu1Pq3tzaj8DoyRJnTFm5UU6ZmvgjMx8BngoIq4HaiHvQGBOZs6CohcQeDQidszMO+sriYiJwEHA9MxcANwcEd8BDgX+OTOvayh/BvDjCu9LFTEoSpLUGb3Uw3g6cHBETIiIqcCbgOvLYzsDt9UKZuZC4I88Fyjr7QAsz8y76vbd1qQswF7AnIZ9+5VD1nMi4piR34o6wR5GSZI6o5cC448pQt1TwP0Uw87fLo9NAuY1lJ8HrDNEPcMuGxG7ACcAx9XtvgzYCZgCvBc4ISIOadboiDgqImZHxOy5c+c2K6YKGBglSeqMjgTGiLgxIrLJdnNEjAK+RzFPcSKwEcVcw1PKKhYAkxuqnUwx/7DRsMpGxHbAdcCHMvOm2v7M/G1m/iUzl2fmTyh6Pt/a7N4y8+zMnJGZM6ZMmdL6g1BbGRglSeqMjgTGzNw7M6PJtifFQpYtKOYwLs7MxygWouxTVjEH2LVWXzlPcVueP5QMcBcwJiK2r9u3a33ZcoX1DcBJmXnBypoPGEkkSdIaqyeGpDPzUeAe4JiIGBMR6wGH89y8xSuB6RFxUESMoxhGvr1xwUtZ10KKnsrPRsTEiHgVsD9wAUA5P/KHwJmZ+dXG8yNi/4hYPwovBz4IXNXmW1Yb2MMoSVJn9ERgLB0IvBGYC9wNLAM+DJCZcylWPn8OeAJ4BXBw7cSI+GRE1K9+PhYYT/GYnkuAYzKz1sN4JLAN8On6Zy3WnXtwef35wPnAKZl5XpvvVW1gYJQkqTN65rE6mflrYO8Wx28Admxy7OSG948DBzQp+xngMy2u03SBi3qLQVGSpM7opR5GaUTsYZQkqTMMjOpbBkZJkjrDwKi+Z2CUJKlaBkb1LXsYJUnqDAOj+pZBUZKkzjAwqm/ZwyhJUmcYGNW3DIySJHWGgVF9y8AoSVJnGBglSZLUkoFRfcseRkmSOsPAqL5nYJQkqVoGRvWtzG63QJKkNYOBUX3PHkZJkqplYFTfqvUwGhglSaqWgVF969lni1cDoyRJ1TIwqu8ZGCVJqpaBUX3LRS+SJHWGgVF9zx5GSZKqZWBU37KHUZKkzjAwqm+5SlqSpM4wMKpvGRglSeoMA6P6loFRkqTOMDCq7xkYJUmqloFRfctFL5IkdYaBUX3PHkZJkqplYFTfcg6jJEmdYWBU3/K7pCVJ6gwDo/qegVGSpGoZGNW3XPQiSVJnGBjV9+xhlCSpWgZG9S17GCVJ6gwDo/qWq6QlSeoMA6P6loFRkqTOMDCqbxkYJUnqDAOj+p6BUZKkahkY1bdc9CJJUmcYGNX37GGUJKlaBkb1LecwSpLUGQZG9S2/S1qSpM7omcAYEdMi4tqIeCIiHoqIMyJiTN3x10TEnRHxdET8KCK2alHXBhFxZUQsjIj7IuKdDdfJiFhQtx1fdzwi4pSIeKzcTo0wkvQy/+tIklStngmMwFeAR4DNgN2AmcCxABGxEXAFcDywATAbuLRFXWcCS4BNgHcBZ0XEzg1l1svMSeV2Ut3+o4ADgF2BXYA3A0evzo2pGi56kSSpM3opMG4NXJaZz2TmQ8D1QC3kHQjMycxZmfkMcCKwa0Ts2FhJREwEDgKOz8wFmXkz8B3g0GG243DgtMy8PzMfAE4DjliN+1LF7GGUJKlavRQYTwcOjogJETEVeBNFaIQiON5WK5iZC4E/8lygrLcDsDwz76rbd9sQZe+LiPsj4pyyB7NmhWs1OfevIuKoiJgdEbPnzp3b+g7VVvYwSpLUGb0UGH9MEcyeAu6nGHb+dnlsEjCvofw8YJ0h6llZ2UeBlwFbAbuX+y9qcf48YFKzeYyZeXZmzsjMGVOmTGl2b6qAq6QlSeqMjgTGiLixXGgy1HZzRIwCvkcxT3EisBGwPnBKWcUCYHJDtZOB+UNcrmXZcph6dmYuy8yHgfcDr4+IyU3OnwwsyLQ/q9ccfjgccAB86lPdbokkSYOtI4ExM/fOzGiy7UmxkGUL4IzMXJyZjwHnAPuUVcyhWIQC/HWe4rbl/kZ3AWMiYvu6fbs2KQtQC4K1fqoVrrWSc9VFkyfDlVfCppt2uyWSJA22nhiSzsxHgXuAYyJiTESsR7H4pDaX8EpgekQcFBHjgBOA2zPzziHqWkjRU/nZiJgYEa8C9gcuAIiIV0TECyNiVERsCHwJuDEza8PQ5wMfiYipEbE58FHg3GruXJIkqff1RGAsHQi8EZgL3A0sAz4MkJlzKVY+fw54AngFcHDtxIj4ZERcV1fXscB4isf0XAIck5m1XsJtKBbTzAfuABYDh9Sd+zXgu8BvyuPXlPskSZLWSOHUvPaZMWNGzp49u9vNkCRJWqmI+EVmzhhO2V7qYZQkSVIPMjBKkiSpJQOjJEmSWjIwSpIkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWjIwSpIkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWorM7HYbBkZEzAd+3+12rGE2Ah7tdiPWMH7mnedn3nl+5p3nZ955L8zMdYZTcEzVLVnD/D4zZ3S7EWuSiJjtZ95Zfuad52feeX7mnedn3nkRMXu4ZR2SliRJUksGRkmSJLVkYGyvs7vdgDWQn3nn+Zl3np955/mZd56feecN+zN30YskSZJasodRkiRJLRkYJUmS1JKBsQ0iYoOIuDIiFkbEfRHxzm63adBFxPsjYnZELI6Ic7vdnkEXEWtHxH+Vf77nR8SvIuJN3W7XoIuICyPiwYh4KiLuiogju92mNUVEbB8Rz0TEhd1uy6CLiBvLz3pBufk84w6IiIMj4ndldvljRPxtq/I+h7E9zgSWAJsAuwHXRMRtmTmnq60abH8B/hV4AzC+y21ZE4wB/gzMBP4X2Ae4LCJenJn3drNhA+7fgP8vMxdHxI7AjRHxq8z8RbcbtgY4E/h5txuxBnl/Zn69241YU0TE64BTgHcAtwKbrewcexhXU0RMBA4Cjs/MBZl5M/Ad4NDutmywZeYVmflt4LFut2VNkJkLM/PEzLw3M5/NzKuBe4Ddu922QZaZczJzce1tuW3bxSatESLiYOBJ4AddbopUlc8An83M/yl/pz+QmQ+0OsHAuPp2AJZn5l11+24Ddu5Se6TKRcQmFH/27UWvWER8JSKeBu4EHgSu7XKTBlpETAY+C3y0221Zw/xbRDwaEbdExN7dbswgi4jRwAxgSkTcHRH3R8QZEdFytM7AuPomAfMa9s0DhvXdjFK/iYixwEXAeZl5Z7fbM+gy81iK3yd/C1wBLG59hlbTScB/Zeafu92QNcj/AbYBplI8F/C7EWFPenU2AcYCb6X4vbIb8BLgU61OMjCuvgXA5IZ9k4H5XWiLVKmIGAVcQDFn9/1dbs4aIzOXl9NdXgAc0+32DKqI2A14LfCFLjdljZKZP8vM+Zm5ODPPA26hmCetaiwqX7+cmQ9m5qPAf7KSz9xFL6vvLmBMRGyfmX8o9+2KQ3UaMBERwH9R/Ot0n8xc2uUmrYnG4BzGKu0NTAP+t/jjziRgdES8KDNf2sV2rWkSiG43YlBl5hMRcT/F5zxs9jCupsxcSDFM9NmImBgRrwL2p+iFUUUiYkxEjANGU/xCHxcR/gOoWmcBOwH7ZeailRXW6omIjcvHXkyKiNER8QbgEOCH3W7bADubIpDvVm5fBa6heBqDKhAR60XEG2q/wyPiXcBewPe63bYBdw7wgfL3zPrAPwFXtzrBv2Db41jgG8AjFKt2j/GROpX7FPDpuvfvplj1dWJXWjPgImIr4GiK+XMPlb0vAEdn5kVda9hgS4rh569S/OP+PuCfMvOqrrZqgGXm08DTtfcRsQB4JjPndq9VA28sxSPSdgSWUyzuOiAzfRZjtU4CNqIYJX0GuAz4XKsT/C5pSZIkteSQtCRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWjIwSpIkqSUDoyS1SUTMiYi9O3StF0XE7ArqvSIi3tjueiX1N5/DKEnDVD7IuWYCxYPMl5fvO/oQ84i4HJiVmd9sc70vB87KzN3bWa+k/mZglKRVEBH3Akdm5g1duPZmFN9Xv3lmPlNB/X8ADsnMtvdgSupPDklLUptExL0R8dry5xMjYlZEXBgR8yPiNxGxQ0R8IiIeiYg/R8Tr685dNyL+KyIejIgHIuJfI2J0k0u9DvhlfVgsr31cRNweEQvLujaJiOvK699Qfmcs5ff2XhgRj0XEkxHx84jYpK7+G4F92/4BSepbBkZJqs5+wAXA+sCvgO9R/N6dCnwW+Fpd2fOAZcB2wEuA1wNHNqn3xcBQ37V7EEWY3KG89nXAJym+M3YU8MGy3OHAusAWwIbA+4BFdfX8Dth12HcpaeAZGCWpOjdl5vcycxkwC5gCfD4zlwLfBKZFxHpl796bgH/KzIWZ+QjwBeDgJvWuB8wfYv+XM/PhzHwAuAn4WWb+KjMXA1dSBFGApRRBcbvMXJ6Zv8jMp+rqmV9eQ5IAGNPtBkjSAHu47udFwKOZubzuPcAkYHNgLPBgRNTKjwL+3KTeJ4B1hnG9xveTyp8voOhd/GZErAdcCPxLGWQp636y2U1JWvPYwyhJ3fdnihXXG2XmeuU2OTN3blL+doph51WSmUsz8zOZ+SJgD+DNwGF1RXYCblvV+iUNHgOjJHVZZj4I/D/gtIiYHBGjImLbiJjZ5JTvAy+NiHGrcr2IeHVEvLhcVPMUxRD18roiMynmP0oSYGCUpF5xGLAW8FuKIedvAZsNVTAzHwZ+COy/itfatKz/KYoFLj+mGJYmIl4GLMzMW1exbkkDyOcwSlIfiogXUaysfnm28Rd5+UDw/8rMa9tVp6T+Z2CUJElSSw5JS5IkqSUDoyRJkloyMEqSJKklA6MkSZJaMjBKkiSpJQOjJEmSWjIwSpIkqSUDoyRJklr6/wEngq97ZpCbrwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCx0lEQVR4nO3debgcZZ33//c3OYFshDVsEQhENkFAieggEhw3BBkYcAGVZeZBEB6XUcRnxhFEGXFgfoyiIMqjsoMSAZXVR1QcwAWjI0iUQRRQkCUsCUkI2fj+/qhq6DTndM5JunrL+3Vd99Wnq+6quqsJJ5/cS3VkJpIkSdJQRnW6AZIkSepuBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJTUNyLi5oj4Wt37CyLipk62SZL6gYFRUsdFxIYRcUZE/E9EPBsRj0XEf0XEERExUPG1j4mIH0bEkxGREbHXIHXGR8TnI+LPEbEoIv4YEZ+OiNEjvNYp5TUyIp6LiIci4vKI2Kp1d7TSNnwsIpZHxH+265qDtGFsRJwfEf8dEUsi4t4h6r0iIr5f/rd5OiJui4g3tbu9kgyMkjosIl4C/Bo4BPgM8ErgtcDXgY8BO1fchPHAj4ATm9T5D+CdwNHAjsD/AT4KfHwVrnc/sBnwEuAIYDpwzUjD52p4H3AacERErN2mazYaDSwBzgO+OViFiBgP/D9gHvA6is/pNxSf1dS2tFLS8wyMkjrtXGBt4JWZeWlm/i4z/5CZFwK7A3+oVYyID0bE3WUv5B8i4l9XtwcyM7+QmZ8Fftik2muBb2bm/8vM+zPz2xRhZo9VuOTyzHwkM/+amT8ETgFeDrwUICKOjIjfRcTiiHgwIv6t/h7LYfdvRMS/R8TjZc/b1yJi3MouHBGvB9YDPg08ShHS6/f/n4iYWx/IIuJTEfFEGeyJiNeUvb+LIuKpiLgsIjauq39KRNwbEQeW/60WRsSPI2JarU5mLszMYzPzXOBPQzR3O2Aj4NTMnJ2Z9wD/TPFnZdeV3auk1jIwSuqYiNgA2A84OzPnNe7PzKWZubCsewpFj+O/UPTyfRg4FvhUG5p6K/DWiNi6bMtuwF7AdS0496LydUxE7A98A7iYIkSeAPxvXnyPbwc2pOh5ew/wd8Dpw7jWscClmbkMuBA4pmH/GcAvgMsjYiAiXgd8EviHzHwwIjalCMoPUoTlAyh6gK9sOM9mwHFl2/akCKnfGEb76v2BItT+Q0SMi4gxwPuBJ4GfjfBcklZXZlosFktHCkXoSODgldQbDzwD7Nuw/Qhgbt37m4Gv1b2/ALhpmG2ZWrZlr0H2jQG+XO5fCjwHnLQK93sKcG/d+y0pAtqfy2vcAlzRcMyHKULlWnX3eD8wuq7OMcBiYEKTa08u6+xavt+svJftG+ptDDxc3u9fgLPq9p1KERbXqtu2a/m57F13j8uAyXV1Di0/s7Er+0wa9m0H3FUeuwz4KzC9039uLZY1sdjDKKmTonzNldTbCRgHXBkRC2oF+CqwbkRMrrKRwPHAvhRDuK8E/hH4aEQ09tANxzZl+58BHqD4DP4+M5dS3Od/NdT/CTAWmFa37fbMXF73/jZgrYY6jf4B+H1m3gGQmQ8DP6CY0/i8zHyM4v6OA55gxXmaOwE/z8wldfXvoJhnuFNdvb9m5py69w+V97kxw1QOsZ8P/I6il/LVwDUUcxi3HO55JLVGpasPJWkl/kDRe7QTcHWTerV/3L4DuGeQ/U+2uF3Pi4ixFEO1R2TmVeXm30bEFsDJFAs3RuIvwBso7vuRzHymYX9jeB5OqI4m+4iIoFiw89KIWFa3axTwqoj4RH0IBGYAy4FNgHWBx5q0b7DtS4bYN5JOisMohuX3KcM0EfF+is/uGIqhckltYg+jpI7JzCeBG4APRMS6jfsjYkxETABmA88C22TmvYOU5Y3HttCYsjzXsH05KwlqQ1hatvlPg4TF2RRhrd7eFEPS9YtDXtWwqvpvKELaH4e45t8C21As3tmtoYwBDq5VjIg3UswV/TuKHtALy8BZa9/fRMRadfV3pQiVs4e64VU0gSJoPv+5Z2ay6p+7pNVgYJTUacdTzKX7VUS8OyJeFhEvjYj3ArOAbTNzAcWjYE6LiA9ExPYRsVNEHBoRw1nsMaSI2LRcxPKyctNLI2K3coEHmTkf+DHw2Yh4U0RMjYhDKBakXDXoSVfd54BDIuKfI2K7iHgnxRy/Mxt6ADcEzomIHcuFMqcC/zfLBUKDOBb4SWb+LDPvqit3At+jXPxSDu1fDPx/mXk9RS/fnhSPEAI4G5gEXBARO0fxzMqLgVsz85aR3Gj533k3YFNgrfIz360ujH6fYpj96+V/6+3LZ0dOK9ssqZ06PYnSYrFYKBZknEkx3PwsxRDoT4D3AgN19f4XxbP4ngWeolgwclzd/psZ4aIXikCWg5RTGtp3HsVw8rMUPXmfA8bV1TmqPG7qSq416AKPujpHAr+n6DF8CPhsw2dwM8WK4/+gmGM4v3w/fojzbVye69gh9u9P0Yu3LcWq758DY+r2H0axWGZ6+f41FPMsFwFzgcuAjZvdI8WK8hU+G4qFO4N97vV19inv9ymKeZI/B/6u039eLZY1sUTmyuaaS5JWJiI+Q7EoZtcsHltT1XVupghkR1d1DUlq5JC0JLXG24APVBkWJalTXCUtSS2Qma/sdBskqSoOSUuSJKkph6QlSZLUlIFRkiRJTTmHsYU22mijnDp1aqebIUmStFK/+tWvHs/MYX21qoGxhaZOncqsWbM63QxJkqSViogHhlvXIWlJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYFTP23hjmDGj062QJKl/DXS6AdLqmjOnKJIkqRpd08MYEQsayvKI+FLd/qMj4t5y340RsXmTc02NiOsj4qmIeCQizo6Igbp92XCtk+qOjYg4PSKeKMsZERHV3r0kSVL36prAmJkTawXYBFgEzASIiBnAacCBwAbAfcDlTU73ZeAxYDNgN2AGcHxDnfXqrnlq3fZjgIOAXYFdgLcBx67WzUmSJPWwrgmMDd5OEfhuKd8fAMzMzNmZuQQ4Fdg7IqYNcfzWwBWZ+WxmPgLcCOw0zGsfCZyZmQ9m5kPAmcBRq3gfkiRJPa9bA+ORwEWZmeX7KAt17wF2HuL4s4BDI2J8REwB3koRGus9EBEPRsT5EbFR3fadgDvq3t/B8MOmJElS3+m6wBgRW1IMIV9Yt/l64J0RsUtEjANOBhIYP8RpfkIR8p4GHgRmAd8p9z0OvArYCtgdWAe4tO7YicC8uvfzgIlDzWOMiGMiYlZEzJrjygtJktSH2hIYI+LmcqHJYOXWhupHALdm5n21DZn5Q+BTwJXAA8D9wHyKMNh4rVHA94GrgAnARsD6wOnluRZk5qzMXJaZjwIfAN4cEZPKUywAJtWdchKwoK63cwWZeV5mTs/M6ZMnTx7R5yJJktQL2hIYM3OfzIwhyl4N1Y9gxd7F2jnOycxtM3NjiuA4ANw1yOU2ALYAzs7MxZn5BHA+sN9QzStfaz2IsykWvNTsWm6TJElaI3XVkHRE7AlMoVwdXbd9bETsXD7yZkvgPOCszHyq8RyZ+TjFKurjImIgItajmBN5R3muV0fE9hExKiI2BL4I3JyZtWHoi4CPRsSU8tE9JwAXVHG/kiRJvaCrAiNFsLsqM+c3bB8LXEYxXHw78DOg/tmJn4iIG+rqHwzsC8wB7gWWAR8p921DsQBmPkUP5WLgsLpjvwpcA/y23H9duU2SJGmNFENMzdMqmD59es6aNavTzVjj1JYj+UdZkqThi4hfZeb04dTtth5GSZIkdRkDoyRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6P6ht/0IklSNQyM6hvLl3e6BZIk9ScDo/rGsmWdboEkSf3JwKi+YWCUJKkaBkb1DQOjJEnVMDCqbxgYJUmqhoFRfcPAKElSNQyM6hsGRkmSqmFgVN8wMEqSVA0Do/rG0qWdboEkSf3JwKi+YQ+jJEnVMDCqbyxZ0ukWSJLUnwyM6huLF3e6BZIk9ScDo/qGPYySJFXDwKi+YWCUJKkaBkb1DYekJUmqhoFRfcMeRkmSqmFgVN8wMEqSVA0Do/qGQ9KSJFXDwKi+YQ+jJEnVMDCqbxgYJUmqhoFRfcMhaUmSqmFgVM8bVf4ptodRkqRqGBjV89Zaq3g1MEqSVA0Do3rewEDx6pC0JEnVMDCq52UWr/YwSpJUDQOjep6BUZKkahkY1TcckpYkqRoGRvW8Wg+jgVGSpGoYGNXzaoFx+fLOtkOSpH7VNYExIhY0lOUR8aW6/UdHxL3lvhsjYvMm55oaEddHxFMR8UhEnB0RA+W+9zRc55mIyIjYvdx/SkQsbaizTfWfgFZVLTAuW9bZdkiS1K+6JjBm5sRaATYBFgEzASJiBnAacCCwAXAfcHmT030ZeAzYDNgNmAEcX17n0oZrHQ/8Cfh13fHfqq+TmX9q4a2qIvYwSpJUja4JjA3eThH4binfHwDMzMzZmbkEOBXYOyKmDXH81sAVmflsZj4C3AjsNETdI4GLMmv9VOo19jBKklStbg2MjSEuykLde4Cdhzj+LODQiBgfEVOAt1KExhVExFbA3sBFDbsOiIgnI2J2RBzXrKERcUxEzIqIWXPmzGl+V6qEgVGSpGp1XWCMiC0phpAvrNt8PfDOiNglIsYBJwMJjB/iND+h6FF8GngQmAV8Z5B6RwC3ZOZ9dduuAHYEJgPvA06OiMOGam9mnpeZ0zNz+uTJk4dxh2o1F71IklSttgTGiLi5XFgyWLm1ofoRwK31IS4zfwh8CrgSeAC4H5hPEQYbrzUK+D5wFTAB2AhYHzh9kKYdwYrBlMz8XWb+NTOXZ+ZPKXor375KN662sodRkqRqtCUwZuY+mRlDlL0aqr8oxJXnOCczt83MjSmC4wBw1yCX2wDYAjg7Mxdn5hPA+cB+9ZUi4rXA5sC3V9Z8VhwOV5exh1GSpGp11ZB0ROwJTKFcHV23fWxE7ByFLYHzgLMy86nGc2Tm4xSrqI+LiIGIWI9iTuQdDVWPBK7MzPkN1zowItYvr7UH8CHguy26RVXAOYySJFWrqwIjRYi7qjHEAWOBy4AFwO3Az4CTajsj4hMRcUNd/YOBfYE5wL3AMuAjdfXHAu9kkJ5M4NDymPkUi2FOz8zB6qlL2MMoSVK1BjrdgHqZeewQ2+cCuzQ57rSG978B9mlS/1lgvSH2DbnARd3NHkZJkqrRbT2M0ojZwyhJUrUMjOob9jBKklQNA6N6Wv3389jDKElSNQyM6hv2MEqSVA0Do3pafQ+jgVGSpGoYGNXTHJKWJKl6Bkb1NHsYJUmqnoFRfcMeRkmSqmFgVE+zh1GSpOoZGNXTnMMoSVL1DIzqafYwSpJUPQOj+oY9jJIkVcPAqJ5mD6MkSdUzMKqnOYdRkqTqGRjVN+xhlCSpGgZG9bRaD+Po0fYwSpJUFQOjelotMI4ZU/Qw1g9RS5Kk1jAwqqfVAuLAQPH63HOda4skSf3KwKi+MGZM8eqwtCRJrWdgVE9r7GF04YskSa1nYFRPawyM9jBKktR6Bkb1tPpFL2APoyRJVTAwqi+MHl282sMoSVLrGRjV0xySliSpegZG9TQDoyRJ1TMwqqcZGCVJqp6BUX3BOYySJFXHwKieZg+jJEnVMzCqpxkYJUmqnoFRPc3AKElS9QyM6gu1OYzPPdfZdkiS1I8MjOpptR5GF71IklQdA6N6mkPSkiRVz8ConmZglCSpegZG9QWHpCVJqo6BUT3NHkZJkqpnYFRPMzBKklQ9A6N6moFRkqTqdU1gjIgFDWV5RHypbv/REXFvue/GiNi8ybl2jIgfRcS88pi/b9j/hoi4OyKeiYgfR8RWdfsiIk6PiCfKckZERDV3rVZxDqMkSdXpmsCYmRNrBdgEWATMBIiIGcBpwIHABsB9wOWDnSciBoDvAteWdY8BLomI7cr9GwFXASeV+2cB36o7xTHAQcCuwC7A24BjW3iraqHG5zD64G5JklqvawJjg7cDjwG3lO8PAGZm5uzMXAKcCuwdEdMGOXYHYHPg85m5PDN/BNwGHF7uPxiYnZkzM/NZ4BRg14jYodx/JHBmZj6YmQ8BZwJHtfwO1RIOSUuSVL1uDYxHAhdl1uIAURbq3gPsPMixgw0fR13dnYA7ajsycyHwx3L7i/aXP++EupKBUZKk6nVdYIyILYEZwIV1m68H3hkRu0TEOOBkIIHxg5ziboreyRMjYkxEvLk8X63uRGBewzHzgHWG2D8PmDjUPMaIOCYiZkXErDlz5gz3NtVizmGUJKk6bQmMEXFzROQQ5daG6kcAt2bmfbUNmflD4FPAlcADwP3AfODBxmtl5lKKOYj7A48AJwBX1NVdAExqOGxSeb7B9k8CFtT1djZe77zMnJ6Z0ydPntzsY1AF7GGUJKl6bQmMmblPZsYQZa+G6kewYu9i7RznZOa2mbkxRXAcAO4a4np3ZuaMzNwwM98CbAPcXu6eTbGgBYCImABMK7e/aH/582zUlQyMkiRVr6uGpCNiT2AK5erouu1jI2Ln8pE3WwLnAWdl5lNDnGeX8pjxEfExYDPggnL31cDOEXFIRIylGN6+MzPvLvdfBHw0IqaUj+45oe5YdRkDoyRJ1euqwEix2OWqzJzfsH0scBnFcPHtwM8oHosDQER8IiJuqKt/OPAwxVzGNwBvyszFAJk5BzgE+CzwFPBq4NC6Y78KXAP8lqIH87pym7qYcxglSarOQKcbUC8zB33eYWbOpXgm4lDHndbw/kTgxCb1b6J4/M5g+xL4eFnU5Rqfw2hglCSp9bqth1EakcYhaR/cLUlS6xkY1RfsYZQkqToGRvU0F71IklQ9A6N6moFRkqTqGRjV0wyMkiRVz8CovuAcRkmSqmNgVE+zh1GSpOoZGNXTDIySJFXPwKie5oO7JUmqnoFRfaEWGH1wtyRJrWdgVE9zSFqSpOoZGNXTDIySJFXPwKieVguMo8o/yQZGSZJaz8CovhBRzGM0MEqS1HoGRvW0Wg8jGBglSaqKgVE9rRYY7WGUJKk6Bkb1NAOjJEnVMzCqL9QCo89hlCSp9QyM6mn1cxhHjbKHUZKkKhgY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zecwSpJUPQOjeppD0pIkVc/AqJ5mYJQkqXoGRvUFA6MkSdUxMKqnNc5h9MHdkiS1noFRPa1+SNoHd0uSVA0Do3qacxglSaqegVF9wcAoSVJ1DIzqaT6HUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9zTmMkiRVz8ContY4JO2DuyVJaj0Do3qaD+6WJKl6Bkb1BecwSpJUHQOjeppzGCVJql7XBMaIWNBQlkfEl+r2Hx0R95b7boyIzZuca8eI+FFEzCuP+fu6fa+JiB9ExJMRMSciZkbEZnX7T4mIpQ1t2aa6O9fq8LE6kiRVr2sCY2ZOrBVgE2ARMBMgImYApwEHAhsA9wGXD3aeiBgAvgtcW9Y9BrgkIrYrq6wPnAdMBbYC5gPnN5zmW/Xtycw/texGVQkDoyRJ1emawNjg7cBjwC3l+wOAmZk5OzOXAKcCe0fEtEGO3QHYHPh8Zi7PzB8BtwGHA2TmDZk5MzOfzsxngLOB11Z8P6qIQ9KSJFWvWwPjkcBFmc/HgSgLde8Bdh7k2Bhi22B1AfYGZjdsO6Acsp4dEccNs83qAIekJUmqXtcFxojYEpgBXFi3+XrgnRGxS0SMA04GEhg/yCnupuidPDEixkTEm8vzvahuROxSnuvEus1XADsCk4H3ASdHxGFN2ntMRMyKiFlz5swZwZ2qFQyMkiRVry2BMSJujogcotzaUP0I4NbMvK+2ITN/CHwKuBJ4ALifYu7hg43XysylwEHA/sAjwAkUIXCFuhHxUuAG4MOZeUvd8b/LzL+Ww9k/Bc6iGCIfVGael5nTM3P65MmTh/uRqMVqz2H0wd2SJLVeWwJjZu6TmTFE2auh+hGs2LtYO8c5mbltZm5MERwHgLuGuN6dmTkjMzfMzLcA2wC31/ZHxFbATcCpmXnxyprP4MPc6gLOYZQkqXpdNSQdEXsCUyhXR9dtHxsRO0dhS4pVzmdl5lNDnGeX8pjxEfExYDPggnLfFOBHwDmZ+ZVBjj0wItYvr7UH8CGKVdfqQg5JS5JUva4KjBSLXa7KzPkN28cClwELKHoKfwacVNsZEZ+IiBvq6h8OPEwxl/ENwJsyc3G572iKHsdP1T9rse7YQ4F7KYa8LwJOz8wX9XiqOxgYJUmq3kCnG1AvM48dYvtcYJcmx53W8P5EVlzIUr/v08Cnm5xryAUu6l4GRkmSqtNtPYzSiDiHUZKk6hkY1dMckpYkqXoGRvU0A6MkSdUzMKovGBglSaqOgVE9rX4Oow/uliSpGgZG9TSHpCVJqp6BUT3NwChJUvUMjOoLtcCYueIwtSRJWn0GRvW0+nA4UD6GftmyzrRFkqR+ZWBUT6sfkh4zpvh56dLOtUeSpH5kYFRPMzBKklQ9A6P6goFRkqTqGBjV0+rnMBoYJUmqhoFRPa1+SHqttYqflyzpXHskSepHBkb1NOcwSpJUvYHhVIqINwNHATsB6wDzgdnA+Zn5g8paJw2TgVGSpOqsNDBGxEeAjwP/F7gSmAdMAnYFLoyI0zPzrEpbKQ3BOYySJFVvOD2MJwKvz8y7G7ZfFRGXAz8GDIzqCIekJUmq3nDmME4A/jrEvkeA8a1rjjQyBkZJkqo3nMB4JXBNRLwhIiZHxFoRsVFEvAG4Gvh2tU2UVs7AKElSdYYTGN8P/BS4EHgUWFS+Xgj8HDiustZJK1E/h9HH6kiSVI2VzmHMzCXAvwD/EhHrAROBBZk5t7FuRLw2M29rdSOloTgkLUlS9Yb1WJ2aMiTObVLlBooV1FJbGBglSapeqx/cHS0+nzQsBkZJkqrT6sCYK68itY7PYZQkqXp+NaB6mkPSkiRVz8ConmZglCSpes5hVN/wsTqSJFVjRIExIjaMiMMj4uPl+80j4iW1/Zm5TqsbKDVjD6MkSdUbdmCMiBnA/wDvAU4qN28LnFtBu6RhMTBKklS9kfQwfgF4V2buCywrt/0C2KPVjZJGysAoSVJ1RhIYp2bmD8ufaw8zWcIIH/4ttZJfDShJUvVGEhh/FxFvadj2RuC3LWyPNCKNQ9KjR8OiRZ1tkyRJ/WYkvYMnANdGxHXAuIj4KnAAcGAlLZOGoT4wAowbZ2CUJKnVht3DmJk/B3YFZgPfAO4D9sjMX1bUNmnYDIySJFVnRPMPM/Mh4IyK2iKNWDZ8GaWBUZKk1msaGCPiYobx/dCZeUTLWiSNgEPSkiRVb2VD0vcCfyzLPOAgYDTwYHnsgcDc6ponNWdglCSpek0DY2Z+ulaA7YD9M/M9mfmJzHwvsD+wfSsaEhELGsryiPhS3f6jI+Lect+NEbF5k3PtGBE/ioh55TF/X7dvakRkw7VOqtsfEXF6RDxRljMiwq887HIGRkmSqjOSx+q8Bvh5w7ZfAH/TioZk5sRaATYBFgEz4flvmTmNokdzA4oFN5cPdp6IGAC+C1xb1j0GuCQitmuoul7dNU+t234MRU/qrsAuwNuAY1txj2o95zBKklS9kQTG/wZOi4hxAOXrZ4HfVNCutwOPAbeU7w8AZmbm7MxcApwK7B0R0wY5dgdgc+Dzmbk8M38E3AYcPsxrHwmcmZkPlot8zgSOWvVbUZUckpYkqXojCYxHAa8F5kXEoxRzGvcCqljwciRwUebz/UdRFureA+w8yLGDDR/HIHUfiIgHI+L8iNiobvtOwB117+8ot6kLGRglSareSJ7DeH9m7glMA/4OeGlm7pmZ97eyQRGxJTADuLBu8/XAOyNil7Jn82SK1dvjBznF3RS9kydGxJiIeHN5vlrdx4FXAVsBuwPrAJfWHT+RIgzXzAMmDjWPMSKOiYhZETFrzpw5I7tZtYyBUZKk6oykh5GIWB94PfC3wD7l++Ecd3O50GSwcmtD9SOAWzPzvtqG8jusPwVcCTwA3A/Mp1itvYLMXEoxB3F/4BGKb6i5olY3Mxdk5qzMXJaZjwIfAN4cEZPKUywAJtWdchKwoK63s/F652Xm9MycPnny5OF8HGoh5zBKklS9YQfGiPgbisfrvJ9iMcixwB/L7U1l5j6ZGUOUvRqqH8GKvYu1c5yTmdtm5sYUwXEAuGuI692ZmTMyc8PMfAuwDXD7UM2r3WL5OptiwUtN7dtt1IUah6THj4dnnulceyRJ6kcj+aaXLwDHZ+Y3axsi4l3AFymGeFdbROwJTKFcHV23fSzwUorgtgVwHnBWZj41xHl2Ae6hCMTHA5sBF5T7Xk3x7Mg/AOuX7b85M2vD0BcBH42I6ynC5AnAl1BXagyMkybBggXw3HMwakT955IkaSgj+St1O4qh3XrfpghyrXIkcFVmzm/YPha4jGK4+HbgZ0D9sxM/ERE31NU/HHiYYi7jG4A3Zebict82wI0UQ9p3AYuBw+qO/SpwDfDbcv915TZ1sVpgXHfdIkQuWNDZ9kiS1E9G0sP4B+BQiuBW8w6KYeqWyMxBn3eYmXMphsGHOu60hvcnAicOUfdyhniGY7k/gY+XRV2ucQ7jpHL26bx5L/wsSZJWz0gC4z8B10bEhygWnkwFtqV4sLXUEY1D0uuuW7zOmwdbbNGZNkmS1G+GHRgz86flg7L3p3gw9jXA9Zn5ZFWNk1ZmsDmMAE8/3Zn2SJLUj0bSw0i5yOSSitoirbLBehglSVJrDDswRsTWFF8FuBvFw62fl5lbtrZZ0vAMNYfRHkZJklpnJD2Ml1EscDkB8El36grN5jBKkqTWGElg3Al4bWY+V1VjpJEyMEqSVL2RPIfxv4BXVNUQaXXUAuOECcUDux2SliSpdUbSw3g/8P2IuIriO5qfl5knt7JR0nA1zmGMKOYx2sMoSVLrjCQwTqB4lM4Yiq/nq8nBq0vVaxyShiIw2sMoSVLrjOQ5jP+wsjoRcVj5TSpSWwwWGNdd1x5GSZJaaSRzGIfD71xWRzT2MBoYJUlqnVYHxlh5Fal1GucwQtHD6JC0JEmt0+rA6HxGtdVQQ9Jz53akOZIk9aVWB0aprQYLjBttBI8/3pn2SJLUj1YaGCPCUKmuVx8YN920mMP47LOda48kSf1kOGHwoYg4IyJ2HkbdP69ug6SRGGwO4yabFK+PPtretkiS1K+GExjfD2wN/DIifh0RH46IyYNVzMzhhEqpZQYbkjYwSpLUWisNjJn53cx8B7AZxWNz3gH8JSK+FxGHRMSYqhsprUzjkDTAww93pi2SJPWbYc9PzMy5mfnVzNwL2BGYBXwe8K9ldcxgQ9Jbb128/ulP7W2LJEn9aiRfDQhARKwNvAp4NbAJ8NNWN0oarsGGpDfcsFgp/fvfd6ZNkiStikxYuhQWLRq6PPNM8/0jqTcSww6MEbEXcATwTuAx4GLg+Mx8YGSXlFpnsMAIsMMOMHt2+9sjSeo/mbB48Qsh7JlnViyN21bn/fLlq9bG0aNh3LgXyvjxK77fYIMV348bB1/4wvDPv9LAGBGnAIcDGwAzgf0z87ZVux2pGo2Bcc894T//s/jGl0mTOtMmSVK1nnuueITacIPZ6oS5waZArcyYMUVwq5VakBs/HiZPHnzfYGFvsNJYZ8wqrChpaWAEXgP8K/CdzPTJduoqQ/0PvN9+cMYZcNNNcPDB7W2TJKmwdCksXFgEroULXyj175vtq38/WJhb1eftjh374gBXe7/++oMHvJG+HzcOBkY88a97rfRWMnPfdjREWhVDDUnvuWfxFYHXXmtglKShLF8+8uA2ktC3dOnI2jMwABMmFGX8+Bd+njABNt549QJcfY/cKL+SZMT6KPtqTTRUYBwzBg44AK6+Gr785eJfk5LUizKLALZgwYpl4cIXb6ttH27oW7JkZG0ZNWroQLfBBiu+b9w/nPdrrVXNZ6jVZ2BUX2gMjAD/+I9wySXwxS/Cxz/e/jZJWrNkFgFsZWFusO3N9o10/lxjEKuFsc03HzqsDTfQrb324L9v1f8MjOppzX6J7rMPHHQQ/PM/F78o3/vedrVKUrfLLOa/zZ+/YhlpmGvcvmzZ8Nuw9towceILZcKE4nXDDQff3lgG2+5wq6piYFRPG2pIurbtssvgbW+DI4+EuXPh+OP9ZSr1qmXLXhzw6svTTzff31iG+/iSUaMGD2ybbDJ0mFtZ0JswYdVWtUqdYmBUT2sWGKH41/b3vgfveAd88INw5ZXwta/BtGnta6O0psoseuBGGuSGKsNdETswAOuss2KZNAmmTHnx9sFKY8BzGFYyMKpPNPtlPmECXHcdnH8+fPSj8PKXw2mnFQFy9Oj2tVHqFbVFFk8/DfPmFa+r8vPTTw9v7l1EEcwag9tWWw0v4DUWA57UegZG9bThTgSPKBbBvOUtcOyx8JGPwDe/CV/5Cuy2W6VNlNqmNi9vuKGuWdAbznDt+PHF46smTSrKuuvCppu+8POkSS/07jULeOPHO1VE6nYGRvW0kT55f8oUuOYauPTSordx993hQx+Cz3ym+ItL6qRly4rgNnfuiqVxW/37xrA3nOfejR374qA3bdqKQW9lP6+zTn89lFhSc/7vrp6WOfKhp4hixfT++8O//AucdRbMnFl8RdIhhziUpVW3ePHwg95g2xYubH7+iCKsrbdeUdZdF7bccuRBz2fdSRopA6N63qoGvPXXL4akjzoKjjuuWBjz1rfC2WfDNtu0tInqEc89VwS4p56CJ59c8fWpp1YeBle2KGP06BfCXi3wbbrpi7fVv6/fvs46Dt1K6gwDo3raqnwZfKPXvAZ++csiKJ50Euy0E/zrv8KJJxaT59Vbags2Bgt9Q73Wfp47t/mfqbXWenGQ23LLwcPdYNsmTLAHW1JvMjCqp63KkPRgBgbgn/6p6GX8yEeK4HjJJXDuufD616/++TVyS5eOLPTVh79mX3c2enTRu7z++sVXmW20EWy7bfFzbVv9a/3P48a17/4lqZsYGNXTWhUYa6ZMgSuugBtvhP/9v+Fv/xbe9S745Cdh551bd501xXPPFQsxViX0LVjQ/NyTJq0Y5nbeeeWBb4MNimFde/kkaWQMjOp5Vfzlv+++cNdd8LnPwZlnwre+BQccUPQ+zpixZs0jy4RFi1Yt9M2dW4TGoYwdu2KYmzoVXvnKwYNe/et667lCV5LayV+56mmtmMM4lHHjisftfPjDcM458MUvFo/k2XJLePe7Yb/9ivmP3fz1XpnFyt3G5+4N57V+bl+zId5Ro1YMcw7xSlL/6ZrAGBGNA1DjgC9n5gfL/UcD/wxsCtwK/GNm/nWIc+0InAPsDswBTszMq8t97wG+Wld9VHmt6Zn5q4g4BfhXYHFdnV0y80+rd4eqQquHpAez4YZw8snwsY/Bd78LF10E//Ef8O//Xnw7xSteAbvuWgyJTpkCm21WhKaxY4tSWzizdOmLy+LFRe/dokXFCtvaz0OVVanTrIevZuzYFz+C5WUva97LV3t15a4k9b+uCYyZObH2c0RMAB4FZpbvZwCnAa8H/gCcBVwOzGg8T0QMAN8FvgK8qaxzTUS8IjPvycxLgUvr6h8FnAT8uu4038rM97by/lSNdgTGmvHj4bDDijJ3Lvz4x3DTTfCb38AFF6x8zt3qWnvtokeusdTC3iabDL6/9m0ctTDY+Dppks/lkyQ11zWBscHbgceAW8r3BwAzM3M2QEScCjwUEdMy848Nx+4AbA58PjMT+FFE3AYcThEMGx0JXFTWVQ/qxAKG9daDv//7okDRi/fQQ/DXv8LDD8Pjjxe9h7UCxdB1Y1l77SLwDRb06gPh2LH24kmSOqdbA2NjiIuyUPceYGegMTAOFh+irLvixoitgL2Bf2zYdUBEPAk8DJydmeeOrPlql26J+aNGwRZbFEWSpH7TdX0WEbElxTDyhXWbrwfeGRG7RMQ44GQggfGDnOJuit7JEyNiTES8uTzfYHWPAG7JzPvqtl0B7AhMBt4HnBwRhzVp7zERMSsiZs2ZM2fY96nWaOeQtCRJa6q2BMaIuDkicohya0P1I4Bb60NcZv4Q+BRwJfAAcD8wH3iw8VqZuRQ4CNgfeAQ4gSIEvqhuea36YEpm/i4z/5qZyzPzpxTzJd8+1L1l5nmZOT0zp0+ePLn5B6GWMzBKklS9tgTGzNwnM2OIsldD9ReFuPIc52Tmtpm5MUVwHADuGuJ6d2bmjMzcMDPfAmwD3F5fJyJeSzHX8dsraz6DD3OrSxgYJUmqVlcNSUfEnsAUytXRddvHRsTOUdgSOA84KzOfGuI8u5THjI+IjwGbARc0VDsSuDIz5zcce2BErF9eaw/gQxSrrtWFumUOoyRJ/azbFr0cCVzVGOKAscBlwDSKoejzqVvxHBGfAF6XmW8tNx0OHA2MoVhp/abMXFxXfyzwTuCQQdpwKPANYG2KYezTM/NFPZ5qryVL4M9/hvvvL8p99xWvV13lN35IklS18GkyrTN9+vScNWtWp5vRkzJhzhy491744x+L8qc/vRAMH3poxd7E0aOLsmRJ8eDop5/uWNMlSepJEfGrzJw+nLr2zahtli+HBx98IRDWwmHttf7B1xHwkpfA1lvD3/5t8R3DW29dvE6dWuw79FC48krnMEqSVDUDo1oqs3ho9d13F+V//qd4vffeorew/juJx4yBbbaBadNg773hpS8tfp42rQiHta/UkyRJnWVg1CpZurQYMq4PhbWfn3zyhXpjx8K22xbfs3zggUUYrAXDl7ykGFZeVbWeRXsYJUmqloFRTT33HDzwAPz2tyuWe+6BZcteqLfpprDDDvCOdxSvtbLlltV9pZ2BUZKk9jAw6nnz5sFvflMEwjvvLF7vumvFuYVTp8LLXw5/93ew445FKNx+e1h33fa316AoSVJ7GBjXUHPnwq9/Db/61Qvl3ntf2L/BBkUwPOqo4vXlL4eddoJJkzrV4hezh1GSpPYwMK4Bli6FO+6A226Dn/3sxeFwyy1h993hH/4BXvlK2GUX2Gyz7g9iBkZJktrDwNiH5s2Dn/60CIi33Qa33w7PPFPse8lL4FWvKsLh7rsXAbHXvwLbwChJUrUMjH1g8eKi5/Cmm4ryy18Wi1VGj4bddoOjj4Y99yzKFlt0urWtY1CUJKk9DIw96i9/ge9+F669Fv7rv2DRoiIgvvrV8MlPwj77wB57wIQJnW5pdRySliSpPQyMPeT3vy++O/k734HaNxBut13Rg/jGNxYhsZsWpVTNwChJUnsYGLvcnDlw+eVw4YXFqmaA17wG/v3fiwdh77BDZ9vXSQZGSZLaw8DYhTKLxSpf+EIx7LxsWbE45QtfKB6MvfnmnW5hdzAoSpLUHgbGLrJ8OcycCWeeWQw5r78+fPjDxbMQd965063rXgZHSZKqZWDsApnwve8Vi1Xuuqv45pRzz4XDD+/vRSuryyFpSZLaw8DYYbNnw/vfD7feCttuC9/8ZjHsXNX3L/cTA6MkSe1hLOmQJUuKHsXdditWP3/1q0V4fNe7DIvDZVCUJKk97GHsgAceKILhL34BRxxRzFncaKNOt6r32MMoSVJ7GBjb7Ac/KMLi8uXw7W/DIYd0ukW9y8AoSVJ7OPjZRpdeCvvtV3w9369/bVhsFQOjJEnVMjC2yTe+Ae99L+y1V/FVftOmdbpFvc+gKElSexgY2+Dqq+F974O3vAVuuAHWXbfTLeoPDklLktQeBsaK/eIXcOihsMcecOWVMHZsp1vUPwyMkiS1h4GxQo8/XjxTcbPN4NprfQh3qxkYJUlqD1dJV+jYY+HRR4vvhd5ww063pv8YFCVJag8DY0Wuvhquugo+9zmYPr3TrelvBkdJkqrlkHQFFi2CD34Qdt0VTjih063pXw5JS5LUHvYwVuDcc+Ghh+Cyy2DMmE63pn8ZGCVJag97GFts6VI44wx44xth77073Zr+ZlCUJKk97GFsseuuKxa6fO1rnW5J/7OHUZKk9rCHscXOP794jM6++3a6Jf3PwChJUnsYGFsoE266CQ4+GAbsu62cgVGSpPYwMLbQM88UZZ99Ot0SSZKk1jEwttD8+cXr617X2XasKexhlCSpPQyMLbRgAWy/PWyySadbsmYwMEqS1B4GxhZatAhe8YpOt2LNYWCUJKk9DIwttGQJ7LBDp1ux5jAoSpLUHgbGFtt++063YM1hD6MkSe3RNYExIqZGxPUR8VREPBIRZ0fEQN3+N0TE3RHxTET8OCK2anKuDSLi6ohYGBEPRMS7G/YPea4onB4RT5TljIjhR5KpU0d441ptBkZJkqrVNYER+DLwGLAZsBswAzgeICI2Aq4CTgI2AGYB32pyrnOAJcAmwHuAcyNip2Ge6xjgIGBXYBfgbcCxw72JKVOGW1Oryx5GSZLao5sC49bAFZn5bGY+AtwI7FTuOxiYnZkzM/NZ4BRg14h40YzBiJgAHAKclJkLMvNW4HvA4cM815HAmZn5YGY+BJwJHDXcm9h005HcslaHQVGSpPbopsB4FnBoRIyPiCnAWylCIxTB8Y5axcxcCPyRFwJlve2A5Zl5T922O+rqruxcK+xvOLapgQEYM2Y4NdUK9jBKktQe3RQYf0IRzJ4GHqQYKv5OuW8iMK+h/jxgnUHOs7K6I90/D5g41DzGiDgmImZFxKxRo5YNVkUVMTBKktQebQmMEXFzROQQ5daIGAV8n2Ju4QRgI2B94PTyFAuASQ2nnQTMH+RyK6s70v2TgAWZmYPdW2ael5nTM3P6y1/uF0i3k0FRkqT2aEtgzMx9MjOGKHtRLD7ZAjg7Mxdn5hPA+cB+5SlmUyxCAZ6fpzit3N7oHmAgIrat27ZrXd2VnWuF/Q3HqgsZHCVJqlZXDEln5uPAfcBxETEQEetRLD6pzSW8Gtg5Ig6JiLHAycCdmXn3IOdaSNFT+ZmImBARrwUOBC4e5rkuAj4aEVMiYnPgBOCC1t+1VpdD0pIktUdXBMbSwcC+wBzgXmAZ8BGAzJxDsfL5s8BTwKuBQ2sHRsQnIuKGunMdD4yjeEzP5cBxmTl7OOcCvgpcA/wWuAu4rtymLmNglCSpPbpm0l1m/gbYp8n+m4BBv3gvM09reP8kxbMUV+VcCXy8LOpiBkVJktqjm3oYpRGxh1GSpPYwMKpnGRglSWoPA6N6noFRkqRqGRjVswyKkiS1h4FRPcshaUmS2sPAqJ5lYJQkqT0MjOpZBkVJktrDwKieZWCUJKk9DIySJElqysConmUPoyRJ7WFgVM+qBcbMzrZDkqR+Z2BUz7KHUZKk9jAwqmcZGCVJag8Do3qWz2GUJKk9DIzqec5hlCSpWgZG9Sx7FiVJag8Do3qWgVGSpPYwMKpn+VgdSZLaw8ConuWiF0mS2sPAqJ5lYJQkqT0MjOp5BkZJkqplYFTPMihKktQeBkb1LIekJUlqDwOjepaBUZKk9jAwqmcZGCVJag8Do3qWgVGSpPYwMEqSJKkpA6N6lj2MkiS1h4FRPcvAKElSexgY1bMMipIktYeBUT3LHkZJktrDwKieZWCUJKk9DIzqeQZGSZKqZWBUzzIoSpLUHgZG9SyHpCVJag8Do3qWgVGSpPYwMKpnGRQlSWoPA6N6lj2MkiS1h4FRPc/AKElStbomMEbE1Ii4PiKeiohHIuLsiBio2/+GiLg7Ip6JiB9HxFZNzrVBRFwdEQsj4oGIeHfdvtdExA8i4smImBMRMyNis7r9p0TE0ohYUFe2qe7OtarsYZQkqT26JjACXwYeAzYDdgNmAMcDRMRGwFXAScAGwCzgW03OdQ6wBNgEeA9wbkTsVO5bHzgPmApsBcwHzm84/luZObGu/Gl1b06tZ2CUJKk9BlZepW22Bs7OzGeBRyLiRqAW8g4GZmfmTCh6AYHHI2KHzLy7/iQRMQE4BNg5MxcAt0bE94DDgX/OzBsa6p8N/KTC+1JFDIqSJLVHN/UwngUcGhHjI2IK8FbgxnLfTsAdtYqZuRD4Iy8EynrbAcsz8566bXcMURdgb2B2w7YDyiHr2RFx3MhvRe1gD6MkSe3RTYHxJxSh7mngQYph5++U+yYC8xrqzwPWGeQ8w64bEbsAJwMn1m2+AtgRmAy8Dzg5Ig4bqtERcUxEzIqIWXPmzBmqmipgYJQkqT3aEhgj4uaIyCHKrRExCvg+xTzFCcBGFHMNTy9PsQCY1HDaSRTzDxsNq25EvBS4AfhwZt5S256Zv8vMv2bm8sz8KUXP59uHurfMPC8zp2fm9MmTJzf/INRSBkZJktqjLYExM/fJzBii7EWxkGULijmMizPzCYqFKPuVp5gN7Fo7XzlPcRovHkoGuAcYiIht67btWl+3XGF9E3BqZl68suYDRhJJkrTG6ooh6cx8HLgPOC4iBiJiPeBIXpi3eDWwc0QcEhFjKYaR72xc8FKeayFFT+VnImJCRLwWOBC4GKCcH/kj4JzM/Erj8RFxYESsH4U9gA8B323xLasF7GGUJKk9uiIwlg4G9gXmAPcCy4CPAGTmHIqVz58FngJeDRxaOzAiPhER9aufjwfGUTym53LguMys9TAeDWwDfKr+WYt1xx5aXn8+cBFwemZe2OJ7VQsYGCVJao+ueaxOZv4G2KfJ/puAHYbYd1rD+yeBg4ao+2ng002uM+QCF3UXg6IkSe3RTT2M0ojYwyhJUnsYGNWzDIySJLWHgVE9z8AoSVK1DIzqWfYwSpLUHgZG9SyDoiRJ7WFgVM+yh1GSpPYwMKpnGRglSWoPA6N6loFRkqT2MDBKkiSpKQOjepY9jJIktYeBUT3PwChJUrUMjOpZmZ1ugSRJawYDo3qePYySJFXLwKieVethNDBKklQtA6N61nPPFa8GRkmSqmVgVM8zMEqSVC0Do3qWi14kSWoPA6N6nj2MkiRVy8ConmUPoyRJ7WFgVM9ylbQkSe1hYFTPMjBKktQeBkb1LAOjJEntYWBUzzMwSpJULQOjepaLXiRJag8Do3qePYySJFXLwKie5RxGSZLaw8ConuV3SUuS1B4GRvU8A6MkSdUyMKpnuehFkqT2MDCq59nDKElStQyM6ln2MEqS1B4GRvUsV0lLktQeBkb1LAOjJEntYWBUzzIwSpLUHgZG9TwDoyRJ1TIwqme56EWSpPYwMKrn2cMoSVK1DIzqWc5hlCSpPQyM6ll+l7QkSe3RNYExIqZGxPUR8VREPBIRZ0fEQN3+N0TE3RHxTET8OCK2anKuDSLi6ohYGBEPRMS7G66TEbGgrpxUtz8i4vSIeKIsZ0QYSbqZ/3UkSapW1wRG4MvAY8BmwG7ADOB4gIjYCLgKOAnYAJgFfKvJuc4BlgCbAO8Bzo2InRrqrJeZE8tyat32Y4CDgF2BXYC3Aceuzo2pGi56kSSpPbopMG4NXJGZz2bmI8CNQC3kHQzMzsyZmfkscAqwa0Ts0HiSiJgAHAKclJkLMvNW4HvA4cNsx5HAmZn5YGY+BJwJHLUa96WK2cMoSVK1uikwngUcGhHjI2IK8FaK0AhFcLyjVjEzFwJ/5IVAWW87YHlm3lO37Y5B6j4QEQ9GxPllD2bNCtca4tjnRcQxETErImbNmTOn+R2qpexhlCSpPbopMP6EIpg9DTxIMez8nXLfRGBeQ/15wDqDnGdldR8HXgVsBexebr+0yfHzgIlDzWPMzPMyc3pmTp88efJQ96YKuEpakqT2aEtgjIiby4Umg5VbI2IU8H2KeYoTgI2A9YHTy1MsACY1nHYSMH+QyzWtWw5Tz8rMZZn5KPAB4M0RMWmI4ycBCzLtz+o2Rx4JBx0En/xkp1siSVJ/a0tgzMx9MjOGKHtRLGTZAjg7Mxdn5hPA+cB+5SlmUyxCAZ6fpzit3N7oHmAgIrat27brEHUBakGw1k+1wrVWcqw6aNIkuPpq2HTTTrdEkqT+1hVD0pn5OHAfcFxEDETEehSLT2pzCa8Gdo6IQyJiLHAycGdm3j3IuRZS9FR+JiImRMRrgQOBiwEi4tURsX1EjIqIDYEvAjdnZm0Y+iLgoxExJSI2B04ALqjmziVJkrpfVwTG0sHAvsAc4F5gGfARgMycQ7Hy+bPAU8CrgUNrB0bEJyLihrpzHQ+Mo3hMz+XAcZlZ6yXchmIxzXzgLmAxcFjdsV8FrgF+W+6/rtwmSZK0Rgqn5rXO9OnTc9asWZ1uhiRJ0kpFxK8yc/pw6nZTD6MkSZK6kIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1FRkZqfb0DciYj7wP51uxxpmI+DxTjdiDeNn3n5+5u3nZ95+fubtt31mrjOcigNVt2QN8z+ZOb3TjViTRMQsP/P28jNvPz/z9vMzbz8/8/aLiFnDreuQtCRJkpoyMEqSJKkpA2NrndfpBqyB/Mzbz8+8/fzM28/PvP38zNtv2J+5i14kSZLUlD2MkiRJasrAKEmSpKYMjC0QERtExNURsTAiHoiId3e6Tf0uIj4QEbMiYnFEXNDp9vS7iFg7Ir5e/vmeHxH/HRFv7XS7+l1EXBIRD0fE0xFxT0Qc3ek2rSkiYtuIeDYiLul0W/pdRNxcftYLyuLzjNsgIg6NiN+X2eWPEfG6ZvV9DmNrnAMsATYBdgOui4g7MnN2R1vV3/4K/BvwFmBch9uyJhgA/gLMAP4M7AdcEREvz8z7O9mwPvc54H9l5uKI2AG4OSL+OzN/1emGrQHOAX7Z6UasQT6QmV/rdCPWFBHxJuB04F3A7cBmKzvGHsbVFBETgEOAkzJzQWbeCnwPOLyzLetvmXlVZn4HeKLTbVkTZObCzDwlM+/PzOcy81rgPmD3Tretn2Xm7MxcXHtblmkdbNIaISIOBeYCP+xwU6SqfBr4TGb+vPyd/lBmPtTsAAPj6tsOWJ6Z99RtuwPYqUPtkSoXEZtQ/Nm3F71iEfHliHgGuBt4GLi+w03qaxExCfgMcEKn27KG+VxEPB4Rt0XEPp1uTD+LiNHAdGByRNwbEQ9GxNkR0XS0zsC4+iYC8xq2zQOG9d2MUq+JiDHApcCFmXl3p9vT7zLzeIrfJ68DrgIWNz9Cq+lU4OuZ+ZdON2QN8n+AbYApFM8FvCYi7EmvzibAGODtFL9XdgNeAXyy2UEGxtW3AJjUsG0SML8DbZEqFRGjgIsp5ux+oMPNWWNk5vJyustLgOM63Z5+FRG7AW8EPt/hpqxRMvMXmTk/Mxdn5oXAbRTzpFWNReXrlzLz4cx8HPhPVvKZu+hl9d0DDETEtpn5h3LbrjhUpz4TEQF8neJfp/tl5tION2lNNIBzGKu0DzAV+HPxx52JwOiIeFlmvrKD7VrTJBCdbkS/ysynIuJBis952OxhXE2ZuZBimOgzETEhIl4LHEjRC6OKRMRARIwFRlP8Qh8bEf4DqFrnAjsCB2TmopVV1uqJiI3Lx15MjIjREfEW4DDgR51uWx87jyKQ71aWrwDXUTyNQRWIiPUi4i213+ER8R5gb+D7nW5bnzsf+GD5e2Z94J+Aa5sd4F+wrXE88A3gMYpVu8f5SJ3KfRL4VN3791Ks+jqlI63pcxGxFXAsxfy5R8reF4BjM/PSjjWsvyXF8PNXKP5x/wDwT5n53Y62qo9l5jPAM7X3EbEAeDYz53SuVX1vDMUj0nYAllMs7jooM30WY7VOBTaiGCV9FrgC+GyzA/wuaUmSJDXlkLQkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKkpA6MktUhEzI6Ifdp0rZdFxKwKzntVROzb6vNK6m0+h1GShql8kHPNeIoHmS8v37f1IeYRcSUwMzO/2eLz7gGcm5m7t/K8knqbgVGSVkFE3A8cnZk3deDam1F8X/3mmflsBef/A3BYZra8B1NSb3JIWpJaJCLuj4g3lj+fEhEzI+KSiJgfEb+NiO0i4l8i4rGI+EtEvLnu2HUj4usR8XBEPBQR/xYRo4e41JuAX9eHxfLaJ0bEnRGxsDzXJhFxQ3n9m8rvjKX83t5LIuKJiJgbEb+MiE3qzn8zsH/LPyBJPcvAKEnVOQC4GFgf+G/g+xS/d6cAnwG+Wlf3QmAZ8FLgFcCbgaOHOO/LgcG+a/cQijC5XXntG4BPUHxn7CjgQ2W9I4F1gS2ADYH3A4vqzvN7YNdh36WkvmdglKTq3JKZ38/MZcBMYDLw75m5FPgmMDUi1it7994K/FNmLszMx4DPA4cOcd71gPmDbP9SZj6amQ8BtwC/yMz/zszFwNUUQRRgKUVQfGlmLs/MX2Xm03XnmV9eQ5IAGOh0AySpjz1a9/Mi4PHMXF73HmAisDkwBng4Imr1RwF/GeK8TwHrDON6je8nlj9fTNG7+M2IWA+4BPjXMshSnnvuUDclac1jD6Mkdd5fKFZcb5SZ65VlUmbuNET9OymGnVdJZi7NzE9n5suAPYG3AUfUVdkRuGNVzy+p/xgYJanDMvNh4P8BZ0bEpIgYFRHTImLGEIf8AHhlRIxdletFxOsj4uXlopqnKYaol9dVmUEx/1GSAAOjJHWLI4C1gN9RDDl/G9hssIqZ+SjwI+DAVbzWpuX5n6ZY4PITimFpIuJVwMLMvH0Vzy2pD/kcRknqQRHxMoqV1XtkC3+Rlw8E/3pmXt+qc0rqfQZGSZIkNeWQtCRJkpoyMEqSJKkpA6MkSZKaMjBKkiSpKQOjJEmSmjIwSpIkqSkDoyRJkpoyMEqSJKmp/x8++e9GP4LjVQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAH3CAYAAAAxPg5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCv0lEQVR4nO3debgcZZ33//c3OYFshDVsEQhEEGRVIjqIBMcFRRkQXHBhGX8IwrgjzgwjiDKiMA+jKIjwOLLIokRABAEfUXEAHTGoKFFEFBhBlrAkJCFk4/v7o6ql05zTOSfp6i3v13XV1aer7rrrrk44fHIv1ZGZSJIkSUMZ1ekGSJIkqbsZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUVLfiIibIuJrde8viIgbO9kmSeoHBkZJHRcRG0bE6RHxh4h4JiIejYj/jojDImKg4msfFRE/jIgnIiIjYq9BymwUEedGxF8iYlFE3BYR+6zCtU4ur5ER8WxEPBgRl0XEVq24l2G24eMRsTwi/rNd1xykDWMj4vyI+FVELImIe4Yo96ryHwFzyz+fiyJiw3a3V5KBUVKHRcQLgF8CBwOfAV4KvBL4L+DjwE4VN2E88CPg+CHaF8BVwO7AO4BdgP8H3BARq9K2+4DNgBcAhwHTgWsiYvQq1LUq3gecChwWEWu36ZqNRgNLgPOAbw5WoPxsfwDcBuwBvBHYFvhO+WciqY0MjJI67RxgbeClmXlJZv4uM/+YmRdShLQ/1gpGxAcj4q6yF/KPEfFvq9sDmZlfzMzPAj8cosg0YC/gA5n507JtnwT+wBAhcyWWZ+bDmfnXzPwhcDKwM/BCgIg4PCJ+FxGLI+KBiPj3+nsse9y+HhGfj4jHIuKpiPhaRIxb2YUj4tXAesCngUcoQnr98X8ue/Om1u37VEQ8XgZ7IuIVZe/vooh4MiIujYiN68qfHBH3RMQB5Z/Vwoj4cURMq5XJzIWZeXRmngP8eYjmHgLcl5mfyMy7M/PnwLEUfxb7rOxeJbWWgVFSx0TEBsB+wFmZOa/xeGYuzcyFZdmTKXoc/xXYAfgwcDTwqYqbObZ8faZh/yJg7xbUv6h8HRMRbwK+DnyDIkQeB/wTz7/HtwIbAq8C3g38A3DaMK51NHBJZi4DLgSOajh+OvBz4LKIGIiIVwGfBP4xMx+IiE0pelcfoOj125+iB/iKhno2A44p27YnRUj9+jDaV28sg3/m0JrPXdIIGBglddILKX4P/a5ZoYgYD3wCODozr8rMezPzOoow88GK23gXcC/w2YjYuAxSR1AEps1Xp+KI2BL4Z+AvFD2W/wJckZmfK3vVvkXRA/nxiFir7tQngPdn5u8z8xqKz+HoiJjQ5FqTgbdQBEUoQukrI+JFtTKZmcChwFTgS8ClwFcy87tlkX8CngKOyMzfZuYtZfm9IqI+xK0NHJqZt2fmHRRh9lURMZbhux7YNSKOjogx5dzFz5XHVutzlzRyBkZJnVSbi5YrKbcjMA64IiIW1DbgXGDdMgxVouyNewuwMcUw7jMUPXOXAMtXocptyvY/DdxP8Rm8JTOXUtznfzeU/wlFb9u0un23ZWb9tW8F1moo0+gfgd+XAY7MfIhijuD76gtl5qPAeyl6CB+nCOo1OwL/k5lL6srfAcwrj9X8NTPn1L1/sLzPjRmmcrj+gxQhcVFZxx8o/gxW5XOXtBoqXX0oSSvxR+BZirBxVZNytX/cvg24e5DjT7S4XSsoQ9HLImIdYHxmPhIRlwN/WoXq/gK8huK+H87Mpxsv1/B+OKG66SKQcpHIkcALI2JZ3aFRFPd1Qn0IBGZQhLJNgHWBR5u0b7D9S4Y4NqJOisw8KyLOBjal6NkMinmjq/K5S1oN9jBK6pjMfIJi6PEDEbFu4/FyKHICMJuiZ2+bzLxnkK0tPU6ZOb8MixsC+wJXrkI1S8s2/3mQsDibIqzV25uih61+ccjLGlZV/x1FSBsqSP09sA3F6vPdGrYxwEG1ghHxWoq5ov9A0QN6Yd2q5NnA39UPj0fErhShcvZQN7w6svBQOZf1kHL31VVcS9LQ7GGU1GnHUgyp3h4RJwG/pgg/r6DoTTo8M38dEacCp5bZ5QcUv792Bl6Smf+8qhcvF3JsynPz4l5YDnc/nJkPl2UOBuZShLYXAf9BMUT6H6t63SF8juIRO/9CEUZ3o5jDeEZDD+CGwNkRcSZFEDwF+L+1BUKDOBr4SWb+rPFARHyXYoj9m+XQ/jeA/5OZ10XE7yn+PD4GnAGcRbHY6ILyz2M94CvALZl580huNCJeTDGMvimwVkTsVh76Xe1eI+J4ikU2iykC+ueBUzNz0Oc2SqqOgVFSR2Xm/0bESykWfJwMbEkx/Ph7ikB2Z1nulIj4K8W8tv9D0et2N3DBajbh/ay4Cvn88vXTZXugCDX/SbH693HgO8CJmbmgdlK5EOZ8YOvMvG9VGlKGtPdSfBafAeZQBLJPNxT9NjAfuIUidM1kxbmGf1M+8uZAhl4c9C2KkLot8EWKXsUTy/bcGxHvpwiIP8nMWRHxeorV1L+gCHLXAR9Zhdu9Dqh/YPmvytetKZ5VCfA64ASKZ2X+AfhQZv7fVbiWpNUUxaI4SdLqiIjPUDzXcNdyoUxV17kJuCczj6zqGpLUyDmMktQab6Z4uHdlYVGSOsUhaUlqgcx8aafbIElVcUhakiRJTTkkLUmSpKYMjJIkSWrKOYwttNFGG+XUqVM73QxJkqSVuv322x/LzGF9taqBsYWmTp3KrFmzOt0MSZKklYqI+4db1iFpSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWCUJElSUwZGSZIkNWVglCRJUlMGRkmSJDVlYJQkSVJTBkZJkiQ1ZWBUz9t4Y5gxo9OtkCSpfw10ugHS6pozp9gkSVI1uqaHMSIWNGzLI+LLdcePjIh7ymM3RMTmTeqaGhHXRcSTEfFwRJwVEQN1x7LhWifWnRsRcVpEPF5up0dEVHv3kiRJ3atrAmNmTqxtwCbAImAmQETMAE4FDgA2AO4FLmtS3VeAR4HNgN2AGcCxDWXWq7vmKXX7jwIOBHYFdgHeDBy9WjcnSZLUw7omMDZ4K0Xgu7l8vz8wMzNnZ+YS4BRg74iYNsT5WwOXZ+YzmfkwcAOw4zCvfThwRmY+kJkPAmcAR6zifUiSJPW8bg2MhwMXZWaW76PcqHsPsNMQ558JHBIR4yNiCvBGitBY7/6IeCAizo+Ijer27wjcUff+DoYfNiVJkvpO1wXGiNiSYgj5wrrd1wFvj4hdImIccBKQwPghqvkJRch7CngAmAV8pzz2GPAyYCtgd2Ad4JK6cycC8+rezwMmDjWPMSKOiohZETFrjisvJElSH2pLYIyIm8qFJoNttzQUPwy4JTPvre3IzB8CnwKuAO4H7gPmU4TBxmuNAr4PXAlMADYC1gdOK+takJmzMnNZZj4CfAB4fURMKqtYAEyqq3ISsKCut3MFmXleZk7PzOmTJ08e0eciSZLUC9oSGDNzn8yMIba9Goofxoq9i7U6zs7MbTNzY4rgOADcOcjlNgC2AM7KzMWZ+ThwPrDfUM0rX2s9iLMpFrzU7FrukyRJWiN11ZB0ROwJTKFcHV23f2xE7FQ+8mZL4DzgzMx8srGOzHyMYhX1MRExEBHrUcyJvKOs6+UR8aKIGBURGwJfAm7KzNow9EXAxyJiSvnonuOAC6q4X0mSpF7QVYGRIthdmZnzG/aPBS6lGC6+DfgZUP/sxBMi4vq68gcBbwDmAPcAy4CPlse2oVgAM5+ih3Ix8M66c88FrgF+Wx7/XrlPkiRpjRRDTM3TKpg+fXrOmjWr081Y49SWI/lXWZKk4YuI2zNz+nDKdlsPoyRJkrqMgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRfcNvepEkqRoGRvWN5cs73QJJkvqTgVF9Y9myTrdAkqT+ZGBU3zAwSpJUDQOj+oaBUZKkahgY1TcMjJIkVcPAqL5hYJQkqRoGRvUNA6MkSdUwMKpvGBglSaqGgVF9Y+nSTrdAkqT+ZGBU37CHUZKkahgY1TeWLOl0CyRJ6k8GRvWNxYs73QJJkvqTgVF9wx5GSZKqYWBU3zAwSpJUDQOj+oZD0pIkVcPAqL5hD6MkSdUwMKpvGBglSaqGgVF9wyFpSZKqYWBU37CHUZKkahgY1TcMjJIkVcPAqL7hkLQkSdUwMKrnjSr/FtvDKElSNQyM6nlrrVW8GhglSaqGgVE9b2CgeHVIWpKkahgY1fMyi1d7GCVJqoaBUT3PwChJUrUMjOobDklLklQNA6N6Xq2H0cAoSVI1DIzqebXAuHx5Z9shSVK/6prAGBELGrblEfHluuNHRsQ95bEbImLzJnVNjYjrIuLJiHg4Is6KiIHy2LsbrvN0RGRE7F4ePzkiljaU2ab6T0CrqhYYly3rbDskSepXXRMYM3NibQM2ARYBMwEiYgZwKnAAsAFwL3BZk+q+AjwKbAbsBswAji2vc0nDtY4F/gz8su78b9WXycw/t/BWVRF7GCVJqkbXBMYGb6UIfDeX7/cHZmbm7MxcApwC7B0R04Y4f2vg8sx8JjMfBm4Adhyi7OHARZm1fir1GnsYJUmqVrcGxsYQF+VG3XuAnYY4/0zgkIgYHxFTgDdShMYVRMRWwN7ARQ2H9o+IJyJidkQc06yhEXFURMyKiFlz5sxpfleqhIFRkqRqdV1gjIgtKYaQL6zbfR3w9ojYJSLGAScBCYwfopqfUPQoPgU8AMwCvjNIucOAmzPz3rp9lwM7AJOB9wEnRcQ7h2pvZp6XmdMzc/rkyZOHcYdqNRe9SJJUrbYExoi4qVxYMth2S0Pxw4Bb6kNcZv4Q+BRwBXA/cB8wnyIMNl5rFPB94EpgArARsD5w2iBNO4wVgymZ+bvM/GtmLs/Mn1L0Vr51lW5cbWUPoyRJ1WhLYMzMfTIzhtj2aij+vBBX1nF2Zm6bmRtTBMcB4M5BLrcBsAVwVmYuzszHgfOB/eoLRcQrgc2Bb6+s+aw4HK4uYw+jJEnV6qoh6YjYE5hCuTq6bv/YiNgpClsC5wFnZuaTjXVk5mMUq6iPiYiBiFiPYk7kHQ1FDweuyMz5Ddc6ICLWL6+1B/Ah4OoW3aIq4BxGSZKq1VWBkSLEXdkY4oCxwKXAAuA24GfAibWDEXFCRFxfV/4g4A3AHOAeYBnw0bryY4G3M0hPJnBIec58isUwp2XmYOXUJexhlCSpWgOdbkC9zDx6iP1zgV2anHdqw/tfA/s0Kf8MsN4Qx4Zc4KLuZg+jJEnV6LYeRmnE7GGUJKlaBkb1DXsYJUmqhoFRPa3++3nsYZQkqRoGRvUNexglSaqGgVE9rb6H0cAoSVI1DIzqaQ5JS5JUPQOjepo9jJIkVc/AqL5hD6MkSdUwMKqn2cMoSVL1DIzqac5hlCSpegZG9TR7GCVJqp6BUX3DHkZJkqphYFRPs4dRkqTqGRjV05zDKElS9QyM6hv2MEqSVA0Do3parYdx9Gh7GCVJqoqBUT2tFhjHjCl6GOuHqCVJUmsYGNXTagFxYKB4ffbZzrVFkqR+ZWBUXxgzpnh1WFqSpNYzMKqnNfYwuvBFkqTWMzCqpzUGRnsYJUlqPQOjelr9ohewh1GSpCoYGNUXRo8uXu1hlCSp9QyM6mkOSUuSVD0Do3qagVGSpOoZGNXTDIySJFXPwKi+4BxGSZKqY2BUT7OHUZKk6hkY1dMMjJIkVc/AqJ5mYJQkqXoGRvWF2hzGZ5/tbDskSepHBkb1tFoPo4teJEmqjoFRPc0haUmSqmdgVE8zMEqSVD0Do/qCQ9KSJFXHwKieZg+jJEnVMzCqpxkYJUmqnoFRPc3AKElS9bomMEbEgoZteUR8ue74kRFxT3nshojYvEldO0TEjyJiXnnOWxqOvyYi7oqIpyPixxGxVd2xiIjTIuLxcjs9IqKau1arOIdRkqTqdE1gzMyJtQ3YBFgEzASIiBnAqcABwAbAvcBlg9UTEQPA1cC1ZdmjgIsjYrvy+EbAlcCJ5fFZwLfqqjgKOBDYFdgFeDNwdAtvVS3U+BxGH9wtSVLrdU1gbPBW4FHg5vL9/sDMzJydmUuAU4C9I2LaIOduD2wOfCEzl2fmj4BbgUPL4wcBszNzZmY+A5wM7BoR25fHDwfOyMwHMvNB4AzgiJbfoVrCIWlJkqrXrYHxcOCizFocIMqNuvcAOw1y7mDDx1FXdkfgjtqBzFwI/Knc/7zj5c87oq5kYJQkqXpdFxgjYktgBnBh3e7rgLdHxC4RMQ44CUhg/CBV3EXRO3l8RIyJiNeX9dXKTgTmNZwzD1hniOPzgIlDzWOMiKMiYlZEzJozZ85wb1Mt5hxGSZKq05bAGBE3RUQOsd3SUPww4JbMvLe2IzN/CHwKuAK4H7gPmA880HitzFxKMQfxTcDDwHHA5XVlFwCTGk6bVNY32PFJwIK63s7G652XmdMzc/rkyZObfQyqgD2MkiRVry2BMTP3ycwYYturofhhrNi7WKvj7MzcNjM3pgiOA8CdQ1zvN5k5IzM3zMx9gW2A28rDsykWtAAQEROAaeX+5x0vf56NupKBUZKk6nXVkHRE7AlMoVwdXbd/bETsVD7yZkvgPODMzHxyiHp2Kc8ZHxEfBzYDLigPXwXsFBEHR8RYiuHt32TmXeXxi4CPRcSU8tE9x9Wdqy5jYJQkqXpdFRgpFrtcmZnzG/aPBS6lGC6+DfgZxWNxAIiIEyLi+rryhwIPUcxlfA3wusxcDJCZc4CDgc8CTwIvBw6pO/dc4BrgtxQ9mN8r96mLOYdRkqTqDHS6AfUyc9DnHWbmXIpnIg513qkN748Hjm9S/kaKx+8MdiyBT5SbulzjcxgNjJIktV639TBKI9I4JO2DuyVJaj0Do/qCPYySJFXHwKie5qIXSZKqZ2BUTzMwSpJUPQOjepqBUZKk6hkY1RecwyhJUnUMjOpp9jBKklQ9A6N6moFRkqTqGRjV03xwtyRJ1TMwqi/UAqMP7pYkqfUMjOppDklLklQ9A6N6moFRkqTqGRjV02qBcVT5N9nAKElS6xkY1RciinmMBkZJklrPwKieVuthBAOjJElVMTCqp9UCoz2MkiRVx8ConmZglCSpegZG9YVaYPQ5jJIktZ6BUT2tfg7jqFH2MEqSVAUDo3qaQ9KSJFXPwKieZmCUJKl6Bkb1BQOjJEnVMTCqp/kcRkmSqmdgVE9zSFqSpOoZGNXTDIySJFXPwKi+YGCUJKk6Bkb1tMY5jD64W5Kk1jMwqqfVD0n74G5JkqphYFRPcw6jJEnVMzCqLxgYJUmqjoFRPc3nMEqSVD0Do3qaQ9KSJFXPwKieZmCUJKl6Bkb1BQOjJEnVMTCqpzmHUZKk6hkY1dMah6R9cLckSa1nYFRP88HdkiRVz8CovuAcRkmSqmNgVE9zDqMkSdXrmsAYEQsatuUR8eW640dGxD3lsRsiYvMmde0QET+KiHnlOW+pO/aKiPhBRDwREXMiYmZEbFZ3/OSIWNrQlm2qu3OtDh+rI0lS9bomMGbmxNoGbAIsAmYCRMQM4FTgAGAD4F7gssHqiYgB4Grg2rLsUcDFEbFdWWR94DxgKrAVMB84v6Gab9W3JzP/3LIbVSUMjJIkVadrAmODtwKPAjeX7/cHZmbm7MxcApwC7B0R0wY5d3tgc+ALmbk8M38E3AocCpCZ12fmzMx8KjOfBs4CXlnx/agiDklLklS9bg2MhwMXZf4tDkS5UfceYKdBzo0h9g1WFmBvYHbDvv3LIevZEXHMMNusDnBIWpKk6nVdYIyILYEZwIV1u68D3h4Ru0TEOOAkIIHxg1RxF0Xv5PERMSYiXl/W97yyEbFLWdfxdbsvB3YAJgPvA06KiHc2ae9RETErImbNmTNnBHeqVjAwSpJUvbYExoi4KSJyiO2WhuKHAbdk5r21HZn5Q+BTwBXA/cB9FHMPH2i8VmYuBQ4E3gQ8DBxHEQJXKBsRLwSuBz6cmTfXnf+7zPxrOZz9U+BMiiHyQWXmeZk5PTOnT548ebgfiVqs9hxGH9wtSVLrtSUwZuY+mRlDbHs1FD+MFXsXa3WcnZnbZubGFMFxALhziOv9JjNnZOaGmbkvsA1wW+14RGwF3AickpnfWFnzGXyYW13AOYySJFWvq4akI2JPYArl6ui6/WMjYqcobEmxyvnMzHxyiHp2Kc8ZHxEfBzYDLiiPTQF+BJydmV8d5NwDImL98lp7AB+iWHWtLuSQtCRJ1euqwEix2OXKzJzfsH8scCmwgKKn8GfAibWDEXFCRFxfV/5Q4CGKuYyvAV6XmYvLY0dS9Dh+qv5Zi3XnHgLcQzHkfRFwWmY+r8dT3cHAKElS9QY63YB6mXn0EPvnArs0Oe/UhvfHs+JClvpjnwY+3aSuIRe4qHsZGCVJqk639TBKI+IcRkmSqmdgVE9zSFqSpOoZGNXTDIySJFXPwKi+YGCUJKk6Bkb1tPo5jD64W5KkahgY1dMckpYkqXoGRvU0A6MkSdUzMKov1AJj5orD1JIkafUZGNXT6sPhQPkY+mXLOtMWSZL6lYFRPa1+SHrMmOLnpUs71x5JkvqRgVE9zcAoSVL1DIzqCwZGSZKqY2BUT6ufw2hglCSpGgZG9bT6Iem11ip+XrKkc+2RJKkfGRjV05zDKElS9QaGUygiXg8cAewIrAPMB2YD52fmDyprnTRMBkZJkqqz0sAYER8FPgH8X+AKYB4wCdgVuDAiTsvMMyttpTQE5zBKklS94fQwHg+8OjPvath/ZURcBvwYMDCqIxySliSpesOZwzgB+OsQxx4GxreuOdLIGBglSarecALjFcA1EfGaiJgcEWtFxEYR8RrgKuDb1TZRWjkDoyRJ1RlOYHw/8FPgQuARYFH5eiHwP8AxlbVOWon6OYw+VkeSpGqsdA5jZi4B/hX414hYD5gILMjMuY1lI+KVmXlrqxspDcUhaUmSqjesx+rUlCFxbpMi11OsoJbawsAoSVL1Wv3g7mhxfdKwGBglSapOqwNjrryI1Do+h1GSpOr51YDqaQ5JS5JUPQOjepqBUZKk6jmHUX3Dx+pIklSNEQXGiNgwIg6NiE+U7zePiBfUjmfmOq1uoNSMPYySJFVv2IExImYAfwDeDZxY7t4WOKeCdknDYmCUJKl6I+lh/CLwjsx8A7Cs3PdzYI9WN0oaKQOjJEnVGUlgnJqZPyx/rj3MZAkjfPi31Ep+NaAkSdUbSWD8XUTs27DvtcBvW9geaUQah6RHj4ZFizrbJkmS+s1IegePA66NiO8B4yLiXGB/4IBKWiYNQ31gBBg3zsAoSVKrDbuHMTP/B9gVmA18HbgX2CMzf1FR26RhMzBKklSdEc0/zMwHgdMraos0YtnwZZQGRkmSWq9pYIyIbzCM74fOzMNa1iJpBBySliSpeisbkr4H+FO5zQMOBEYDD5TnHgDMra55UnMGRkmSqtc0MGbmp2sbsB3wpsx8d2aekJnvAd4EvKgVDYmIBQ3b8oj4ct3xIyPinvLYDRGxeZO6doiIH0XEvPKct9QdmxoR2XCtE+uOR0ScFhGPl9vpEeFXHnY5A6MkSdUZyWN1XgH8T8O+nwN/14qGZObE2gZsAiwCZsLfvmXmVIoezQ0oFtxcNlg9ETEAXA1cW5Y9Crg4IrZrKLpe3TVPqdt/FEVP6q7ALsCbgaNbcY9qPecwSpJUvZEExl8Bp0bEOIDy9bPAryto11uBR4Gby/f7AzMzc3ZmLgFOAfaOiGmDnLs9sDnwhcxcnpk/Am4FDh3mtQ8HzsjMB8pFPmcAR6z6rahKDklLklS9kQTGI4BXAvMi4hGKOY17AVUseDkcuCjzb/1HUW7UvQfYaZBzBxs+jkHK3h8RD0TE+RGxUd3+HYE76t7fUe5TFzIwSpJUvZE8h/G+zNwTmAb8A/DCzNwzM+9rZYMiYktgBnBh3e7rgLdHxC5lz+ZJFKu3xw9SxV0UvZPHR8SYiHh9WV+t7GPAy4CtgN2BdYBL6s6fSBGGa+YBE4eaxxgRR0XErIiYNWfOnJHdrFrGwChJUnVG0sNIRKwPvBr4e2Cf8v1wzrupXGgy2HZLQ/HDgFsy897ajvI7rD8FXAHcD9wHzKdYrb2CzFxKMQfxTcDDFN9Qc3mtbGYuyMxZmbksMx8BPgC8PiImlVUsACbVVTkJWFDX29l4vfMyc3pmTp88efJwPg61kHMYJUmq3rADY0T8HcXjdd5PsRjkaOBP5f6mMnOfzIwhtr0aih/Gir2LtTrOzsxtM3NjiuA4ANw5xPV+k5kzMnPDzNwX2Aa4bajm1W6xfJ1NseClpvbtNupCjUPS48fD0093rj2SJPWjkXzTyxeBYzPzm7UdEfEO4EsUQ7yrLSL2BKZQro6u2z8WeCFFcNsCOA84MzOfHKKeXYC7KQLxscBmwAXlsZdTPDvyj8D6ZftvyszaMPRFwMci4jqKMHkc8GXUlRoD46RJsGABPPssjBpR/7kkSRrKSP6Xuh3F0G69b1MEuVY5HLgyM+c37B8LXEoxXHwb8DOg/tmJJ0TE9XXlDwUeopjL+BrgdZm5uDy2DXADxZD2ncBi4J11554LXAP8tjz+vXKfulgtMK67bhEiFyzobHskSeonI+lh/CNwCEVwq3kbxTB1S2TmoM87zMy5FMPgQ513asP744Hjhyh7GUM8w7E8nsAnyk1drnEO46Ry9um8ec/9LEmSVs9IAuNHgGsj4kMUC0+mAttSPNha6ojGIel11y1e582DLbboTJskSeo3ww6MmfnT8kHZb6J4MPY1wHWZ+URVjZNWZrA5jABPPdWZ9kiS1I9G0sNIucjk4oraIq2ywXoYJUlSaww7MEbE1hRfBbgbxcOt/yYzt2xts6ThGWoOoz2MkiS1zkh6GC+lWOByHOCT7tQVms1hlCRJrTGSwLgj8MrMfLaqxkgjZWCUJKl6I3kO438DL6mqIdLqqAXGCROKB3Y7JC1JUuuMpIfxPuD7EXElxXc0/01mntTKRknD1TiHMaKYx2gPoyRJrTOSwDiB4lE6Yyi+nq8mBy8uVa9xSBqKwGgPoyRJrTOS5zD+48rKRMQ7y29SkdpisMC47rr2MEqS1EojmcM4HH7nsjqisYfRwChJUuu0OjDGyotIrdM4hxGKHkaHpCVJap1WB0bnM6qthhqSnju3I82RJKkvtTowSm01WGDcaCN47LHOtEeSpH600sAYEYZKdb36wLjppsUcxmee6Vx7JEnqJ8MJgw9GxOkRsdMwyv7v6jZIGonB5jBusknx+sgj7W2LJEn9ajiB8f3A1sAvIuKXEfHhiJg8WMHMHE6olFpmsCFpA6MkSa210sCYmVdn5tuAzSgem/M24C8R8d2IODgixlTdSGllGoekAR56qDNtkSSp3wx7fmJmzs3MczNzL2AHYBbwBcD/LatjBhuS3nrr4vXPf25vWyRJ6lcj+WpAACJibeBlwMuBTYCftrpR0nANNiS94YbFSunf/74zbZIkaVVkwtKlsGjR0NvTTzc/PpJyIzHswBgRewGHAW8HHgW+ARybmfeP7JJS6wwWGAG23x5mz25/eyRJ/ScTFi9+LoQ9/fSKW+O+1Xm/fPmqtXH0aBg37rlt/PgV32+wwYrvx42DL35x+PWvNDBGxMnAocAGwEzgTZl566rdjlSNxsC4557wn/9ZfOPLpEmdaZMkqVrPPls8Qm24wWx1wtxgU6BWZsyYIrjVtlqQGz8eJk8e/NhgYW+wrbHMmFVYUdLSwAi8Avg34DuZ6ZPt1FWG+g94v/3g9NPhxhvhoIPa2yZJUmHpUli4sAhcCxc+t9W/b3as/v1gYW5Vn7c7duzzA1zt/frrDx7wRvp+3DgYGPHEv+610lvJzDe0oyHSqhhqSHrPPYuvCLz2WgOjJA1l+fKRB7eRhL6lS0fWnoEBmDCh2MaPf+7nCRNg441XL8DV98iN8itJRqyPsq/WREMFxjFjYP/94aqr4CtfKf41KUm9KLMIYAsWrLgtXPj8fbX9ww19S5aMrC2jRg0d6DbYYMX3jceH836ttar5DLX6DIzqC42BEeC974WLL4YvfQk+8Yn2t0nSmiWzCGArC3OD7W92bKTz5xqDWC2Mbb750GFtuIFu7bUH/32r/mdgVE9r9kt0n33gwAPhX/6l+EX5nve0q1WSul1mMf9t/vwVt5GGucb9y5YNvw1rrw0TJz63TZhQvG644eD7G7fB9jvcqqoYGNXThhqSru279FJ485vh8MNh7lw49lh/mUq9atmy5we8+u2pp5ofb9yG+/iSUaMGD2ybbDJ0mFtZ0JswYdVWtUqdYmBUT2sWGKH41/Z3vwtvext88INwxRXwta/BtGnta6O0psoseuBGGuSG2oa7InZgANZZZ8Vt0iSYMuX5+wfbGgOew7CSgVF9otkv8wkT4Hvfg/PPh499DHbeGU49tQiQo0e3r41Sr6gtsnjqKZg3r3hdlZ+femp4c+8iimDWGNy22mp4Aa9xM+BJrWdgVE8b7kTwiGIRzL77wtFHw0c/Ct/8Jnz1q7DbbpU2UWqb2ry84Ya6ZkFvOMO148cXj6+aNKnY1l0XNt30uZ8nTXqud69ZwBs/3qkiUrczMKqnjfTJ+1OmwDXXwCWXFL2Nu+8OH/oQfOYzxf+4pE5atqwIbnPnrrg17qt/3xj2hvPcu7Fjnx/0pk1bMeit7Od11umvhxJLas7/3NXTMkc+9BRRrJh+05vgX/8VzjwTZs4sviLp4IMdytKqW7x4+EFvsH0LFzavP6IIa+utV2zrrgtbbjnyoOez7iSNlIFRPW9VA9766xdD0kccAcccUyyMeeMb4ayzYJttWtpE9Yhnny0C3JNPwhNPrPj65JMrD4MrW5QxevRzYa8W+Dbd9Pn76t/X719nHYduJXWGgVE9bVW+DL7RK14Bv/hFERRPPBF23BH+7d/g+OOLyfPqLbUFG4OFvqFeaz/Pndv879Raaz0/yG255eDhbrB9EybYgy2pNxkY1dNWZUh6MAMD8JGPFL2MH/1oERwvvhjOOQde/erVr18jt3TpyEJfffhr9nVno0cXvcvrr198ldlGG8G22xY/1/bVv9b/PG5c++5fkrqJgVE9rVWBsWbKFLj8crjhBvinf4K//3t4xzvgk5+EnXZq3XXWFM8+WyzEWJXQt2BB87onTVoxzO2008oD3wYbFMO69vJJ0sgYGNXzqvif/xveAHfeCZ/7HJxxBnzrW7D//kXv44wZa9Y8skxYtGjVQt/cuUVoHMrYsSuGualT4aUvHTzo1b+ut54rdCWpnfyVq57WijmMQxk3rnjczoc/DGefDV/6UvFIni23hHe9C/bbr5j/2M1f75VZrNxtfO7ecF7r5/Y1G+IdNWrFMOcQryT1n64JjBHROAA1DvhKZn6wPH4k8C/ApsAtwHsz869D1LUDcDawOzAHOD4zryqPvRs4t674qPJa0zPz9og4Gfg3YHFdmV0y88+rd4eqQquHpAez4YZw0knw8Y/D1VfDRRfBf/wHfP7zxbdTvOQlsOuuxZDolCmw2WZFaBo7tthqC2eWLn3+tnhx0Xu3aFGxwrb281DbqpRp1sNXM3bs8x/B8uIXN+/lq726cleS+l/XBMbMnFj7OSImAI8AM8v3M4BTgVcDfwTOBC4DZjTWExEDwNXAV4HXlWWuiYiXZObdmXkJcEld+SOAE4Ff1lXzrcx8TyvvT9VoR2CsGT8e3vnOYps7F378Y7jxRvj1r+GCC1Y+5251rb120SPXuNXC3iabDH689m0ctTDY+Dppks/lkyQ11zWBscFbgUeBm8v3+wMzM3M2QEScAjwYEdMy808N524PbA58ITMT+FFE3AocShEMGx0OXFSWVQ/qxAKG9daDt7yl2KDoxXvwQfjrX+Ghh+Cxx4rew9oGxdB147b22kXgGyzo1QfCsWPtxZMkdU63BsbGEBflRt17gJ2AxsA4WHyIsuyKOyO2AvYG3ttwaP+IeAJ4CDgrM88ZWfPVLt0S80eNgi22KDZJkvpN1/VZRMSWFMPIF9btvg54e0TsEhHjgJOABMYPUsVdFL2Tx0fEmIh4fVnfYGUPA27OzHvr9l0O7ABMBt4HnBQR72zS3qMiYlZEzJozZ86w71Ot0c4haUmS1lRtCYwRcVNE5BDbLQ3FDwNuqQ9xmflD4FPAFcD9wH3AfOCBxmtl5lLgQOBNwMPAcRQh8Hlly2vVB1My83eZ+dfMXJ6ZP6WYL/nWoe4tM8/LzOmZOX3y5MnNPwi1nIFRkqTqtSUwZuY+mRlDbHs1FH9eiCvrODszt83MjSmC4wBw5xDX+01mzsjMDTNzX2Ab4Lb6MhHxSoq5jt9eWfMZfJhbXcLAKElStbpqSDoi9gSmUK6Orts/NiJ2isKWwHnAmZn55BD17FKeMz4iPg5sBlzQUOxw4IrMnN9w7gERsX55rT2AD1GsulYX6pY5jJIk9bNuW/RyOHBlY4gDxgKXAtMohqLPp27Fc0ScALwqM99Y7joUOBIYQ7HS+nWZubiu/Fjg7cDBg7ThEODrwNoUw9inZebzejzVXkuWwP/+L9x3X7Hde2/xeuWVfuOHJElVC58m0zrTp0/PWbNmdboZPSkT5syBe+6BP/2p2P785+eC4YMPrtibOHp0sS1ZUjw4+qmnOtZ0SZJ6UkTcnpnTh1PWvhm1zfLl8MADzwXCWjisvdY/+DoCXvAC2Hpr+Pu/L75jeOuti9epU4tjhxwCV1zhHEZJkqpmYFRLZRYPrb7rrmL7wx+K13vuKXoL67+TeMwY2GYbmDYN9t4bXvjC4udp04pwWPtKPUmS1FkGRq2SpUuLIeP6UFj7+Yknnis3dixsu23xPcsHHFCEwVowfMELimHlVVXrWbSHUZKkahkY1dSzz8L998Nvf7vidvfdsGzZc+U23RS23x7e9rbitbZtuWV1X2lnYJQkqT0MjPqbefPg178uAuFvflO83nnninMLp06FnXeGf/gH2GGHIhS+6EWw7rrtb69BUZKk9jAwrqHmzoVf/hJuv/257Z57nju+wQZFMDziiOJ1551hxx1h0qROtfj57GGUJKk9DIxrgKVL4Y474NZb4Wc/e3443HJL2H13+Md/hJe+FHbZBTbbrPuDmIFRkqT2MDD2oXnz4Kc/LQLirbfCbbfB008Xx17wAnjZy4pwuPvuRUDs9a/ANjBKklQtA2MfWLy46Dm88cZi+8UvisUqo0fDbrvBkUfCnnsW2xZbdLq1rWNQlCSpPQyMPeovf4Grr4Zrr4X//m9YtKgIiC9/OXzyk7DPPrDHHjBhQqdbWh2HpCVJag8DYw/5/e+L707+zneg9g2E221X9CC+9rVFSOymRSlVMzBKktQeBsYuN2cOXHYZXHhhsaoZ4BWvgM9/vngQ9vbbd7Z9nWRglCSpPQyMXSizWKzyxS8Ww87LlhWLU774xeLB2Jtv3ukWdgeDoiRJ7WFg7CLLl8PMmXDGGcWQ8/rrw4c/XDwLcaedOt267mVwlCSpWgbGLpAJ3/1usVjlzjuLb0455xw49ND+XrSyuhySliSpPQyMHTZ7Nrz//XDLLbDttvDNbxbDzlV9/3I/MTBKktQexpIOWbKk6FHcbbdi9fO55xbh8R3vMCwOl0FRkqT2sIexA+6/vwiGP/85HHZYMWdxo4063areYw+jJEntYWBssx/8oAiLy5fDt78NBx/c6Rb1LgOjJEnt4eBnG11yCey3X/H1fL/8pWGxVQyMkiRVy8DYJl//OrznPbDXXsVX+U2b1ukW9T6DoiRJ7WFgbIOrroL3vQ/23Reuvx7WXbfTLeoPDklLktQeBsaK/fzncMghsMcecMUVMHZsp1vUPwyMkiS1h4GxQo89VjxTcbPN4NprfQh3qxkYJUlqD1dJV+joo+GRR4rvhd5ww063pv8YFCVJag8DY0WuugquvBI+9zmYPr3TrelvBkdJkqrlkHQFFi2CD34Qdt0Vjjuu063pXw5JS5LUHvYwVuCcc+DBB+HSS2HMmE63pn8ZGCVJag97GFts6VI4/XR47Wth77073Zr+ZlCUJKk97GFsse99r1jo8rWvdbol/c8eRkmS2sMexhY7//ziMTpveEOnW9L/DIySJLWHgbGFMuHGG+Ggg2DAvtvKGRglSWoPA2MLPf10se2zT6dbIkmS1DoGxhaaP794fdWrOtuONYU9jJIktYeBsYUWLIAXvQg22aTTLVkzGBglSWoPA2MLLVoEL3lJp1ux5jAwSpLUHgbGFlqyBLbfvtOtWHMYFCVJag8DY4u96EWdbsGawx5GSZLao2sCY0RMjYjrIuLJiHg4Is6KiIG646+JiLsi4umI+HFEbNWkrg0i4qqIWBgR90fEuxqOD1lXFE6LiMfL7fSI4UeSqVNHeONabQZGSZKq1TWBEfgK8CiwGbAbMAM4FiAiNgKuBE4ENgBmAd9qUtfZwBJgE+DdwDkRseMw6zoKOBDYFdgFeDNw9HBvYsqU4ZbU6rKHUZKk9uimwLg1cHlmPpOZDwM3ADuWxw4CZmfmzMx8BjgZ2DUinjdjMCImAAcDJ2bmgsy8BfgucOgw6zocOCMzH8jMB4EzgCOGexObbjqSW9bqMChKktQe3RQYzwQOiYjxETEFeCNFaIQiON5RK5iZC4E/8VygrLcdsDwz767bd0dd2ZXVtcLxhnObGhiAMWOGU1KtYA+jJEnt0U2B8ScUwewp4AGKoeLvlMcmAvMays8D1hmknpWVHenxecDEoeYxRsRRETErImaNGrVssCKqiIFRkqT2aEtgjIibIiKH2G6JiFHA9ynmFk4ANgLWB04rq1gATGqodhIwf5DLrazsSI9PAhZkZg52b5l5XmZOz8zpO+/sF0i3k0FRkqT2aEtgzMx9MjOG2PaiWHyyBXBWZi7OzMeB84H9yipmUyxCAf42T3Faub/R3cBARGxbt2/XurIrq2uF4w3nqgsZHCVJqlZXDEln5mPAvcAxETEQEetRLD6pzSW8CtgpIg6OiLHAScBvMvOuQepaSNFT+ZmImBARrwQOAL4xzLouAj4WEVMiYnPgOOCC1t+1VpdD0pIktUdXBMbSQcAbgDnAPcAy4KMAmTmHYuXzZ4EngZcDh9ROjIgTIuL6urqOBcZRPKbnMuCYzJw9nLqAc4FrgN8CdwLfK/epyxgYJUlqj66ZdJeZvwb2aXL8RmDQL97LzFMb3j9B8SzFVakrgU+Um7qYQVGSpPboph5GaUTsYZQkqT0MjOpZBkZJktrDwKieZ2CUJKlaBkb1LIOiJEntYWBUz3JIWpKk9jAwqmcZGCVJag8Do3qWQVGSpPYwMKpnGRglSWoPA6MkSZKaMjCqZ9nDKElSexgY1bNqgTGzs+2QJKnfGRjVs+xhlCSpPQyM6lkGRkmS2sPAqJ7lcxglSWoPA6N6nnMYJUmqloFRPcueRUmS2sPAqJ5lYJQkqT0MjOpZPlZHkqT2MDCqZ7noRZKk9jAwqmcZGCVJag8Do3qegVGSpGoZGNWzDIqSJLWHgVE9yyFpSZLaw8ConmVglCSpPQyM6lkGRkmS2sPAqJ5lYJQkqT0MjJIkSWrKwKieZQ+jJEntYWBUzzIwSpLUHgZG9SyDoiRJ7WFgVM+yh1GSpPYwMKpnGRglSWoPA6N6noFRkqRqGRjVswyKkiS1h4FRPcshaUmS2sPAqJ5lYJQkqT0MjOpZBkVJktrDwKieZQ+jJEntYWBUzzMwSpJUra4JjBExNSKui4gnI+LhiDgrIgbqjr8mIu6KiKcj4scRsVWTujaIiKsiYmFE3B8R76o79oqI+EFEPBERcyJiZkRsVnf85IhYGhEL6rZtqrtzrSp7GCVJao+uCYzAV4BHgc2A3YAZwLEAEbERcCVwIrABMAv4VpO6zgaWAJsA7wbOiYgdy2PrA+cBU4GtgPnA+Q3nfyszJ9Ztf17dm1PrGRglSWqPgZUXaZutgbMy8xng4Yi4AaiFvIOA2Zk5E4peQOCxiNg+M++qryQiJgAHAztl5gLgloj4LnAo8C+ZeX1D+bOAn1R4X6qIQVGSpPboph7GM4FDImJ8REwB3gjcUB7bEbijVjAzFwJ/4rlAWW87YHlm3l23744hygLsDcxu2Ld/OWQ9OyKOGfmtqB3sYZQkqT26KTD+hCLUPQU8QDHs/J3y2ERgXkP5ecA6g9Qz7LIRsQtwEnB83e7LgR2AycD7gJMi4p1DNToijoqIWRExa86cOUMVUwUMjJIktUdbAmNE3BQROcR2S0SMAr5PMU9xArARxVzD08oqFgCTGqqdRDH/sNGwykbEC4HrgQ9n5s21/Zn5u8z8a2Yuz8yfUvR8vnWoe8vM8zJzemZOnzx5cvMPQi1lYJQkqT3aEhgzc5/MjCG2vSgWsmxBMYdxcWY+TrEQZb+yitnArrX6ynmK03j+UDLA3cBARGxbt2/X+rLlCusbgVMy8xsraz5gJJEkSWusrhiSzszHgHuBYyJiICLWAw7nuXmLVwE7RcTBETGWYhj5N40LXsq6FlL0VH4mIiZExCuBA4BvAJTzI38EnJ2ZX208PyIOiIj1o7AH8CHg6hbfslrAHkZJktqjKwJj6SDgDcAc4B5gGfBRgMycQ7Hy+bPAk8DLgUNqJ0bECRFRv/r5WGAcxWN6LgOOycxaD+ORwDbAp+qftVh37iHl9ecDFwGnZeaFLb5XtYCBUZKk9uiax+pk5q+BfZocvxHYfohjpza8fwI4cIiynwY+3eQ6Qy5wUXcxKEqS1B7d1MMojYg9jJIktYeBUT3LwChJUnsYGNXzDIySJFXLwKieZQ+jJEntYWBUzzIoSpLUHgZG9Sx7GCVJag8Do3qWgVGSpPYwMKpnGRglSWoPA6MkSZKaMjCqZ9nDKElSexgY1fMMjJIkVcvAqJ6V2ekWSJK0ZjAwqufZwyhJUrUMjOpZtR5GA6MkSdUyMKpnPfts8WpglCSpWgZG9TwDoyRJ1TIwqme56EWSpPYwMKrn2cMoSVK1DIzqWfYwSpLUHgZG9SxXSUuS1B4GRvUsA6MkSe1hYFTPMjBKktQeBkb1PAOjJEnVMjCqZ7noRZKk9jAwqufZwyhJUrUMjOpZzmGUJKk9DIzqWX6XtCRJ7WFgVM8zMEqSVC0Do3qWi14kSWoPA6N6nj2MkiRVy8ConmUPoyRJ7WFgVM9ylbQkSe1hYFTPMjBKktQeBkb1LAOjJEntYWBUzzMwSpJULQOjepaLXiRJag8Do3qePYySJFXLwKie5RxGSZLaw8ConuV3SUuS1B5dExgjYmpEXBcRT0bEwxFxVkQM1B1/TUTcFRFPR8SPI2KrJnVtEBFXRcTCiLg/It7VcJ2MiAV124l1xyMiTouIx8vt9AgjSTfzT0eSpGp1TWAEvgI8CmwG7AbMAI4FiIiNgCuBE4ENgFnAt5rUdTawBNgEeDdwTkTs2FBmvcycWG6n1O0/CjgQ2BXYBXgzcPTq3Jiq4aIXSZLao5sC49bA5Zn5TGY+DNwA1ELeQcDszJyZmc8AJwO7RsT2jZVExATgYODEzFyQmbcA3wUOHWY7DgfOyMwHMvNB4AzgiNW4L1XMHkZJkqrVTYHxTOCQiBgfEVOAN1KERiiC4x21gpm5EPgTzwXKetsByzPz7rp9dwxS9v6IeCAizi97MGtWuNYQ5/5NRBwVEbMiYtacOXOa36Fayh5GSZLao5sC408ogtlTwAMUw87fKY9NBOY1lJ8HrDNIPSsr+xjwMmArYPdy/yVNzp8HTBxqHmNmnpeZ0zNz+uTJk4e6N1XAVdKSJLVHWwJjRNxULjQZbLslIkYB36eYpzgB2AhYHzitrGIBMKmh2knA/EEu17RsOUw9KzOXZeYjwAeA10fEpCHOnwQsyLQ/q9scfjgceCB88pOdbokkSf2tLYExM/fJzBhi24tiIcsWwFmZuTgzHwfOB/Yrq5hNsQgF+Ns8xWnl/kZ3AwMRsW3dvl2HKAtQC4K1fqoVrrWSc9VBkybBVVfBppt2uiWSJPW3rhiSzszHgHuBYyJiICLWo1h8UptLeBWwU0QcHBFjgZOA32TmXYPUtZCip/IzETEhIl4JHAB8AyAiXh4RL4qIURGxIfAl4KbMrA1DXwR8LCKmRMTmwHHABdXcuSRJUvfrisBYOgh4AzAHuAdYBnwUIDPnUKx8/izwJPBy4JDaiRFxQkRcX1fXscA4isf0XAYck5m1XsJtKBbTzAfuBBYD76w791zgGuC35fHvlfskSZLWSOHUvNaZPn16zpo1q9PNkCRJWqmIuD0zpw+nbDf1MEqSJKkLGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLUlIFRkiRJTUVmdroNfSMi5gN/6HQ71jAbAY91uhFrGD/z9vMzbz8/8/bzM2+/F2XmOsMpOFB1S9Ywf8jM6Z1uxJokImb5mbeXn3n7+Zm3n595+/mZt19EzBpuWYekJUmS1JSBUZIkSU0ZGFvrvE43YA3kZ95+fubt52fefn7m7edn3n7D/sxd9CJJkqSm7GGUJElSUwZGSZIkNWVgbIGI2CAiroqIhRFxf0S8q9Nt6ncR8YGImBURiyPigk63p99FxNoR8V/l3+/5EfGriHhjp9vV7yLi4oh4KCKeioi7I+LITrdpTRER20bEMxFxcafb0u8i4qbys15Qbj7PuA0i4pCI+H2ZXf4UEa9qVt7nMLbG2cASYBNgN+B7EXFHZs7uaKv621+Bfwf2BcZ1uC1rggHgL8AM4H+B/YDLI2LnzLyvkw3rc58D/r/MXBwR2wM3RcSvMvP2TjdsDXA28ItON2IN8oHM/FqnG7GmiIjXAacB7wBuAzZb2Tn2MK6miJgAHAycmJkLMvMW4LvAoZ1tWX/LzCsz8zvA451uy5ogMxdm5smZeV9mPpuZ1wL3Art3um39LDNnZ+bi2ttym9bBJq0RIuIQYC7www43RarKp4HPZOb/lL/TH8zMB5udYGBcfdsByzPz7rp9dwA7dqg9UuUiYhOKv/v2olcsIr4SEU8DdwEPAdd1uEl9LSImAZ8Bjut0W9Ywn4uIxyLi1ojYp9ON6WcRMRqYDkyOiHsi4oGIOCsimo7WGRhX30RgXsO+ecCwvptR6jURMQa4BLgwM+/qdHv6XWYeS/H75FXAlcDi5mdoNZ0C/Fdm/qXTDVmD/DOwDTCF4rmA10SEPenV2QQYA7yV4vfKbsBLgE82O8nAuPoWAJMa9k0C5negLVKlImIU8A2KObsf6HBz1hiZubyc7vIC4JhOt6dfRcRuwGuBL3S4KWuUzPx5Zs7PzMWZeSFwK8U8aVVjUfn65cx8KDMfA/6TlXzmLnpZfXcDAxGxbWb+sdy3Kw7Vqc9ERAD/RfGv0/0yc2mHm7QmGsA5jFXaB5gK/G/x152JwOiIeHFmvrSD7VrTJBCdbkS/yswnI+IBis952OxhXE2ZuZBimOgzETEhIl4JHEDRC6OKRMRARIwFRlP8Qh8bEf4DqFrnADsA+2fmopUV1uqJiI3Lx15MjIjREbEv8E7gR51uWx87jyKQ71ZuXwW+R/E0BlUgItaLiH1rv8Mj4t3A3sD3O922Pnc+8MHy98z6wEeAa5ud4P9gW+NY4OvAoxSrdo/xkTqV+yTwqbr376FY9XVyR1rT5yJiK+BoivlzD5e9LwBHZ+YlHWtYf0uK4eevUvzj/n7gI5l5dUdb1ccy82ng6dr7iFgAPJOZczrXqr43huIRadsDyykWdx2YmT6LsVqnABtRjJI+A1wOfLbZCX6XtCRJkppySFqSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSWiQiZkfEPm261osjYlYF9V4ZEW9odb2SepvPYZSkYSof5FwznuJB5svL9219iHlEXAHMzMxvtrjePYBzMnP3VtYrqbcZGCVpFUTEfcCRmXljB669GcX31W+emc9UUP8fgXdmZst7MCX1JoekJalFIuK+iHht+fPJETEzIi6OiPkR8duI2C4i/jUiHo2Iv0TE6+vOXTci/isiHoqIByPi3yNi9BCXeh3wy/qwWF77+Ij4TUQsLOvaJCKuL69/Y/mdsZTf23txRDweEXMj4hcRsUld/TcBb2r5BySpZxkYJak6+wPfANYHfgV8n+L37hTgM8C5dWUvBJYBLwReArweOHKIencGBvuu3YMpwuR25bWvB06g+M7YUcCHynKHA+sCWwAbAu8HFtXV83tg12HfpaS+Z2CUpOrcnJnfz8xlwExgMvD5zFwKfBOYGhHrlb17bwQ+kpkLM/NR4AvAIUPUux4wf5D9X87MRzLzQeBm4OeZ+avMXAxcRRFEAZZSBMUXZubyzLw9M5+qq2d+eQ1JAmCg0w2QpD72SN3Pi4DHMnN53XuAicDmwBjgoYiolR8F/GWIep8E1hnG9RrfTyx//gZF7+I3I2I94GLg38ogS1n33KFuStKaxx5GSeq8v1CsuN4oM9crt0mZueMQ5X9DMey8SjJzaWZ+OjNfDOwJvBk4rK7IDsAdq1q/pP5jYJSkDsvMh4D/B5wREZMiYlRETIuIGUOc8gPgpRExdlWuFxGvjoidy0U1T1EMUS+vKzKDYv6jJAEGRknqFocBawG/oxhy/jaw2WAFM/MR4EfAAat4rU3L+p+iWODyE4phaSLiZcDCzLxtFeuW1Id8DqMk9aCIeDHFyuo9soW/yMsHgv9XZl7Xqjol9T4DoyRJkppySFqSJElNGRglSZLUlIFRkiRJTRkYJUmS1JSBUZIkSU0ZGCVJktSUgVGSJElNGRglSZLU1P8PfFvWlkE14MEAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 720x576 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 720x576 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Plotting 2D representation of network cell locations and connections...\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAMKCAYAAACyaRT7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdf1yT570//veVhBDID34EgUCDqEGpCgFEdlzdDHSdttucNZW1WkorDuN6Wqdzg82Ph82Vqt0ZOyvHuc0jzAM0yjlHW5VtTEe/PdSxs0JsKmip1l+xAYTwm0BC7tzfP9Y4a21DWxIkfT0fjzyW+74u7ut9ZW31xXXfVxjP8wQAAAAAAAAfTTDVBQAAAAAAANztEJwAAAAAAAC8QHACAAAAAADwAsEJAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvBBNdQGfVlRUFJ+YmDjVZQAAAABAgGtpaenheX7GR7SJRSLRfiJaSkRC/1YGk4gjotddLte3Fy1a5LxTh2kbnBITE6m5uXmqywAAAACAAMcYu/pRbQKBYJNCobhv5syZ/QKBAF+QOk253W529erVpf39/ZuI6Jd36oNb9QAAAAAAPiWhUPhUXFzcCELT9CYQCPi4uLhhoVD45Ef28WM9AAAAAAABhef5MLFYPD7VdcBnJxaLx3meD/uodgQnAAAAAIBPjzHGproGmATv///4kfkIwQkAAAAAAMALBCcAAAAAgACWlZU1T6FQpI2Ojvp8aay9vV38hS98YW5ISEj6rFmzFrz88styX4/pLwhOAAAAAAABqr29XdzS0iJjjJHRaAz39Xjf+ta3ZqekpNi7u7vfLCkpeS8vL2+O1Wqdtjt53wrBCQAAAAAgQO3fv1+p1WpH1qxZ01NVVaUkIhobG2PJycnzS0tLo4mIXC4XZWRkJG/btk1FRGQymSRZWVnz5HJ5mkajWVBTU3NzwwS9Xp+Yl5eXoNPpNFKpND01NTW5ra0tmIjorbfeCj537lzoz372M6tMJuOffPLJ/rlz545WV1dHTMXcJxuCEwAAAABAgKqtrVXm5uba8vPzexsbGxUWi0UkkUj4qqqqS3v27IkzmUyS7du3x3IcR7t37+5wOBxs1apVmpycnIHu7m5zWVnZtcLCwtlmsznYc81jx45FlpSUWPv7+88kJiY6ioqK4omI3nzzzZB77rnHERER4fb0XbBgwWhbW5tkKuY+2QJi2QwAAAAA4G5Q3WxVdww4Qn05hios2P54ZpzFW7/6+nqZ1WoV5+fn96lUKpdarXZUVFRElpSU3Fi8ePHYli1bOvR6/RybzRZ0+vTp8yKRiE6dOiW12+3C0tLSTqFQSCtXrhzKycnpP3jwoLKsrMxKRLRixYq+7OxsOxHRunXreouLi+8hIhoaGhLI5XLu1hrCwsI4q9Ua5IvPwd+w4gQAAAAAEIAqKyuVS5cuHVSpVC4iIr1e32s0GqM87QaDwWa1WoN1Ot1ASkqKg4jIYrEExcbGOoVC4c3rqNVq563hJyYm5ub3VkmlUrfdbhcSEcnlcvfw8PA/fpCIBgcHBTKZ7ANharrCihMAAAAAwCSZyEqQPwwPD7O6uroIjuNYVFSUlojI6XSyoaEhYVNTU8iSJUtGCwoKErKzs/sbGxsV9fX1suXLlw+r1erxzs5OMcdx5AlPFotFnJSU5PA2Zlpa2uj169eD+/r6BJ7b9dra2kJzc3N7fTpZP8GKEwAAAABAgKmpqYkQCARkNpvbTCZTm8lkamttbW1dtGjRcEVFhXLv3r2RZ8+eDT18+PCVXbt2WTZs2JA4MDAg0Ol0IyEhIdyOHTtiHQ4HO3HihLyhoSE8Ly/Pa/hJTU11JCcn24uKiuLsdjv7z//8z/D29vaQxx9/vM8fc/Y1rDgBAAAAAASY6upqZW5ubk9SUpLz1vMGg+FGYWHhbIVCwdXW1l4ICwtzGwyG3uPHj4dv3LhRfejQoatHjx69uGnTppnl5eWx0dHR4/v27bucnp4+NpFxa2trL+Xl5c2KjIxMj42NdVZVVb0bFxfn8s0s/YvxPD/VNXwqmZmZfHNz81SXAQAAAAABjjHWwvN85p3azGbzFa1W2+PvmsA3zGZzlFarTbxTG27VAwAAAAAA8ALBCQAAAAAAwAsEJwAAAAAAAC8QnAAAAAAAALxAcAIAAAAAAPACwQkAAAAAAMALBCcAAAAAAAAvEJwAAAAAAAC8QHACAAAAAADwAsEJAAAAACCAZWVlzVMoFGmjo6PM12Nt3rw5bu7cufNFItGirVu3xvl6PH9CcAIAAAAACFDt7e3ilpYWGWOMjEZjuK/H02g0jueee+76smXL+n09lr8hOAFMM06OIzfPT3UZAAAAMA3s379fqdVqR9asWdNTVVWlJCIaGxtjycnJ80tLS6OJiFwuF2VkZCRv27ZNRURkMpkkWVlZ8+RyeZpGo1lQU1MT5rmeXq9PzMvLS9DpdBqpVJqempqa3NbWFuxpf+aZZ2y5ubmDMpnM7e+5+ppoqgsAAO94nqdTly7Ry2+/Tb2joyRgjBbFxdFjCxeSSi6f6vIAAADgLlVbW6v8zne+03XfffeNZGdnJ1ssFpFarXZVVVVduv/++5MffPDBwcOHD4dzHEe7d+/ucDgcbNWqVZq1a9f2/O///u87f/rTn2SPPfaYZuHChee0Wq2DiOjYsWORL7/88jtLly616/X6WUVFRfEnTpy4NNVz9TUEJ4Bp4MCZM9R49So5OI6IiDiepzfee4/OdnVR6f33UxzCEwAAwF2h/531atdIa6gvxxBJF9rD51ZYvPWrr6+XWa1WcX5+fp9KpXKp1WpHRUVFZElJyY3FixePbdmypUOv18+x2WxBp0+fPi8SiejUqVNSu90uLC0t7RQKhbRy5cqhnJyc/oMHDyrLysqsREQrVqzoy87OthMRrVu3rre4uPgeX873boFb9QDuctcGBuh/bwlNHjwRjblc9Ls335ySugAAAODuVllZqVy6dOmgSqVyERHp9fpeo9EY5Wk3GAw2q9UarNPpBlJSUhxERBaLJSg2NtYpFApvXketVjutVmuQ5zgmJmbc814qlbrtdvs/OgcwrDgB3OVeu3KFXLeFJg+eiM51d5N9fJxCg4Lu2AcAAAD8ZyIrQf4wPDzM6urqIjiOY1FRUVoiIqfTyYaGhoRNTU0hS5YsGS0oKEjIzs7ub2xsVNTX18uWL18+rFarxzs7O8Ucx5EnPFksFnFSUpJjSid0F0BwArjL9Y+N0cc9XSlkDMEJPjPbiJP+78oA9drHSRUWTF+YGUayYPwRAQAwXdXU1EQIBAIymUxtwcHBN/8qsXr16jkVFRVKk8lkP3v2bGhra+s5o9EYvmHDhsTW1tZzOp1uJCQkhNuxY0dsSUlJ18mTJ2UNDQ3hO3fuPD+RcR0OB+M4jtxuN7lcLrLb7UwsFvMi0fT/M2X6zwAgwM2JjKQ3rFZyfsSqE2OMwiUSP1cFgeSP57up/ryN3DxPHE8UJGB0oq2bnlgcR+n3KKa6PAAA+BSqq6uVubm5PUlJSc5bzxsMhhuFhYWzFQoFV1tbeyEsLMxtMBh6jx8/Hr5x40b1oUOHrh49evTipk2bZpaXl8dGR0eP79u373J6evrYRMZdu3btzCNHjig9x+Xl5apf/vKXV5599lnbZM/R3xg/Tbc1zszM5Jubm6e6DACfG3Y66em6ug8940REFCQQ0HKNhh5PTZ2CyiAQnLUOUeX/vUdO7sN/FgQJGRV/ZRbFyIPv8JMAAJ8fjLEWnucz79RmNpuvaLXaHn/XBL5hNpujtFpt4p3asDkEwF1OJhbT9774RQoWCilI8I9/ZSUiESUplfStBQumsDqY7v54vueOoYmIiHPz1PBOr58rAgAAuDvhVj2AaSA1JoZ++eCDdOrSJXq7p4dkYjHpEhMpNSaGBIxNdXkwjb038NHP+rp5ondtdj9WA4GK53lyO61EPEeC4HuIMfzeFgCmHwQngGkiXCKhR+bPn+oyIMCIhYxc7o++ZVsiwl9w4bMZsx2nwUtbiXNcJ2ICEggVJJtZQqGxG4nhFz8AMI3gT0QAgM+xzIQwEn7E313FQkb3zY7wb0EQUOw3DlPf248SN3aRiB8jctvJPd5JQ5e20fC1nVNdHgDAJ4LgBADwOfbVZCVJgoR0e3YSChhFhgZRphq76sGnw/McDb77NJH7w7d78u4RGrbsIvf4tN9kCwA+RxCcAAA+x8JDgqjo/lk0P1ZKIgEjsZBRkIDRYrWCvpeTSEFC/DEBn8744F+JeOdHtjMmojHbMT9WBADw2eAZJwCAz7lIaRBtWppAo+McjTg4UkhEJMazTfAZubkh+rjfz/K8i3huyH8FAQB8RghOAABAREQhQUIKCRJOdRkQIIJkWuLdH/19mYyJKEh+x6/FAQC4K+FXigAAADDphGIVBUd+jYjd6QuUhSSUJFKQfInf6wIA+LQQnAAAAMAnwuf+joKkWmICGdH7W5AwgZyEwWqKXPgHbEcO4CdZWVnzFApF2ujoqE//pXvvvfdE3/jGN2ZFR0enyuXytIyMjOSGhgapL8f0JwQnAAAA8AmBSE7KtL9SxIJjFKr6DoXEFlLYvN/RjMUXSBisnuryAD4X2tvbxS0tLTLGGBmNxnBfjjUwMCBYtGiR/Y033jjf19f35tq1a3v0er1mYGAgIDJHQEwCAAAA7k6MMQoOz6Ywzb9TeNJvKCRqNTGGR6wB/GX//v1KrVY7smbNmp6qqiolEdHY2BhLTk6eX1paGk1E5HK5KCMjI3nbtm0qIiKTySTJysqaJ5fL0zQazYKampowz/X0en1iXl5egk6n00il0vTU1NTktra2YCKi+fPnO3/84x93zZw5c1wkEtG2bdt6xsfHBW+99ZZkKuY+2RCcAAAAAAACVG1trTI3N9eWn5/f29jYqLBYLCKJRMJXVVVd2rNnT5zJZJJs3749luM42r17d4fD4WCrVq3S5OTkDHR3d5vLysquFRYWzjabzTcfWDx27FhkSUmJtb+//0xiYqKjqKgo/k5j/+UvfwkZHx9n8+fPd/hvxr6DX/kAAAAAAEyS6vdeVXc4ekN9OYYqONL+eHy2xVu/+vp6mdVqFefn5/epVCqXWq12VFRURJaUlNxYvHjx2JYtWzr0ev0cm80WdPr06fMikYhOnToltdvtwtLS0k6hUEgrV64cysnJ6T948KCyrKzMSkS0YsWKvuzsbDsR0bp163qLi4vvuX3s3t5ewZNPPjlr69atVqVSyU3+p+B/WHECAAAAAAhAlZWVyqVLlw6qVCoXEZFer+81Go1RnnaDwWCzWq3BOp1uICUlxUFEZLFYgmJjY51C4T++nkKtVjutVmuQ5zgmJmbc814qlbrtdvsHvstieHiYLV++PCkjI2Nk165dnT6col9hxQkAAAAAYJJMZCXIH4aHh1ldXV0Ex3EsKipKS0TkdDrZ0NCQsKmpKWTJkiWjBQUFCdnZ2f2NjY2K+vp62fLly4fVavV4Z2enmOM48oQni8UiTkpKmtDtdqOjo2zFihWa2NhYZ01NzVUfTtHvEJwAAAAAAAJMTU1NhEAgIJPJ1BYcHOz2nF+9evWciooKpclksp89eza0tbX1nNFoDN+wYUNia2vrOZ1ONxISEsLt2LEjtqSkpOvkyZOyhoaG8J07d573NqbD4WBf+9rX5kgkEveRI0cu37pqFQgQnAAAAAAAAkx1dbUyNze3JykpyXnreYPBcKOwsHC2QqHgamtrL4SFhbkNBkPv8ePHwzdu3Kg+dOjQ1aNHj17ctGnTzPLy8tjo6Ojxffv2XU5PTx/zNuapU6ekr776aphEInGHhYWle84fOXLkwooVK4Z9MU9/YjzPT3UNn0pmZibf3Nw81WUAAAAAQIBjjLXwPJ95pzaz2XxFq9X2+Lsm8A2z2Ryl1WoT79SGzSEAAAAAAAC8QHACAAAAAADwAsEJAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvEBwAgAAAAAA8ALBCQAAAAAAwAsEJwAAAAAAAC8QnAAAAAAAALxAcAIAAAAACGBZWVnzFApF2ujoKPP1WF/4whfmRkREaGUyWfq8efPmV1dXh/t6TH9BcAIAAAAACFDt7e3ilpYWGWOMjEZjuK/He/HFFy03btwwDw8Pn9m3b9/VjRs3zrp69WqQr8f1BwQnAAAAAIAAtX//fqVWqx1Zs2ZNT1VVlZKIaGxsjCUnJ88vLS2NJiJyuVyUkZGRvG3bNhURkclkkmRlZc2Ty+VpGo1mQU1NTZjnenq9PjEvLy9Bp9NppFJpempqanJbW1uwp/0LX/jCaFDQ33MSY4x3uVzs0qVLCE4AAAAAAHD3qq2tVebm5try8/N7GxsbFRaLRSSRSPiqqqpLe/bsiTOZTJLt27fHchxHu3fv7nA4HGzVqlWanJycge7ubnNZWdm1wsLC2Waz+WY4OnbsWGRJSYm1v7//TGJioqOoqCj+1jGzs7M1wcHBGTk5OfdmZWUNffnLX7b7f+aTTzTVBQAAAAAABIr+vevVrmutob4cQ5Sw0B7+dIXFW7/6+nqZ1WoV5+fn96lUKpdarXZUVFRElpSU3Fi8ePHYli1bOvR6/RybzRZ0+vTp8yKRiE6dOiW12+3C0tLSTqFQSCtXrhzKycnpP3jwoLKsrMxKRLRixYq+7OxsOxHRunXreouLi++5ddxXX331osPhYK+88or8/PnzEqFQ6JsPws+w4gQAAAAAEIAqKyuVS5cuHVSpVC4iIr1e32s0GqM87QaDwWa1WoN1Ot1ASkqKg4jIYrEExcbGOm8NO2q12mm1Wm/ebhcTEzPueS+VSt12u/1DySg4OJjPzc0dPHXqVNitt/pNZ1hxAgAAAACYJBNZCfKH4eFhVldXF8FxHIuKitISETmdTjY0NCRsamoKWbJkyWhBQUFCdnZ2f2Njo6K+vl62fPnyYbVaPd7Z2SnmOI484clisYiTkpIcn6YOjuPYxYsXg733vPshOAEAAAAABJiampoIgUBAJpOpLTg42O05v3r16jkVFRVKk8lkP3v2bGhra+s5o9EYvmHDhsTW1tZzOp1uJCQkhNuxY0dsSUlJ18mTJ2UNDQ3hO3fuPO9tzDNnzkguXLggfuihh4aCgoLowIEDEW+88YbshRdeuO7b2foHghMAAAAAQICprq5W5ubm9iQlJTlvPW8wGG4UFhbOVigUXG1t7YWwsDC3wWDoPX78ePjGjRvVhw4dunr06NGLmzZtmlleXh4bHR09vm/fvsvp6elj3sbkeZ6ee+65uKeeeipEIBDwM2fOdBw4cODS0qVLA2JzCMbz/FTX8KlkZmbyzc3NU10GAAAAAAQ4xlgLz/OZd2ozm81XtFptj79rAt8wm81RWq028U5t2BwCAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvEBwAgAAAAAA8ALBCQAAAAAAwAsEJwAAAAAAAC8QnAAAAAAAALxAcAIAAAAAAPACwQkAAAAAAMALBCcAAAAAgACWlZU1T6FQpI2OjjJ/jVlXVydjjC169tln4/w1pq8hOAEAAAAABKj29nZxS0uLjDFGRqMx3B9jOhwO9r3vfS8hNTV1xB/j+QuCEwAAAABAgNq/f79Sq9WOrFmzpqeqqkpJRDQ2NsaSk5Pnl5aWRhMRuVwuysjISN62bZuKiMhkMkmysrLmyeXyNI1Gs6CmpibMcz29Xp+Yl5eXoNPpNFKpND01NTW5ra0t+NYxf/KTn8TodLpBjUYz5s+5+hqCEwAAAABAgKqtrVXm5uba8vPzexsbGxUWi0UkkUj4qqqqS3v27IkzmUyS7du3x3IcR7t37+5wOBxs1apVmpycnIHu7m5zWVnZtcLCwtlms/lmODp27FhkSUmJtb+//0xiYqKjqKgo3tP2zjvviF966aWoPXv2WKdmxr4jmuoCAAAAAAACxa+bm9WWgYFQX46hDguzGzIzLd761dfXy6xWqzg/P79PpVK51Gq1o6KiIrKkpOTG4sWLx7Zs2dKh1+vn2Gy2oNOnT58XiUR06tQpqd1uF5aWlnYKhUJauXLlUE5OTv/BgweVZWVlViKiFStW9GVnZ9uJiNatW9dbXFx8j2fMTZs2qbdv3/5eWFiY23efwNTAihMAAAAAQACqrKxULl26dFClUrmIiPR6fa/RaIzytBsMBpvVag3W6XQDKSkpDiIii8USFBsb6xQKhTevo1arnVarNchzHBMTM+55L5VK3Xa7XUhE9NJLL4WNjIwIv/3tb/f5YXp+hxUnAAAAAIBJMpGVIH8YHh5mdXV1ERzHsaioKC0RkdPpZENDQ8KmpqaQJUuWjBYUFCRkZ2f3NzY2Kurr62XLly8fVqvV452dnWKO48gTniwWizgpKcnhbcxTp04pWltbpZ7xhoeHhQKBgG9rawv585///K5PJ+wHCE4AAAAAAAGmpqYmQiAQkMlkagsODr5529zq1avnVFRUKE0mk/3s2bOhra2t54xGY/iGDRsSW1tbz+l0upGQkBBux44dsSUlJV0nT56UNTQ0hO/cufO8tzF//vOfv/fjH/+4w3O8adOmhNjY2PHnn38+IJ53QnACAAAAAAgw1dXVytzc3J6kpCTnrecNBsONwsLC2QqFgqutrb0QFhbmNhgMvcePHw/fuHGj+tChQ1ePHj16cdOmTTPLy8tjo6Ojx/ft23c5PT3d6w55ERER7oiIiJshTSKRuKVSKRcTE8P5Yo7+xnien+oaPpXMzEy+ubl5qssAAAAAgADHGGvheT7zTm1ms/mKVqvt8XdN4BtmszlKq9Um3qkNm0MAAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAA4AWCEwAAAAAAgBcITgAAAAAAAF4gOAEAAAAAAHiB4AQAAAAAEMCysrLmKRSKtNHRUebrseLj41MkEklGaGhoemhoaPp9992X5Osx/QXBCQAAAAAgQLW3t4tbWlpkjDEyGo3h/hjz0KFDF+x2+xm73X7m9OnTF/wxpj8gOAEAAAAABKj9+/crtVrtyJo1a3qqqqqURERjY2MsOTl5fmlpaTQRkcvlooyMjORt27apiIhMJpMkKytrnlwuT9NoNAtqamrCPNfT6/WJeXl5CTqdTiOVStNTU1OT29ragqdmdv6F4AQAAAAAEKBqa2uVubm5tvz8/N7GxkaFxWIRSSQSvqqq6tKePXviTCaTZPv27bEcx9Hu3bs7HA4HW7VqlSYnJ2egu7vbXFZWdq2wsHC22Wy+GY6OHTsWWVJSYu3v7z+TmJjoKCoqir91zIKCgtkRERHa++67L6mpqSnE/7P2DdFUFwAAAAAAECj6X12vdvW2hvpyDFHkQnt4doXFW7/6+nqZ1WoV5+fn96lUKpdarXZUVFRElpSU3Fi8ePHYli1bOvR6/RybzRZ0+vTp8yKRiE6dOiW12+3C0tLSTqFQSCtXrhzKycnpP3jwoLKsrMxKRLRixYq+7OxsOxHRunXreouLi+/xjFlZWXnpi1/8op3nefb8889Hf+Mb35j79ttvt0ZFRXG++0T8AytOAAAAAAABqLKyUrl06dJBlUrlIiLS6/W9RqMxytNuMBhsVqs1WKfTDaSkpDiIiCwWS1BsbKxTKBTevI5arXZardYgz3FMTMy4571UKnXb7fabnb/61a+OyGQyXi6Xu3ft2tUpl8tdf/rTn2Q+nqpfYMUJAAAAAGCSTGQlyB+Gh4dZXV1dBMdxLCoqSktE5HQ62dDQkLCpqSlkyZIlowUFBQnZ2dn9jY2Nivr6etny5cuH1Wr1eGdnp5jjOPKEJ4vFIk5KSnJ8mjoYY8Tz/CTObOogOAEAAAAABJiampoIgUBAJpOpLTg42O05v3r16jkVFRVKk8lkP3v2bGhra+s5o9EYvmHDhsTW1tZzOp1uJCQkhNuxY0dsSUlJ18mTJ2UNDQ3hO3fuPO9tzAsXLogvX74c9OUvf9nudrtp165d0X19faL7779/2Lez9Q8EJwAAAACAAFNdXa3Mzc3tSUpKct563mAw3CgsLJytUCi42traC2FhYW6DwdB7/Pjx8I0bN6oPHTp09ejRoxc3bdo0s7y8PDY6Onp83759l9PT08e8jTkwMCD453/+55kWiyU4ODiYv/fee+2vvPLKhdjY2Gn/fBMREZuuS2eZmZl8c3PzVJcBAAAAAAGOMdbC83zmndrMZvMVrVbb4++awDfMZnOUVqtNvFMbNocAAAAAAADwwm/BiTH2z4yxZsaYgzH2u9va7meMvc0YszPGXmWMzfRXXQAAAAAAAN74c8XJSkTPEVHFrScZY1FEdISIdhBRJBE1E9FhP9YFAAAAAADwsfy2OQTP80eIiBhjmUR0zy1Nq4mojef5/3q//cdE1MMYS+Z5/m1/1QcAAAAAAPBR7oZnnBYQkdlzwPP8CBG9+/55AAAAAACAKXc3BCcZEQ3cdm6AiOS3d2SMFb7/nFRzd3e3X4oDAAAAAAC4G4LTMBEpbjunIKKh2zvyPP9bnuczeZ7PnDFjhl+KAwAAAAAAuBuCUxsRaT0HjDEpEc15/zwAAAAAAMCU8+d25CLGmISIhEQkZIxJGGMiIjpKRAsZY/r32/+FiN7CxhAAAAAAAHC38OeK0/8jolEiKiaix99///94nu8mIj0RlRJRHxF9gYge9WNdAAAAAAABKysra55CoUgbHR1l/hjvpz/9aXR8fHxKSEhI+uzZsxe89dZbwf4Y19f8Fpx4nv8xz/PstteP3287xfN8Ms/zITzP63iev+KvugAAAAAAAlV7e7u4paVFxhgjo9EY7uvxysrKoqqqqqKOHTt2YWRk5Mzx48cvxsTEuHw9rj/cDc84AQAAAACAD+zfv1+p1WpH1qxZ01NVVaUkIhobG2PJycnzS0tLo4mIXC4XZWRkJG/btk1FRGQymSRZWVnz5HJ5mkajWVBTUxPmuZ5er0/My8tL0Ol0GqlUmp6amprc1tYWTETEcRy98MILcT/72c8sixYtGhMIBLRgwQJHTEwMNxVzn2wITgAAAAAAAaq2tlaZm5try8/P721sbFRYLBaRRCLhq6qqLu3ZsyfOZDJJtm/fHstxHO3evbvD4XCwVatWaXJycga6u7vNZWVl1woLC2ebzeabt9sdO3YssqSkxNrf338mMTHRUVRUFE9EdOnSJXFXV1fQW2+9FRIbG5saHx+fsmXLljiOC4jcRKKpLgAAAAAAIFBUW95Td4w5Qn05hkoSbH9cHW/x1q++vl5mtVrF+fn5fSqVyqVWqx0VFRWRJSUlNxYvXjy2ZcuWDr1eP8dmswWdPn36vEgkolOnTkntdruwtLS0UygU0sqVK4dycnL6Dx48qCwrK7MSEa1YsaIvOzvbTkS0bt263uLi4nuIiK5cuRJERPTnP/9Z0dra2maz2YTLly+fe8899zi/973v9fjyM/EHrDgBAAAAAASgyspK5dKlSwdVKpWLiEiv1/cajcYoT7vBYLBZrdZgnU43kJKS4iAislgsQbGxsU6hUHjzOmq12mm1WoM8xzExMeOe91Kp1G2324VERKGhoW4iou9///udUVFR3Lx585z5+fndf/zjH2/e6jedYcUJAAAAAGCSTGQlyB+Gh4dZXV1dBMdxLCoqSktE5HQ62dDQkLCpqSlkyZIlowUFBQnZ2dn9jY2Nivr6etny5cuH1Wr1eGdnp5jjOPKEJ4vFIk5KSnJ4GzM1NdURFBTECwSBuTYTmLMCAAAAAPgcq6mpiRAIBGQ2m9tMJlObyWRqa21tbV20aNFwRUWFcu/evZFnz54NPXz48JVdu3ZZNmzYkDgwMCDQ6XQjISEh3I4dO2IdDgc7ceKEvKGhITwvL6/X25hyudz9ta99rfeFF16I7evrE7z77rtB//mf/xn10EMPDfhjzr6GFScAAAAAgABTXV2tzM3N7UlKSnLeet5gMNwoLCycrVAouNra2gthYWFug8HQe/z48fCNGzeqDx06dPXo0aMXN23aNLO8vDw2Ojp6fN++fZfT09PHJjLugQMHrj3xxBOJ99xzj1Yul3OPP/549+bNm6f9801ERIzn+amu4VPJzMzkm5ubp7oMAAAAAAhwjLEWnucz79RmNpuvaLXagAgGQGQ2m6O0Wm3indpwqx4AAAAAAIAXCE4AAAAAAABeIDgBAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAA4AWCEwAAAAAAgBcITgAAAAAAASwrK2ueQqFIGx0dZb4c58KFC+LQ0ND0W1+MsUUlJSUxvhzXXxCcAAAAAAACVHt7u7ilpUXGGCOj0Rjuy7GSkpKcdrv9jOdlMpnaBAIBrV27ts+X4/oLghMAAAAAQIDav3+/UqvVjqxZs6anqqpKSUQ0NjbGkpOT55eWlkYTEblcLsrIyEjetm2biojIZDJJsrKy5snl8jSNRrOgpqYmzHM9vV6fmJeXl6DT6TRSqTQ9NTU1ua2tLfijxs7MzByaN2+e0x9z9TUEJwAAAACAAFVbW6vMzc215efn9zY2NiosFotIIpHwVVVVl/bs2RNnMpkk27dvj+U4jnbv3t3hcDjYqlWrNDk5OQPd3d3msrKya4WFhbPNZvPNcHTs2LHIkpISa39//5nExERHUVFR/EeNvW7dOpv/ZutboqkuAAAAAAAgYHSuV5OjNdSnYwQvtFNshcVbt/r6epnVahXn5+f3qVQql1qtdlRUVESWlJTcWLx48diWLVs69Hr9HJvNFnT69OnzIpGITp06JbXb7cLS0tJOoVBIK1euHMrJyek/ePCgsqyszEpEtGLFir7s7Gw7EdG6det6i4uL77l97D/+8Y8ym80WlJ+fHxC36RFhxQkAAAAAICBVVlYqly5dOqhSqVxERHq9vtdoNEZ52g0Gg81qtQbrdLqBlJQUBxGRxWIJio2NdQqFwpvXUavVTqvVGuQ5jomJGfe8l0qlbrvd/o/Ot4y9YsWKvrCwMLePpud3WHECAAAAAJgsE1gJ8ofh4WFWV1cXwXEci4qK0hIROZ1ONjQ0JGxqagpZsmTJaEFBQUJ2dnZ/Y2Ojor6+XrZ8+fJhtVo93tnZKeY4jjzhyWKxiJOSkhyfZOzf//73ETU1Ne/6aHpTAsEJAAAAACDA1NTURAgEAjKZTG3BwcE3V31Wr149p6KiQmkymexnz54NbW1tPWc0GsM3bNiQ2Nraek6n042EhIRwO3bsiC0pKek6efKkrKGhIXznzp3nJzp2dXV1hFwu577+9a8P+WZ2UwPBCQAAAAAgwFRXVytzc3N7kpKSPrCjncFguFFYWDhboVBwtbW1F8LCwtwGg6H3+PHj4Rs3blQfOnTo6tGjRy9u2rRpZnl5eWx0dPT4vn37Lqenp499krHXrFljEwgC66kgxvP8VNfwqWRmZvLNzc1TXQYAAAAABDjGWAvP85l3ajObzVe0Wm2Pv2sC3zCbzVFarTbxTm2BFQMBAAAAAAB8AMEJAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvEBwAgAAAAAA8ALBCQAAAAAAwAsEJwAAAAAAAC8QnAAAAAAAALxAcAIAAAAAAPACwQkAAAAAIIBlZWXNUygUaaOjo8zXY/3lL38JWbRo0Ty5XJ4WExOTum3bNpWvx/QXBCcAAAAAgADV3t4ubmlpkTHGyGg0hvt6vLy8vNlf/OIXh/v6+t5saGhoP3jw4IyampowX4/rDwhOAAAAAAABav/+/UqtVjuyZs2anqqqKiUR0djYGEtOTp5fWloaTUTkcrkoIyMj2bM6ZDKZJFlZWfPkcnmaRqNZcGvw0ev1iXl5eQk6nU4jlUrTU1NTk9va2oI97VarVfzkk0/aRCIRLViwwJGZmTnc2toa4u95+wKCEwAAAABAgKqtrVXm5uba8vPzexsbGxUWi0UkkUj4qqqqS3v27IkzmUyS7du3x3IcR7t37+5wOBxs1apVmpycnIHu7m5zWVnZtcLCwtlms/lmODp27FhkSUmJtb+//0xiYqKjqKgo3tNWUFBw48CBA0qHw8HMZnOwyWSSrVixYnBqZj+5RFNdAAAAAABAoPhV83+rrw10hfpyjISwGPt3Mh+xeOtXX18vs1qt4vz8/D6VSuVSq9WOioqKyJKSkhuLFy8e27JlS4der59js9mCTp8+fV4kEtGpU6ekdrtdWFpa2ikUCmnlypVDOTk5/QcPHlSWlZVZiYhWrFjRl52dbSciWrduXW9xcfE9njG/+c1v9hcUFMz67W9/G8txHH33u9/tWLZsmd13n4b/YMUJAAAAACAAVVZWKpcuXTqoUqlcRER6vb7XaDRGedoNBoPNarUG63S6gZSUFAcRkcViCYqNjXUKhcKb11Gr1U6r1RrkOY6JiRn3vJdKpW673S4kIurq6hI+/PDDc3/wgx90jI6Otly8ePGthoYGxe7du2f4Ybo+hxUnAAAAAIBJMpGVIH8YHh5mdXV1ERzHsaioKC0RkdPpZENDQ8KmpqaQJUuWjBYUFCRkZ2f3NzY2Kurr62XLly8fVqvV452dnWKO48gTniwWizgpKcnhbcz29vZggUDA//M//7ONiGjOnDnjer2+t76+Pqy4uLjbpxP2A6w4AQAAAAAEmJqamgiBQEBms7nNZDK1mUymttbW1tZFixYNV1RUKPfu3Rt59uzZ0MOHD1/ZtWuXZcOGDYkDAwMCnU43EhISwu3YsSPW4XCwEydOyBsaGsLz8vJ6vY25cOHCMZ7n6de//nUkx3F07do10ZEjRyIXLlw46o85+xqCEwAAAABAgKmurlbm5ub2JCUlORMSElyel8FguHHgwIGY7du3Jxw4cOByWFiY22Aw9Kampto3btyolkgk/NGjRy+ePHkyLCoqSrt58+aEffv2XU5PTx/zNmZkZKS7pqbm3X//93+PCQ8PT8vIyFiQnJw8+vzzz3f4Y86+xnien+oaPpXMzEy+ubl5qssAAAAAgADHGGvheT7zTm1ms/mKVqvt8XdN4BtmszlKq9Um3qkNK04AAAAAAABeYHMI8Bue5+mC3UpvDlwiN7npXpmaFsoTSciQ3wEAAADg7obgBH4xxjnp368epw5HHzncf9/B8o2BCyQVSmjLrFUUESSb4goBAAAAAD4aftUPflH93qt0fcx2MzQRETnc49Q/Pkx7r5yg6fqsHQAAAAB8PiA4gc8NjtupdfgquXjuQ21u4ql3fIguj3ZNQWUAAAAAABOD4AQ+d93RQyIm/Mh2N7np2ugNP1YEgcrtdpHd2UNO1/BUlwIAAAABBs84gc8FC4KI6KNvxROQ4P0+AJ+Om+fonc7jdNX2v0TkJjfPUVhIAi2If5TCQtRTXR4AAAAEAKw4gc/NCokh4ceuOPGUIk/0X0EQUHiep5Yrv6ErPa8S5x4jzu0knueo336Z/vruz2lw1DLVJQIAAEAAQHACnxMwAeXGLqWgO4QnMRPRA1FpJBOFTEFlEAj67Jeod+QdcvPjH2rj3E46Z/3vKagKAAAAAg2CE/jFovAkeuqeBygqSEEiJqQgJiK5MIQejl1CD81YPNXlwTT2Xt//Eef+cGjy6LNfIhc35seKAAAA7i5ZWVnzFApF2ujoKPP1WCdPnpSmpKTcK5VK0+fOnTu/vr4+YL5zBs84gd+kKmZRijyRBlwj5OZ5Cg+SkYD5/N9fCHDjnJ0+7hk6Row4t5NEQon/ioLA8+4Nov/vHFHvMJFaSZSzgChaMdVVAQB41d7eLm5paZHJZDLOaDSGr1+/vs9XY3V1dQlzc3M1P//5z6898cQTfb/97W8j16xZo3n33XfPzpgx48PbK08zWHECv2KMUXiQjCLFcoQmmBSR0jkkFIg/sl0oCCaxKGB+2QX+xvNEv3uN6GcniP7yDtF5K9Gf24h2/BfRa+enujoAAK/279+v1Gq1I2vWrOmpqqpSEhGNjY2x5OTk+aWlpdFERC6XizIyMpK3bdumIiIymUySrKyseXK5PE2j0SyoqakJ81xPr9cn5uXlJeh0Oo1UKk1PTU1NbmtrCyYiamhokCmVStf69ev7RCIRfec73+mNjIx0VVdXR0zF3CcbghMATGvxEf9E7CP+UyZgYpo94wFiDP+pg0/pLxeI/voukdP1j4VNzk00zhEZ/0J0vXdKywMA8Ka2tlaZm5try8/P721sbFRYLBaRRCLhq6qqLu3ZsyfOZDJJtm/fHstxHO3evbvD4XCwVatWaXJycga6u7vNZWVl1woLC2ebzeZgzzWPHTsWWVJSYu3v7z+TmJjoKCoqiif6+4ZNPP/Bu0B4nqfW1taAeJgdt+oBwLQWJAyhxbOeoTculxPPu4njnUTESMBEFBuWRrNnfGWqS4TprO7M30PTnbjcRH86S7R+mX9rAoC7W8VranqvN9SnY8RH2mn9Mq/bxtbX18usVqs4Pz+/T6VSudRqtaOioiKypKTkxuLFi8e2bNnSodfr59hstqDTp0+fF4lEdOrUKandbheWlpZ2CoVCWrly5VBOTk7/wYMHlWVlZVYiohUrVvRlZ2fbiYjWrVvXW1xcfA8RUU5OzvDGjRuDfvOb30Q++eSTfb/97W8jLRZL8OjoaED8BjMgJgEAn28R0lmUM38X3Rv3CN0TsYRmReXQFzXfp7SEJ7HaBJ9N99BHt7l5oqvd/qsFApbbzdGNvneps/cCuTjnVJcDAaSyslK5dOnSQZVK5SIi0uv1vUajMcrTbjAYbFarNVin0w2kpKQ4iIgsFktQbGysUyj8x27IarXaabVab37pZkxMzM1dmaRSqdtutwuJiGJjY7lDhw5dLC8vj4mOjtb+6U9/UixZsmQwPj4+IP7BxooTAAQEkSCYEpRLKUG5dKpLgUASLCKyf8yf9zJsOgKfjfniH+mvbYfIzXPEiBFPPKUnfYO+MP8R/OJnuprASpA/DA8Ps7q6ugiO41hUVJSWiMjpdLKhoSFhU1NTyJIlS0YLCgoSsrOz+xsbGxX19fWy5cuXD6vV6vHOzk4xx3HkCU8Wi0WclJTkmMi4X/va14a/9rWvnSciGh8fp5kzZ6Zs3bq1y2cT9SP8GwkAAPBRls4jEn7EH5XBor/vrgfwKZ25cIJOn60mx/gIjbvGyOkapXHXGJneOUb/az441eXBNFdTUxMhEAjIbDa3mUymNpPJ1Nba2tq6aNGi4YqKCuXevXsjz549G3r48OEru3btsmzYsCFxYGBAoNPpRkJCQrgdO3bEOhwOduLECXlDQ0N4Xl7ehB7qPH36dIjD4WC9vb2CjRs3qmNjY8f1ev2gr+frDwhOAAAAH+Vr6UQKyYfDU5CQKHEGUdrMqakLpj0X56S/th0mF/fhX+K7OAe1XjpJ9rGBKagMAkV1dbUyNze3JykpyZmQkODyvAwGw40DBw7EbN++PeHAgQOXw8LC3AaDoTc1NdW+ceNGtUQi4Y8ePXrx5MmTYVFRUdrNmzcn7Nu373J6evqEvhRx9+7dsVFRUdqZM2emdnV1BR0/fvyir+fqL+z2nS+mi8zMTL65uXmqywAAgEA3OEr0P38j+uvFv++oFyImun8B0dfTiURC7z8PcAfXut6i3zf9Kzldo3dsFwmDSZdeQPMTs/1cGdwJY6yF5/nMO7WZzeYrWq22x981gW+YzeYorVabeKc2POMEAADwcRQhRE8tI8r/MpGL+/tqE76HDj4jzj3upQdPHOetDwD4E4ITAADARAgYkRh/bMLkiInQEOf+iK3u3xcXleynagBgIvCMEwAAAICfhUrCKOmeJSQUiD/UJhCIKDpiDinDEqagMgD4KAhOAAAAAFMgZ9FGUkcvJJFQTAImJEYCEgmDaUZ4In39iz+Y6vIA4Da45wAAAABgCoiEYlq59IdkG7DQ5Y4W4nk3qaNTKCZSQwzP0QHcdRCcAAAAAKaQMkxNyjD1VJcBAF7gVj0AAAAAAAAvEJwAAAAAAAC8QHACAAAAAADwAsEJAAAAACCAZWVlzVMoFGmjo6M+33Vk8+bNcXPnzp0vEokWbd26Ne729l//+teRcXFxKSEhIelf+cpX5nR1dQl9XdNkQXACAAAAAAhQ7e3t4paWFhljjIxGY7ivx9NoNI7nnnvu+rJly/pvb2tubpZ873vfm3ngwIHLnZ2d5pCQEHdBQcFMX9c0WRCcAAAAAAAC1P79+5VarXZkzZo1PVVVVUoiorGxMZacnDy/tLQ0mojI5XJRRkZG8rZt21RERCaTSZKVlTVPLpenaTSaBTU1NWGe6+n1+sS8vLwEnU6nkUql6ampqcltbW3BnvZnnnnGlpubOyiTydy31/K73/1OmZOT0//ggw8Oh4WFuXfv3m2tr68P7+vrmxaZZFoUCQAAAAAAn1xtba0yNzfXlp+f39vY2KiwWCwiiUTCV1VVXdqzZ0+cyWSSbN++PZbjONq9e3eHw+Fgq1at0uTk5Ax0d3eby8rKrhUWFs42m803w9GxY8ciS0pKrP39/WcSExMdRUVF8ROp5fz585LU1NRRz/GCBQscQUFBfGtrq8QXc59s+B4nAAAAAIBJcqr5V2rbwLVQX46hDEuwfyXzOxZv/err62VWq1Wcn5/fp1KpXGq12lFRURFZUlJyY/HixWNbtmzp0Ov1c2w2W9Dp06fPi0QiOnXqlNRutwtLS0s7hUIhrVy5cignJ6f/4MGDyrKyMisR0YoVK/qys7PtRETr1q3rLS4uvmciddvtdmFYWBh36zmZTMYNDAxMi+ecsOIEAAAAABCAKisrlUuXLh1UqVQuIiK9Xt9rNBqjPO0Gg8FmtVqDdTrdQEpKioOIyGKxBMXGxjqFwn9kGbVa7bRarUGe45iYmHHPe6lU6rbb7RMKPqGhodzg4OAH8sfIyMiHwtTdCitOAAAAAACTZCIrQf4wPDzM6urqIjiOY1FRUVoiIqfTyYaGhoRNTU0hS5YsGS0oKEjIzs7ub2xsVNTX18uWL18+rFarxzs7O8Ucx5EnPFksFnFSUpLjs9Z07733jr311ls3V+POnTsndjqdbOHChWOf9dr+gOAEAAAAABBgampqIgQCAZlMprbg4OCbGzWsXr16TkVFhdJkMtnPnj0b2traes5oNIZv2LAhsbW19ZxOpxsJCQnhduzYEVtSUtJ18uRJWUNDQ/jOnTvPT2Rch8PBOI4jt9tNLpeL7HY7E4vFvEgkoieffNKm0+nu/eMf/yj74he/aP/hD38Yv3z58v6IiIgPbSRxN8KtegAAAAAAAaa6ulqZm5vbk5SU5ExISHB5XgaD4caBAwditm/fnnDgwIHLYWFhboPB0JuammrfuHGjWiKR8EePHr148uTJsKioKO3mzZsT9u3bdzk9PX1Cq0Jr166dKZVKM06cOBFZXl6ukkqlGb/61a+URESZmZlj//qv/3r1qaeemhUTE6MdHh4WHDhw4KpvP4nJw3ien+oaPpXMzEy+ubl5qssAAAAAgADHGGvheT7zTm1ms/mKVqvt8XdN4BtmszlKq9Um3qkNK04AAAAAAABeIDgBAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAA4AWCEwAAAAAAgBcITgAAAAAAAF4gOAEAAAAABLCsrKx5CoUibXR0lPl6rM2bN8fNnTt3vkgkWrR169a4W9uuXr0alJOTo4mOjk5ljC1qb28X+7qeyYTgBAAAAAAQoNrb28UtLS0yxhgZjcZwX4+n0Wgczz333PVly5b1394mEAj4r371qwMvvfTSu76uwxcQnAAAAAAAAtT+/fuVWq12ZM2aNT1VVVVKIqKxsTGWnJw8v7S0NJqIyOVyUUZGRvK2bdtUREQmk0mSlZU1Ty6Xp2k0mgU1NTVhnuvp9frEvLy8BJ1Op5FKpempqanJbW1twZ72Z555xpabmzsok8nct9eiVqtdxcXF3cuWLRvx/cwnH4ITAAAAAECAqq2tVebm5try8/N7GxsbFRaLRSSRSPiqqqpLe/bsiTOZTJLt27fHchxHu3fv7nA4HGzVqlWanJycge7ubnNZWdm1wsLC2Waz+WY4OnbsWGRJSYm1v7//TGJioqOoqCh+KufoL6KpLgAAAAAAIFC8snO9+sbF1lBfjhGtWWj/5r9UWLz1q6+vl1mtVnF+fn6fSqVyqdVqR0VFRWRJScmNxYsXj23ZsqVDr9fPsdlsQadPnz4vEono1KlTUrvdLiwtLe0UCoW0cuXKoZycnP6DBw8qy8rKrEREK1as6MvOzrYTEa1bt663uLj4Hl/O926BFScAAAAAgABUWVmpXLp06aBKpXIREen1+l6j0RjlaTcYDDar1Rqs0+kGUlJSHEREFoslKDY21ikUCm9eR61WO61Wa5DnOCYmZtzzXiqVuu12+z86BzCsOAEAAAAATJKJrAT5w/DwMKurq4vgOI5FRUVpiYicTicbGhoSNjU1hSxZsmS0oKAgITs7u7+xsVFRX18vW758+bBarR7v7OwUcxxHnvBksVjESUlJjimd0F0AwQkAAAAAIMDU1NRECAQCMplMbcHBwTc3ali9evWciooKpclksp89eza0tbX1nNFoDN+wYUNia2vrOZ1ONxISEsLt2LEjtqSkpOvkyZOyhoaG8J07d56fyLgOh4NxHEdut5tcLhfZ7XYmFot5kejvscNutzOXy8WI/r5Jhd1uZ6GhobxPPoRJhuAEAAAAABBgqqurlbm5uT1JSUnOW88bDIYbhYWFsxUKBVdbW3shLCzMbTAYeo8fPx6+ceNG9aFDh64ePXr04qZNm2aWl5fHRkdHj+/bt+9yenr62ETGXbt27cwjR44oPcfl5eWqX/7yl1eeffZZGxGRVCrN8LSlpaUtJCLieb5lcmbtW4znp0XA+5DMzEy+ubl5qssAAAAAgADHGGvheT7zTm1ms/mKVqvt8XdN4BtmszlKq9Um3qkNm0MAAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAA4AWCEwAAAAAAgBcITgAAAAAAAF4gOAEAAAAAAHiB4AQAAAAAEMCysrLmKRSKtNHRUebrsTZv3hw3d+7c+SKRaNHWrVvjbm07dOhQ2KJFi+bJ5fK0qKgo7aOPPjqzr69v2uSRaVMoAAAAAAB8Mu3t7eKWlhYZY4yMRmO4r8fTaDSO55577vqyZcv6b2/r7+8X/vCHP+ywWq1vnT9/vtVqtYqffvrpe3xd02RBcAIAAAAACFD79+9XarXakTVr1vRUVVUpiYjGxsZYcnLy/NLS0mgiIpfLRRkZGcnbtm1TERGZTCZJVlbWPLlcnqbRaBbU1NSEea6n1+sT8/LyEnQ6nUYqlaanpqYmt7W1BXvan3nmGVtubu6gTCZz316LwWDofeSRRwblcrl7xowZXEFBQXdzc7PM95/C5EBwAgAAAAAIULW1tcrc3Fxbfn5+b2Njo8JisYgkEglfVVV1ac+ePXEmk0myffv2WI7jaPfu3R0Oh4OtWrVKk5OTM9Dd3W0uKyu7VlhYONtsNt8MR8eOHYssKSmx9vf3n0lMTHQUFRXFf5raXnvtNfncuXPHJm+2viWa6gIAAAAAAALFW5Yq9dCYNdSXY8glcfZUdZ7FW7/6+nqZ1WoV5+fn96lUKpdarXZUVFRElpSU3Fi8ePHYli1bOvR6/RybzRZ0+vTp8yKRiE6dOiW12+3C0tLSTqFQSCtXrhzKycnpP3jwoLKsrMxKRLRixYq+7OxsOxHRunXreouLiz/x7XZHjx5V/Pd//7fy9ddfP//JP4GpgRUnAAAAAIAAVFlZqVy6dOmgSqVyERHp9fpeo9EY5Wk3GAw2q9UarNPpBlJSUhxERBaLJSg2NtYpFApvXketVjutVmuQ5zgmJmbc814qlbrtdvs/Ok/An//8Z+n69etnVVVVvZuamur4DFP0K6w4AQAAAABMkomsBPnD8PAwq6uri+A4jkVFRWmJiJxOJxsaGhI2NTWFLFmyZLSgoCAhOzu7v7GxUVFfXy9bvnz5sFqtHu/s7BRzHEee8GSxWMRJSUmTEnBOnz4dsmbNGs3evXuvfPOb3xyajGv6C4ITAAAAAECAqampiRAIBGQymdqCg4NvbtSwevXqORUVFUqTyWQ/e/ZsaGtr6zmj0Ri+YcOGxNbW1nM6nW4kJCSE27FjR2xJSUnXyZMnZQ0NDeE7d+6c0C11DoeDcRxHbrebXC4X2e12JhaLeZFIRG+88YZk5cqVc/fs2XNt7dq1A76bvW/gVj0AAAAAgABTXV2tzM3N7UlKSnImJCS4PC+DwXDjwIEDMdu3b084cODA5bCwMLfBYOhNTU21b9y4US2RSPijR49ePHnyZFhUVJR28+bNCfv27bucnp4+oU0c1q5dO1MqlWacOHEisry8XCWVSjN+9atfKYmI9uzZE9vX1yfavHlzYmhoaHpoaGi6RqNZ4NtPYvIwnuenuoZPJTMzk29ubp7qMgAAAAAgwDHGWniez7xTm9lsvqLVanv8XRP4htlsjtJqtYl3asOKEwAAAAAAgBcITgAAAAAAAF4gOAEAAAAAAHiB4AQAAAAAAOAFghMAAAAAAIAXCE4AAAAAAABe+CU4McaCGWMHGGNXGWNDjLEzjLEHb2m/nzH2NmPMzhh7lTE20x91AQAAAAAATIS/VpxERGQhomVEFEZEO4ioljGWyBiLIqIj75+LJKJmIjrsp7oAAAAAAAC8EvljEJ7nR4jox7ecOsEYu0xEi4hISURtPM//FxERY+zHRNTDGEvmef5tf9QHAAAAAADwcabkGSfGWAwRzSWiNiJaQERmT9v7Ievd988DAAAAAMBnkJWVNU+hUKSNjo4yX4+1efPmuLlz584XiUSLtm7dGndr2/Hjx+Vz586dL5fL08LDw9MeeOCBOZcvXw7ydU2Txe/BiTEWREQ1RHTw/RUlGREN3NZtgIjkd/jZQsZYM2Osubu72/fFAgAAAABMY+3t7eKWlhYZY4yMRmO4r8fTaDSO55577vqyZcv6b29LS0sb/dOf/nRhaGjozY6ODvOcOXMcBQUF02ZvA78GJ8aYgIiqiMhJRP/8/ulhIlLc1lVBREO3/zzP87/leT6T5/nMGTNm+LRWAAAAAIDpbv/+/UqtVjuyZs2anqqqKiUR0djYGEtOTp5fWloaTUTkcrkoIyMjedu2bSoiIpPJJMnKyponl8vTNBrNgpqamjDP9fR6fWJeXl6CTqfTSKXS9NTU1OS2trZgT/szzzxjy83NHZTJZO7ba1Gr1a7ExMRxz7FQKOSvXr0afHu/u5XfghNjjBHRASKKISI9z/OeD62NiLS39JMS0Zz3zwMAAAAAwKdUW1urzM3NteXn5/c2NjYqLBaLSCKR8FVVVZf27NkTZzKZJNu3b4/lOI52797d4XA42KpVqzQ5OTkD3d3d5rKysmuFhYWzzWbzzYBz7NixyJKSEmt/f/+ZxMRER1FRUfxE67lw4YJYLpenSaXSjN/85jcxmzdv7vTNzCefXzaHeN8+IrqXiL7C8/zoLeePEtHPGGN6Iqojon8horewMQQAAAAATDfrd76ibr14I9SXYyzURNsr/uWbFm/96uvrZVarVZyfn9+nUqlcarXaUVFREVlSUnJj8eLFY1u2bOnQ6/VzbDZb0OnTp8+LRCI6deqU1G63C0tLSzuFQiGtXLlyKCcnp//gwYPKsrIyKxHRihUr+rKzs+1EROvWrestLi6+Z6K1JyUlOYeGht7s6uoSvvjiizMWLFgw9uk/Cf/y1/c4zSSijUSURkSdjLHh91/reJ7vJiI9EZUSUR8RfYGIHvVHXQAAAAAAgaqyslK5dOnSQZVK5SIi0uv1vUajMcrTbjAYbFarNVin0w2kpKQ4iIgsFktQbGysUygU3ryOWq12Wq3Wm5s4xMTE3LzdTiqVuu12+z86T1BMTAy3cePGntzcXM34+Lj3H7gL+Gs78qtE9JG7ePA8f4qIkv1RCwAAAACAr0xkJcgfhoeHWV1dXQTHcSwqKkpLROR0OtnQ0JCwqakpZMmSJaMFBQUJ2dnZ/Y2NjYr6+nrZ8uXLh9Vq9XhnZ6eY4zjyhCeLxSJOSkpyTHaN4+PjrLe3V9Tb2yuMiYnhJvv6k82ft+oBAAAAAIAf1NTURAgEAjKZTG3BwcE3N2pYvXr1nIqKCqXJZLKfPXs2tLW19ZzRaAzfsGFDYmtr6zmdTjcSEhLC7dixI7akpKTr5MmTsoaGhvCdO3een8i4DoeDcRxHbrebXC4X2e12JhaLeZFIRAcPHgxPS0sbXbhwoaOrq0v0zDPPqO+99177dAhNRFP0PU4AAAAAAOA71dXVytzc3J6kpCRnQkKCy/MyGAw3Dhw4ELN9+/aEAwcOXA4LC3MbDIbe1NRU+8aNG9USiYQ/evToxZMnT4ZFRUVpN2/enLBv377L6enpE3oWae3atTOlUmnGiRMnIsvLy1VSqTTjV7/6lZKI6Pr16+KHHnporkwmS09NTV0gEAjo5Zdffte3n8TkYTzPT3UNn0pmZibf3Nw81WUAAAAAQIBjjLXwPJ95pzaz2XxFq9X2+Lsm8A2z2Ryl1WoT79SGFScAAAAAAAAvEJwAAAAAAAC8QHACAAAAAADwAsEJAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvEBwAgAAAAAA8ALBCQAAAAAAwAsEJwAAAAAAAC8QnAAAAAAAAlhWVtY8hUKRNjo6ynw91ubNm+Pmzp07XyQSLdq6dWvcR/V75JFHEhlji1pbW4N9XdNkQXACAAAAAAhQ7e3t4paWFhljjIxGY7ivx9NoNI7nnnvu+rJly/o/qk99fb3sypUr0yYweSA4AQAAAAAEqP379yu1Wu3ImjVreqqqqpRERGNjYyw5OXl+aWlpNBGRy+WijIyM5G3btqmIiEwmkyQrK2ueXC5P02g0C2pqasI819Pr9Yl5eXkJOp1OI5VK01NTU5Pb2tpuhqBnnnnGlpubOyiTydx3qmd8fJy++93vJuzdu/eab2c++RCcAAAAAAACVG1trTI3N9eWn5/f29jYqLBYLCKJRMJXVVVd2rNnT5zJZJJs3749luM42r17d4fD4WCrVq3S5OTkDHR3d5vLysquFRYWzjabzTfD0bFjxyJLSkqs/f39ZxITEx1FRUXxE61n586dMf/0T/809IUvfGHUNzP2HdFUFwAAAAAAECjMe7eqB6+1h/pyDEXCPLv26TKLt3719fUyq9Uqzs/P71OpVC61Wu2oqKiILCkpubF48eKxLVu2dOj1+jk2my3o9OnT50UiEZ06dUpqt9uFpaWlnUKhkFauXDmUk5PTf/DgQWVZWZmViGjFihV92dnZdiKidevW9RYXF98zkbovXrwYdPDgwRlnzpw5/9k+gamBFScAAAAAgABUWVmpXLp06aBKpXIREen1+l6j0RjlaTcYDDar1Rqs0+kGUlJSHEREFoslKDY21ikUCm9eR61WO61Wa5DnOCYmZtzzXiqVuu12+z86f4ynn3464Qc/+EGHUqnkJmF6focVJwAAAACASTKRlSB/GB4eZnV1dREcx7GoqCgtEZHT6WRDQ0PCpqamkCVLlowWFBQkZGdn9zc2Nirq6+tly5cvH1ar1eOdnZ1ijuPIE54sFos4KSnJ8Vlr+stf/iJvbm6W/fjHP765QvWlL30pedeuXRaDwdD7Wa/vawhOAAAAAAABpqamJkIgEJDJZGoLDg6+uVHD6tWr51RUVChNJpP97Nmzoa2treeMRmP4hg0bEltbW8/pdLqRkJAQbseOHbElJSVdJ0+elDU0NITv3LlzQrfXORwOxnEcud1ucrlcZLfbmVgs5kUiEb399tutHPePxaaZM2dq//u///viF77wBbsPPoJJh+AEAAAAABBgqqurlbm5uT1JSUnOW88bDIYbhYWFsxUKBVdbW3shLCzMbTAYeo8fPx6+ceNG9aFDh64ePXr04qZNm2aWl5fHRkdHj+/bt+9yenr62ETGXbt27cwjR44oPcfl5eWqX/7yl1eeffZZW3x8vOv2/jExMS6ZTMZ/9hn7HuP5aVHnh2RmZvLNzc1TXQYAAAAABDjGWAvP85l3ajObzVe0Wm2Pv2sC3zCbzVFarTbxTm3YHAIAAAAAAMALBCcAAAAAAAAvEJwAAAAAAAC8QHACAAAAAADwAsEJAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvEBwAgAAAAAA8ALBCQAAAAAAwAsEJwAAAACAAJaVlTVPoVCkjY6OMl+PtXnz5ri5c+fOF4lEi7Zu3Rp3a9uJEyfkAoFgUWhoaLrnVV5ervR1TZMFwQkAAAAAIEC1t7eLW1paZIwxMhqN4b4eT6PROJ577rnry5Yt679T+4wZM8btdvsZz+uZZ56x+bqmyYLgBAAAAAAQoPbv36/UarUja9as6amqqlISEY2NjbHk5OT5paWl0URELpeLMjIykrdt26YiIjKZTJKsrKx5crk8TaPRLKipqQnzXE+v1yfm5eUl6HQ6jVQqTU9NTU1ua2sL9rQ/88wzttzc3EGZTOb291x9DcEJAAAAACBA1dbWKnNzc235+fm9jY2NCovFIpJIJHxVVdWlPXv2xJlMJsn27dtjOY6j3bt3dzgcDrZq1SpNTk7OQHd3t7msrOxaYWHhbLPZfDMcHTt2LLKkpMTa399/JjEx0VFUVBQ/0Xp6e3tFSqVSGx8fn1JQUKAeHBycNnlENNUFAAAAAAAEiupmq7pjwBHqyzFUYcH2xzPjLN761dfXy6xWqzg/P79PpVK51Gq1o6KiIrKkpOTG4sWLx7Zs2dKh1+vn2Gy2oNOnT58XiUR06tQpqd1uF5aWlnYKhUJauXLlUE5OTv/BgweVZWVlViKiFStW9GVnZ9uJiNatW9dbXFx8z0TqTk1NHf3rX/96Li0tbezChQvixx9/fJbBYFC/9NJLVz/bJ+If0ybhAQAAAADAxFVWViqXLl06qFKpXEREer2+12g0RnnaDQaDzWq1But0uoGUlBQHEZHFYgmKjY11CoXCm9dRq9VOq9Ua5DmOiYkZ97yXSqVuu93+j84fIyEhwbVo0aIxoVBIycnJzj179lz//e9/HzEJU/ULrDgBAAAAAEySiawE+cPw8DCrq6uL4DiORUVFaYmInE4nGxoaEjY1NYUsWbJktKCgICE7O7u/sbFRUV9fL1u+fPmwWq0e7+zsFHMcR57wZLFYxElJSY7JrpExRjzPT/ZlfQbBCQAAAAAgwNTU1EQIBAIymUxtwcHBNzdqWL169ZyKigqlyWSynz17NrS1tfWc0WgM37BhQ2Jra+s5nU43EhISwu3YsSO2pKSk6+TJk7KGhobwnTt3np/IuA6Hg3EcR263m1wuF9ntdiYWi3mRSEQnTpyQz5s3zzFnzhznpUuXgn74wx/GP/DAA/0++xAmGW7VAwAAAAAIMNXV1crc3NyepKQkZ0JCgsvzMhgMNw4cOBCzffv2hAMHDlwOCwtzGwyG3tTUVPvGjRvVEomEP3r06MWTJ0+GRUVFaTdv3pywb9++y+np6WMTGXft2rUzpVJpxokTJyLLy8tVUqk041e/+pWSiKi5uTn0vvvuS5ZKpelLly69Nzk5eXT//v3XfPtJTB42nZbHbpWZmck3NzdPdRkAAAAAEOAYYy08z2feqc1sNl/RarU9/q4JfMNsNkdptdrEO7VhxQkAAAAAAMALBCcAAAAAAAAvEJwAAAAAAAC8QHACAAAAAADwAsEJAAAAAADACwQnAAAAAAAALxCcAAAAAAAAvEBwAgAAAAAA8ELkrQNjLIOIvkZEWiIKJ6J+IjIT0R94nsc30AIAAAAAQMD7yBUnxthXGWPNRGQkIjURnSaiQ+//r5qIahhjLYyx5X6p9C7iHhkgV9dl4h2jU10KAAAAAMDHysrKmqdQKNJGR0eZr8favHlz3Ny5c+eLRKJFW7dujbu93Wq1ir7xjW/MksvlaQqFIm3lypWzfF3TZPm4FaeNRLSJ5/k3PqoDY2wxERURUf1kF3Y3ct24QoP7nybHW38mJhQRz7sp5MuPk+LJn5MgRD7V5QEAAAAAfEB7e7u4paVFJpPJOKPRGL5+/fo+X46n0Wgczz333PXf/OY3M+7U/o1vfGNOenr6yJUrV87KZDJ3c3OzxJf1TKaPXHHieV7/caHp/T5v8Dz/yOSXdffhbO9Rz/czyfHmH4lcDuIdI0TOURp97T/Jtn0p8eOOqS4RAAAAAOAD9u/fr9RqtSNr1qzpqaqqUhIRjY2NseTk5PmlpaXRREQul4syMjKSt23bpiIiMplMkqysrHlyuTxNo9EsqKmpCfNcT6/XJ+bl5SXodDqNVCpNT01NTW5rawv2tD/zzDO23NzcQZlM5r69liNHjig6OzvFv/71r68rlUouODiYv++++6bNLVyfaHMIxpiCMRZ368tXhd1thv/7OeJHB4jct/0zMO4grvNdGv3Lf01NYQAAAAAAH6G2tlaZm5try8/P721sbFRYLBaRRCLhq6qqLu3ZsyfOZDJJtm/fHstxHO3evbvD4XCwVatWaXJycga6u7vNZWVl1woLC2ebzeab4ejYsWORJSUl1v7+/jOJiYmOoqKi+InU8pe//EU6a9asMb1ePys8PDxt4cKF99bV1cl8N/vJ5XVzCCIixthXiOi3RDSTiG69N5InIqEP6rrrjDa+RMS57tjGO0bIfvK3FLrscT9XBQAAAAB3k/531qtdI62hvhxDJF1oD59bYfHWr76+Xma1WsX5+fl9KpXKpVarHRUVFZElJSU3Fi9ePLZly5YOvV4/x2azBZ0+ffq8SCSiU6dOSe12u7C0tLRTKBTSypUrh3JycvoPHjyoLCsrsxIRrVixoi87O9tORLRu3bre4uLieyZS93vvvSc+ffq0oqys7Gptbe2VgwcPhj/66KOad955p1WlUt35L9p3kYmuOB0goueJKIyIgm55iX1U112HH//4VUTePuCnSiBQuZwOeusPNWTc8g2qefZBav6fX5PTPjzVZQEAAMA0VVlZqVy6dOmgJ5To9fpeo9EY5Wk3GAw2q9UarNPpBlJSUhxERBaLJSg2NtYpFP5jbUStVjutVmuQ5zgmJmbc814qlbrtdvuEFlIkEok7Li7OuWXLlp7g4GC+sLCwT6VSOf/85z9Pi1WnCa04EZGEiCp5nud8WczdTKReSK7LZ+7cKAwi8b1f8m9BEFCGbV1Usf6LNNJ7g5yjfw9LV8800qv7/oXWH3idlDPnTnGFAAAAMBETWQnyh+HhYVZXVxfBcRyLiorSEhE5nU42NDQkbGpqClmyZMloQUFBQnZ2dn9jY6Oivr5etnz58mG1Wj3e2dkp5jiOPOHJYrGIk5KSPvMD/ampqaMnT54M/6zXmSoTXXH6BRH9gDHm8y0M71byNTuIBUvv3CgMIunXNvu3IAgo//OjR2mg89rN0EREND46QvaBHqp59kHieX4KqwMAAIDppqamJkIgEJDZbG4zmUxtJpOprbW1tXXRokXDFRUVyr1790aePXs29PDhw1d27dpl2bBhQ+LAwIBAp9ONhISEcDt27Ih1OBzsxIkT8oaGhvC8vLzeiYzrcDiY3W5nbrebXC4X2e125nL9/S68tWvX9g0ODgrLy8uVLpeLKisrI7q6usT333//tLjFZqLB6X+I6NtENMAYu3Try4e13VUkX3iYpCu/RxQkIRK+v1IpDiESh1D45ioSxSVNbYEwbfVdv0TXW/9K7js9Q8fzNNJ7g66dafR/YQAAADBtVVdXK3Nzc3uSkpKcCQkJLs/LYDDcOHDgQMz27dsTDhw4cDksLMxtMBh6U1NT7Rs3blRLJBL+6NGjF0+ePBkWFRWl3bx5c8K+ffsup6enj01k3LVr186USqUZJ06ciCwvL1dJpdKMX/3qV0oiopiYGK62tvZieXl5jEKhSP/5z38ee/jw4YvT4fkmIiI2kd9kM8bMRPQmEf0XEX3gYR+e5//sk8q8yMzM5Jubm/0+rqvzEo2+Wkmc7TqJ1AspNOdJEsiVfq8DAsc7jSfoyI7HyTF85+fkRMEh9NXv/istXvMdP1cGgWbEyVHXkINCg4QUIxfT5/gmAgCAT4Qx1sLzfOad2sxm8xWtVtvj75rAN8xmc5RWq028U9tEn3GaRUTpPM9/aD/2zxtR7GySP/bTqS4DAkiIIpL427e5v4VAKKIQRaQfK4JA43C5ydjSQW++N0QiASM3z5NCIqK1i1Q0N/ojbkEGAACAD5jorXqvEFGOLwsB+Ly6J+WfKEjy0buW8m6O5n7p636sCAKJm+fpxdeu0pvvDZHLzdOYy01OjqeekXHad9pCl2z2qS4RAABgWphocAomomOMsXrG2H/e+vJlcQCfB0wgoG+WVJIo+MPhKUgSSsu3/oLEodNil064C53vHKHOIQe53B++LXuc4+mo+cYUVAUAADD9TPRWvbb3XwDgA0n3PUh5e+vpVHkxXT/bREREM2YvoPuffh6rTfCZNFsGyOH66GdZr/aNksPlpmDRRH+PBgAA8Pk0oeDE8/xPfF0IwOddQtpSWn/gdeLGncS73SQKlkx1SRAAnNzHP5rKiIi7w2oUwES5eTe9NXSF/re3lQZddooLjqQcpZYSQ2OmujQAgEk1oeDEGPvI55t4nm+YvHIAQBgknuoSIIDcGyOj850j5OTuHI4UEhGFBGG1CT4djnfTb67+ni7aO8jJ/3034S5HP50dukoPzlhEX52RMcUVAgBMnoneqnfgtuMZRCQmoutENHtSKwIAgEmzOCGMjrd2k5PjPtQmFjJ6aH4UtiWHT+0121m6YO+gcf4fX8HCE0/jvIv+0N1C98rUpA6ZMYUVAgBMngn9mpHn+Vm3vogojIhKiejffVodAAB8JsEiAW1elkAKiZCCRX8PSCIBI5GAUXZSJP1TYvjUFgjTWoPN/IHQdCsXz9Grtrf8XBEAgO9MdMXpA3ie5xhjpfT3FaeyyS0JAAAmU1yYhH76UBK1dQ7Te/1jFBIkpPR75BQWEjTVpcE0N+D66O3seeKpw9Hnx2ogUI2Mj9Hb3ZfJTTwlK2eSPBjfPwdT41MFp/c9QESf+y/EBQCYDoQCRqlxckqNk091KRBAQoRisnOOj2yPCMJfcOHTc/NueulsPf3h4l9IKBASEZHLzZEucRGtT/sGid4/B95lZWXNe/vtt0O6urrMISEhPt0RaPPmzXF/+MMfwi9duhTy7LPPdpSVlVk9bcXFxbEvvviiynPsdruZ0+lk7733nlmlUt15+fouMqFb9RhjFsbYtVtePUT0X0RU7NvyAAAA4G51X/h8ErE7/1VCzET0pciFfq4IAslLZ+vpj+82kdPtolGXg0ZdDhp3u+i1qyb6TcuRqS5v2mhvbxe3tLTIGGNkNBrDfT2eRqNxPPfcc9eXLVvWf3vb7t27O+12+xnP6zvf+U5nVlbW0HQITUQT/wLcx4ko75bXCiKK43keX4ALAADwOfXVGRkUGSQnEfvgb/7FTESpikRKlt4zRZXBdDcyPkZ/uPgXcnDjH2pzcuN02vIW9Y4OTkFl08/+/fuVWq12ZM2aNT1VVVVKIqKxsTGWnJw8v7S0NJqIyOVyUUZGRvK2bdtUREQmk0mSlZU1Ty6Xp2k0mgU1NTVhnuvp9frEvLy8BJ1Op5FKpempqanJbW1twZ72Z555xpabmzsok8k+9s40t9tN//Vf/xW5bt06m29mPvkmujnEa7e9mnmexz+tAAAAn2MhQjF9f/Yj9BVlGsmFISRiQooRh9Ma1ZfoifivYMdG+NTe7r588/a8OxEwAb3VdcGPFU1ftbW1ytzcXFt+fn5vY2OjwmKxiCQSCV9VVXVpz549cSaTSbJ9+/ZYjuNo9+7dHQ6Hg61atUqTk5Mz0N3dbS4rK7tWWFg422w23wxHx44diywpKbH29/efSUxMdBQVFcV/0rrq6+tlNpst6Iknnpg2D0N+5DNOjLEyInqB5/nOj+kTS0Q/4Hl+qy+KAwAAgLtbiFBMX4/Joq/HZE11KRBA3OT9MRw3f3d+eXf1e6+qOxy9ob4cQxUcaX88PtvirV99fb3MarWK8/Pz+1QqlUutVjsqKioiS0pKbixevHhsy5YtHXq9fo7NZgs6ffr0eZFIRKdOnZLa7XZhaWlpp1AopJUrVw7l5OT0Hzx4UOl5XmnFihV92dnZdiKidevW9RYXF3/i5eXKykrlgw8+2BcWFjZt9kz4uBWndiL6G2OsnjH2I8aYnjH21ff/94eMsXoi+isRnfNPqQAAAADweZCsnEku94e/f87DzbtpYfQcP1Y0PVVWViqXLl066HmGSK/X9xqNxihPu8FgsFmt1mCdTjeQkpLiICKyWCxBsbGxTqHwHyt+arXaabVab27FGhMTc/MeSqlU6rbb7Z9op47h4WH2+9//PvLJJ5+cNrfpEX3MihPP879hjFUQ0TeJ6EEiWkVE4UTUR0RvEdGvieg4z3/EFzgAAAAAAHwK8mAp6RIX0WtXTeS87TmnIIGIMlTzKFoaMUXVfbyJrAT5w/DwMKurq4vgOI5FRUVpiYicTicbGhoSNjU1hSxZsmS0oKAgITs7u7+xsVFRX18vW758+bBarR7v7OwUcxxHnvBksVjESUlJH72F5idUVVUVERYW5vra1742NFnX9IeP3Y6c5/lxIvrv918AAAAAAH5RkPYNcrld9Po1Mwne373RzbspQzWPnsn61hRXd/erqamJEAgEZDKZ2oKDg2/eDrd69eo5FRUVSpPJZD979mxoa2vrOaPRGL5hw4bE1tbWczqdbiQkJITbsWNHbElJSdfJkydlDQ0N4Tt37jw/kXEdDgfjOI7cbje5XC6y2+1MLBbzItE/Ykd1dbVyzZo1NoFgovvU3R0+y/c4AQAAAAD4hFAgpO9kPkKPLvgqvdV1gdw8Twuj59y1K013m+rqamVubm5PUlKS89bzBoPhRmFh4WyFQsHV1tZeCAsLcxsMht7jx4+Hb9y4UX3o0KGrR48evbhp06aZ5eXlsdHR0eP79u27nJ6ePjaRcdeuXTvzyJEjSs9xeXm56pe//OWVZ5991kZEdPny5aD/+7//U/zmN7+5Nrkz9j3G36UP1nmTmZnJNzc3T3UZAAAAABDgGGMtPM9n3qnNbDZf0Wq1Pf6uCXzDbDZHabXaxDu1Ta/1MQAAAAAAgCmA4AQAAAAAAODFhIITY6yBMbbhDufrJr8kAAAAAACAu8tEN4f4IhHFMMbSiGgzz/OejfW/5JOqAAAAAAAA7iITvVXPSUT/RESJRHSKMRb5/nnmi6IAAAAAAADuJhN+xonn+SEi+gYR/ZWImhljqUQ0PbfkAwAAAAAA+AQmeqseIyLi/753+Q8ZY2YiOkVEEl8VBgAAAAAAcLeYaHAquPWA5/lDjLF2Ilo5+SUBAAAAAADcXSYUnHier73DuTNEdGbSKwIAAAAAALjL4HucAAAAAAACWFZW1jyFQpE2Ojrq843dNm/eHDd37tz5IpFo0datW+Nuby8tLY2Oj49Pkclk6QsXLry3vr5e5uuaJguCEwAAAABAgGpvbxe3tLTIGGNkNBrDfT2eRqNxPPfcc9eXLVvWf3tbQ0OD9Lnnnos/dOjQu4ODg2fy8vJ6Hn300Tkul8vXZU0KBCcAAAAAgAC1f/9+pVarHVmzZk1PVVWVkohobGyMJScnzy8tLY0mInK5XJSRkZG8bds2FRGRyWSSZGVlzZPL5WkajWZBTU1NmOd6er0+MS8vL0Gn02mkUml6ampqcltbW7Cn/ZlnnrHl5uYOymQy9+21vPvuu2KNRjP2pS99yS4QCGjTpk22/v5+0XvvvRfk+0/is0NwAgAAAAAIULW1tcrc3Fxbfn5+b2Njo8JisYgkEglfVVV1ac+ePXEmk0myffv2WI7jaPfu3R0Oh4OtWrVKk5OTM9Dd3W0uKyu7VlhYONtsNt8MR8eOHYssKSmx9vf3n0lMTHQUFRXFT6QWvV4/4Ha7qaGhQepyuai8vDwqOTl5VK1Wj/vuE5g8E91VDwAAAAAAvOjfu17tutYa6ssxRAkL7eFPV1i89auvr5dZrVZxfn5+n0qlcqnVakdFRUVkSUnJjcWLF49t2bKlQ6/Xz7HZbEGnT58+LxKJ6NSpU1K73S4sLS3tFAqFtHLlyqGcnJz+gwcPKsvKyqxERCtWrOjLzs62ExGtW7eut7i4+J6J1B0eHu7+xje+0ffVr351HhExuVzuevnlly8IBNNjLWd6VAkAAAAAAJ9IZWWlcunSpYMqlcpFRKTX63uNRmOUp91gMNisVmuwTqcbSElJcRARWSyWoNjYWKdQKLx5HbVa7bRarTdvp4uJibm5QiSVSt12u/0fnT/GL37xi6iXXnopymQytTkcjpb9+/dfXr16ddKVK1emxa16WHECAAAAAJgkE1kJ8ofh4WFWV1cXwXEci4qK0hIROZ1ONjQ0JGxqagpZsmTJaEFBQUJ2dnZ/Y2Ojor6+XrZ8+fJhtVo93tnZKeY4jjzhyWKxiJOSkhyftSaz2Rz6wAMPDKSmpjqIiB555JHB//f//t/4q6++Knvqqaf6Puv1fQ0rTgAAAAAAAaampiZCIBCQ2WxuM5lMbSaTqa21tbV10aJFwxUVFcq9e/dGnj17NvTw4cNXdu3aZdmwYUPiwMCAQKfTjYSEhHA7duyIdTgc7MSJE/KGhobwvLy83omM63A4mN1uZ263m1wuF9ntdubZNW/x4sUjf/7zn8POnTsndrvddPToUcXVq1eD09LSRn36YUwSrDgBAAAAAASY6upqZW5ubk9SUpLz1vMGg+FGYWHhbIVCwdXW1l4ICwtzGwyG3uPHj4dv3LhRfejQoatHjx69uGnTppnl5eWx0dHR4/v27bucnp4+NpFx165dO/PIkSNKz3F5ebnql7/85ZVnn33W9vTTT9vefffd4Pvvv3/e4OCgKCYmxvmv//qvVyd67anGeJ6f6ho+lczMTL65uXmqywAAAACAAMcYa+F5PvNObWaz+YpWq+3xd03gG2azOUqr1SbeqQ236gEAAAAAAHiB4AQAAAAAAOAFghMAAAAAAIAXCE4AAAAAAABeIDgBAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAQwLKysuYpFIq00dFR5uuxNm/eHDd37tz5IpFo0datW+NubXO73VRUVBSrUqlSZDJZ+te//vXZvb290yaPTJtCAQAAAADgk2lvbxe3tLTIGGNkNBrDfT2eRqNxPPfcc9eXLVvWf3vb3r17lbW1tcrGxsa333vvPfPo6CjbsGFDgq9rmiwITgAAAAAAAWr//v1KrVY7smbNmp6qqiolEdHY2BhLTk6eX1paGk1E5HK5KCMjI3nbtm0qIiKTySTJysqaJ5fL0zQazYKampowz/X0en1iXl5egk6n00il0vTU1NTktra2YE/7M888Y8vNzR2UyWTu22upq6sLe/zxx3s0Gs14WFiYu7i4uLOuri5yaGhoWmSSaVEkAAAAAAB8crW1tcrc3Fxbfn5+b2Njo8JisYgkEglfVVV1ac+ePXEmk0myffv2WI7jaPfu3R0Oh4OtWrVKk5OTM9Dd3W0uKyu7VlhYONtsNt8MR8eOHYssKSmx9vf3n0lMTHQUFRXFT6QWnucZz/O3HpPT6WStra3BH/Njdw3RVBcAAAAAABAoft3crLYMDIT6cgx1WJjdkJlp8davvr5eZrVaxfn5+X0qlcqlVqsdFRUVkSUlJTcWL148tmXLlg69Xj/HZrMFnT59+rxIJKJTp05J7Xa7sLS0tFMoFNLKlSuHcnJy+g8ePKgsKyuzEhGtWLGiLzs7205EtG7dut7i4uJ7JlL38uXLB1588cXYvLy8vqioKG737t0qIqKRkZFpsZgzLYoEAAAAAIBPprKyUrl06dJBlUrlIiLS6/W9RqMxytNuMBhsVqs1WKfTDaSkpDiIiCwWS1BsbKxTKBTevI5arXZardYgz3FMTMy4571UKnXb7fZ/dP4Ymzdv7nn44Yd7c3Jy5s2fP3/BsmXLBomIEhMTnZ95sn6AFScAAAAAgEkykZUgfxgeHmZ1dXURHMexqKgoLRGR0+lkQ0NDwqamppAlS5aMFhQUJGRnZ/c3NjYq6uvrZcuXLx9Wq9XjnZ2dYo7jyBOeLBaLOCkpyfFZaxIKhfSLX/zC+otf/MJKRHTkyBFFdHT0+KxZs8a9/ezdAMEJAAAAACDA1NTURAgEAjKZTG3BwcE3N2pYvXr1nIqKCqXJZLKfPXs2tLW19ZzRaAzfsGFDYmtr6zmdTjcSEhLC7dixI7akpKTr5MmTsoaGhvCdO3een8i4DoeDcRxHbrebXC4X2e12JhaLeZFIRF1dXcKenh7Rvffe6zhz5oykqKhI/f3vf9966+rW3QzBCQAAAAAgwFRXVytzc3N7kpKSPnAbnMFguFFYWDhboVBwtbW1F8LCwtwGg6H3+PHj4Rs3blQfOnTo6tGjRy9u2rRpZnl5eWx0dPT4vn37Lqenp49NZNy1a9fOPHLkiNJzXF5ervrlL3955dlnn7V1dXWJVq5cmdTV1RUUERHhKiwsvLFt27aeyZ67r3xgZ4vpJDMzk29ubp7qMgAAAAAgwDHGWniez7xTm9lsvqLVaqfNX/7h45nN5iitVpt4pzZsDgEAAAAAAOAFghMAAAAAAIAXCE4AAAAAAABeIDgBAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAAPhMfH5/y8ssvy6e6js8KwQkAAAAAIADFx8enSCSSjNDQ0HSFQpGm0+k0Fy9eDJrquiZTV1eX8IEHHpgTEhKSHhcXl/LrX/860ldjITgBAAAAAASoQ4cOXbDb7Wc6OzvNM2bMcBkMhoSprmmixsfHvfbZsGFDglgs5js7O82VlZWXv//97yc0NzdLfFGP34ITY6yaMdbBGBtkjL3DGNtwS9v9jLG3GWN2xtirjLGZ/qoLAAAAACDQhYaG8o888kjfxYsXQ4iIbDab8OGHH06MiIjQxsXFpfzgBz9QcRxHRERbt26N++Y3vznL87Pt7e1ixtgiT5DJysqat3nz5riMjIxkqVSaft999yV1dHSIPP337t0bGRcXlxIeHp5WVFQUe2sdr776amhaWlqyXC5PmzFjRuoTTzyRMDY2xjztjLFFu3btmjFz5syFiYmJKXl5eQnf/va377n1Gjk5OZqdO3dGDw4OCv74xz9G7Nq1672wsDD38uXLh++///6BiooKpS8+Q3+uOO0iokSe5xVEtJKInmOMLWKMRRHRESLaQUSRRNRMRIf9WBcAAAAAQEAbGhoSHD58OCI9PX2YiGjDhg3qwcFB4aVLl86++uqr7bW1tcoXX3wxaqLXO3LkSOTvfve7y11dXW+Oj48LfvrTn8YQEbW0tEi+//3vzzxw4MDljo4Os81mE3V1dYk9PycSiejnP/+5pbe3983XX3/97ddff13+wgsvzLj12sePHw//29/+dr69vb11/fr1Pa+88kqkJ9R1dHSImpqa5E899VTv2bNng4VCIaWmpjo8P5uammp/++23Qz7jx3VHIu9dJgfP8223Hr7/mkNEi4iojef5/yIiYoz9mIh6GGPJPM+/7a/6AAAAAAA+q/5X16tdva2hvhxDFLnQHp5dYZlI37Vr12qEQiE/OjoqjIyMHD9x4sQFl8tFdXV1kU1NTeciIiLcERERzqeffrrTaDQqt2zZ0jOR6z722GM2T2BZvXp1b11dXTgRkdFojMjJyRl48MEHh4mIysrKrAcPHoz2/NyXvvQlu+f9vHnznE8++WR3Y2OjnIhueM4XFxd3xsTEcERE2dnZdplMxh07dkzx8MMPD1ZWVkZkZWUNqdVqV1tbm0Qmk3G31hUWFsYNDw8LJzKHT8qvzzgxxn7FGLMT0dtE1EFEvyeiBURk9vTheX6EiN59/zwAAAAAAHxKL7300sWhoaE3x8bGWn72s59de+CBB+ZdunRJPD4+zpKSkpyefrNmzXJ2dXVNeOOI2NjYmw8ghYaGuu12u4CIyGq1BsXHx9+8rkKhcIeHh7s8x2+99VZwdna2JioqSiuTydJ37doV39vb+4HFnFmzZjlvPX700UdtVVVVkUREhw8fVq5du7aXiEgul3MjIyMfyDODg4PC28PUZPHbihMREc/z32GMPUNES4hIR0QOIpIRUfdtXQeI6ENbFjLGComokIgoIWHaPNcGAAAAAJ8TE10J8jeRSET5+fn93/3ud/nXXntNKhKJ+AsXLogXLVo0RkR05coVcUxMzDgRkVQq5UZHR28GkuvXr084UKlUqvH29vabt8oNDQ0J+vv7b2aOjRs3zkxJSbEfOXLkUkREhHvnzp3Rr7zySsSt12CM3XpIBQUFtrS0tAVNTU0hly5dkqxbt66PiCglJcXhcrnY2bNng1NSUhxERG+99VZIcnLy6Cf6cCbI77vq8TzP8Tz/OhHdQ0SbiGiYiBS3dVMQ0dAdfva3PM9n8jyfOWPGjNubAQAAAADgDtxuN1VXV4cPDQ2J0tPTRx966KG+4uLi+L6+PsE777wj3rt3b8yjjz5qIyLKyMgYfeONN2QXLlwQ22w24fPPPx/r7foejz32WF9DQ0NYfX29bGxsjH3ve9+L43n+ZhIaHh4WKhQKLiwszH3mzBlJRUVF9Mddj4hozpw54ykpKSP5+fmzVqxY0S+TyXiiv69mLV++vP9HP/pR3ODgoOBPf/qT9NSpU+Hr16+3fZrPyJup3I5cRH9/xqmNiLSek4wx6S3nAQAAAADgU3r00UeTQkND0+VyefpPfvKT+PLy8suZmZlj//Ef/3EtNDTUPXv27JQvf/nLyXq9vnfz5s09REQPP/zw4Ne//vW+jIyM+enp6fc+9NBDAxMdLzMzc2zPnj3XnnzyyVmxsbHaiIgIV0xMzM1b71544QXL//zP/0TKZLL0DRs2zFy1alXvRK77+OOP2y5cuBDyxBNPfCAUHThw4Oro6KggJiZGm5+fP/tnP/vZtczMzLGJ1vtJMJ7nfXHdDw7CWDQR5RDRCSIaJaKv0N930ltLRH8hootEtJ6I6ojoJ0S0jOf5f/q4a2ZmZvLNzc2+LBsAAAAAgBhjLTzPZ96pzWw2X9FqtRPaUAE+vT/84Q+y9evXz7p+/fpZodAnez8QEZHZbI7SarWJd2rz14oTT3+/Le86EfUR0b8S0Xd5nn+F5/luItITUen7bV8gokf9VBcAAAAAANzFHA4H+7d/+7eYdevW9fgyNHnjl80h3g9Hyz6m/RQRJfujFgAAAAAAmB5MJpPkvvvuuzc5OXn0Rz/6UddU1uLXXfUAAAAAAAAmKiMjY2x0dPTMVNdBNLWbQwAAAAAAAEwLCE4AAAAAAABeIDgBAAAAAAB4geAEAAAAAADgBYITAAAAAACAFwhOAAAAAADgM/Hx8Skvv/yyfKrr+KwQnAAAAAAAAlB8fHyKRCLJCA0NTVcoFGk6nU5z8eLFoKmuazI9//zzMxYuXHivWCzO0Ov1ib4cC8EJAAAAACBAHTp06ILdbj/T2dlpnjFjhstgMCRMdU0TNT4+7rVPfHz8eFFRUceaNWt6fF0PghMAAAAAQIALDQ3lH3nkkb6LFy+GEBHZbDbhww8/nBgREaGNi4tL+cEPfqDiOI6IiLZu3Rr3zW9+c5bnZ9vb28WMsUWeIJOVlTVv8+bNcRkZGclSqTT9vvvuS+ro6BB5+u/duzcyLi4uJTw8PK2oqCj21jpeffXV0LS0tGS5XJ42Y8aM1CeeeCJhbGyMedoZY4t27do1Y+bMmQsTExNT8vLyEr797W/fc+s1cnJyNDt37owmIsrPz+/Py8vrVyqVrsn/1D4IwQkAAAAAIMANDQ0JDh8+HJGenj5MRLRhwwb14OCg8NKlS2dfffXV9traWuWLL74YNdHrHTlyJPJ3v/vd5a6urjfHx8cFP/3pT2OIiFpaWiTf//73Zx44cOByR0eH2Wazibq6usSenxOJRPTzn//c0tvb++brr7/+9uuvvy5/4YUXZtx67ePHj4f/7W9/O9/e3t66fv36nldeeSXSE+o6OjpETU1N8qeeeqp3Uj6YT0DkvQsAAAAAAExEteU9dceYI9SXY6gkwfbH1fGWifRdu3atRigU8qOjo8LIyMjxEydOXHC5XFRXVxfZ1NR0LiIiwh0REeF8+umnO41Go3LLli0TuuXtscces6WmpjqIiFavXt1bV1cXTkRkNBojcnJyBh588MFhIqKysjLrwYMHoz0/96UvfcnueT9v3jznk08+2d3Y2Cgnohue88XFxZ0xMTEcEVF2drZdJpNxx44dUzz88MODlZWVEVlZWUNqtdrnK0y3w4oTAAAAAECAeumlly4ODQ29OTY21vKzn/3s2gMPPDDv0qVL4vHxcZaUlOT09Js1a5azq6trwhtHxMbG3nwAKTQ01G232wVERFarNSg+Pv7mdRUKhTs8PPxmyHnrrbeCs7OzNVFRUVqZTJa+a9eu+N7e3g8s5syaNct56/Gjjz5qq6qqiiQiOnz4sHLt2rV+X20iwooTAAAAAMCkmehKkL+JRCLKz8/v/+53v8u/9tprUpFIxF+4cEG8aNGiMSKiK1euiGNiYsaJiKRSKTc6OnpzgeX69esTDlQqlWq8vb09xHM8NDQk6O/vv5k5Nm7cODMlJcV+5MiRSxEREe6dO3dGv/LKKxG3XoMxdushFRQU2NLS0hY0NTWFXLp0SbJu3bq+T/wBTAKsOAEAAAAABDi3203V1dXhQ0NDovT09NGHHnqor7i4OL6vr0/wzjvviPfu3Rvz6KOP2oiIMjIyRt944w3ZhQsXxDabTfj888/Heru+x2OPPdbX0NAQVl9fLxsbG2Pf+9734niev5mEhoeHhQqFggsLC3OfOXNGUlFREf1x1yMimjNnznhKSspIfn7+rBUrVvTLZDLe0zY+Pk52u51xHMc4jmN2u51NZDe+TwPBCQAAAAAgQD366KNJoaGh6XK5PP0nP/lJfHl5+eXMzMyx//iP/7gWGhrqnj17dsqXv/zlZL1e37t58+YeIqKHH3548Otf/3pfRkbG/PT09HsfeuihgYmOl5mZObZnz55rTz755KzY2FhtRESEKyYm5uatdy+88ILlf/7nfyJlMln6hg0bZq5atWpCt909/vjjtgsXLoQ88cQTtlvPFxUVxUml0oxf/epXsa+88kqkVCrNKCoqiptovZ8E43nee6+7UGZmJt/c3DzVZQAAAABAgGOMtfA8n3mnNrPZfEWr1fr8O4Q+7/7whz/I1q9fP+v69etnhUKhz8Yxm81RWq028U5tWHECAAAAAIC7lsPhYP/2b/8Ws27duh5fhiZvEJwAAAAAAOCuZDKZJOHh4Wk3btwI+tGPftQ1lbVgVz0AAAAAALgrZWRkjI2Ojp6Z6jqIsOIEAAAAAADgFYITAAAAAACAFwhOAAAAAAAAXiA4AQAAAAAAeIHgBAAAAAAA4AWCEwAAAAAA+Ex8fHzKyy+/LJ/qOj4rBCcAAAAAgAAUHx+fIpFIMkJDQ9MVCkWaTqfTXLx4MWiq65oso6OjLDc3d2ZcXFyKVCpNv/fee+fX1tYqfDUeghMAAAAAQIA6dOjQBbvdfqazs9M8Y8YMl8FgSJjqmiZqfHzcWzu75557xl999dX2wcHBM//yL//y3lNPPTWnvb1d7It6EJwAAAAAAAJcaGgo/8gjj/RdvHgxhIjIZrMJH3744cSIiAhtXFxcyg9+8AMVx3FERLR169a4b37zm7M8P9ve3i5mjC3yBJmsrKx5mzdvjsvIyEiWSqXp9913X1JHR4fI03/v3r2RcXFxKeHh4WlFRUWxt9bx6quvhqalpSXL5fK0GTNmpD7xxBMJY2NjzNPOGFu0a9euGTNnzlyYmJiYkpeXl/Dtb3/7nluvkZOTo9m5c2e0QqFwl5WVWefNm+cUCoX02GOPDcTHxzuamppCffEZIjgBAAAAAAS4oaEhweHDhyPS09OHiYg2bNigHhwcFF66dOnsq6++2l5bW6t88cUXoyZ6vSNHjkT+7ne/u9zV1fXm+Pi44Kc//WkMEVFLS4vk+9///swDBw5c7ujoMNtsNlFXV9fNFSCRSEQ///nPLb29vW++/vrrb7/++uvyF154Ycat1z5+/Hj43/72t/Pt7e2t69ev73nllVciPaGuo6ND1NTUJH/qqad6b6/JYrGIrl69KtFqtWOf8mP6WCLvXQAAAAAAYEI616vJ0eqTFY+bghfaKbbCMpGua9eu1QiFQn50dFQYGRk5fuLEiQsul4vq6uoim5qazkVERLgjIiKcTz/9dKfRaFRu2bKlZyLXfeyxx2ypqakOIqLVq1f31tXVhRMRGY3GiJycnIEHH3xwmIiorKzMevDgwWjPz33pS1+ye97PmzfP+eSTT3Y3NjbKieiG53xxcXFnTEwMR0SUnZ1tl8lk3LFjxxQPP/zwYGVlZURWVtaQWq123VqPw+Fg3/rWt2br9Xpbenq6T4ITVpwAAAAAAALUSy+9dHFoaOjNsbGxlp/97GfXHnjggXmXLl0Sj4+Ps6SkJKen36xZs5xdXV0T3jgiNjb25gNIoaGhbrvdLiAislqtQfHx8Tevq1Ao3OHh4TdDzltvvRWcnZ2tiYqK0spksvRdu3bF9/b2fmAxZ9asWc5bjx999FFbVVVVJBHR4cOHlWvXrv3AahPHcaTX62cFBQW5Kysrr010Dp8UVpwAAAAAACbLBFeC/E0kElF+fn7/d7/7Xf61116TikQi/sKFC+JFixaNERFduXJFHBMTM05EJJVKudHR0ZsLLNevX59woFKpVOPt7e0hnuOhoSFBf3//zcyxcePGmSkpKfYjR45cioiIcO/cuTP6lVdeibj1GoyxWw+poKDAlpaWtqCpqSnk0qVLknXr1vV52txuN33rW99K7O7uFv35z3++EBwczH+Cj+UTwYoTAAAAAECAc7vdVF1dHT40NCRKT08ffeihh/qKi4vj+/r6BO+884547969MY8++qiNiCgjI2P0jTfekF24cEFss9mEzz//fKy363s89thjfQ0NDWH19fWysbEx9r3vfS+O5/mbSWh4eFioUCi4sLAw95kzZyQVFRXRH3c9IqI5c+aMp6SkjOTn589asWJFv0wmuxmOHn/88YQLFy5I/vSnP1289bwvIDgBAAAAAASoRx99NCk0NDRdLpen/+QnP4kvLy+/nJmZOfYf//Ef10JDQ/9/9u49rqn0zh/455AQQm4kAQyQQUBl0BkjJLL04mqVdnaU2lXUaREUkMFqa7veqrjur90d3JVVV9eflml/rdfVetuVispau63UlS5b7+jcEAatMnLRABJMAiE5vz+cMKAoGUfEYT7v14vXi3Oe5zzne84BzZfvOc/xDBs2zDRhwoSRM2fObFq8ePFdAEhNTW2dOnVqs8ViecVsNo9KSUm55+v+EhMTnevWrbuZnZ0dExYWFq/T6ToNBkPXrXfr16+/dfjwYb1KpTLn5uZGTZ8+/ZFJHnozZ84ca1VVVWBmZqbVu+7atWuy/fv3h37wwQeK8PDweIVCYVYoFOaf/exn+k9zjnwliGK/Jmb9JjExUTx//vxAh0FEREREg5wgCBdEUUzsra2iouJGfHy8TxMq0NM7ceKEKicnJ6a2tvaqRCLpt/1UVFSExMfHR/fWxooTERERERG9sNrb24XNmzcbMjIy7vZn0tQXJk5ERERERPRCunjxolyr1SY0Njb6r169umEgY+GsekRERERE9EKyWCxOh8NxaaDjAFhxIiIiIiIi6hMTJyIiIiIioj4wcSIiIiIiIuoDEyciIiIiIqI+MHEiIiIiIiLqAxMnIiIiIiLqN0aj0XTkyBH1QMfxWTFxIiIiIiIahIxGo0kul1sUCoVZo9EkTJw4cUR1dbX/QMf1LE2bNi0mNDR0jEqlMkdHR4/etGlTSH/ti4kTEREREdEgdeDAgSq73X6pvr6+IjQ0tHPhwoVDBzomX7lcrj77/PjHP667efPm1ba2tku//vWvq9euXWs8c+aMoj/iYeJERERERDTIKRQKcdasWc3V1dWBAGC1WiWpqanROp0uPiIiwrRy5cpwt9sNAFi2bFnEtGnTYrzbVlZWygRBGOtNZJKSkuIWL14cYbFYRiqVSvO4ceNi6+rqpN7+hYWF+oiICJNWq03Iy8sL6x5HaWmpIiEhYaRarU4IDQ0dk5mZOdTpdAredkEQxhYUFIRGRUWNjo6ONs2dO3fo/PnzX+o+RnJy8oj8/PwhAJCYmOgMDAwUAcDPz08UBEGsrKwMeNbnD2DiREREREQ06NlsNr+DBw/qzGZzGwDk5uZGtra2Smpqaq6WlpZWHjp0KHjLli0+3+ZWVFSk37Vr1/WGhobLLpfLb82aNQYAuHDhgnzFihVR27dvv15XV1dhtVqlDQ0NMu92UqkUGzduvNXU1HS5rKzsg7KyMvX69etDu4997Ngx7dmzZ9+vrKx8Jycn525xcbHem9TV1dVJy8vL1fPmzWvy9p8zZ87QwMBAc0JCwujQ0FDXG2+8ce8znq5eSfvuQkREREREvnj7/H9E3rzX0C+3inkNDTLYv58465YvfdPT00dIJBLR4XBI9Hq96/jx41WdnZ0oKSnRl5eXv6fT6Tw6na5j0aJF9fv37w9eunTpXV/GnT17tnXMmDHtADBjxoymkpISLQDs379fl5ycfG/KlCltALBp06bbu3fvHuLdbvz48Xbv93FxcR3Z2dl3zpw5owbQ6F2/atWqeoPB4AaASZMm2VUqlfvo0aOa1NTU1p07d+qSkpJskZGRnd7+e/fuvblr166bv//971W///3v1XK5XPTlGD4tVpyIiIiIiAapffv2VdtststOp/PChg0bbr722mtxNTU1MpfLJcTGxnZ4+8XExHQ0NDT4PHFEWFhY1wNICoXCY7fb/QDg9u3b/kajsWtcjUbj0Wq1XUnOlStXAiZNmjQiJCQkXqVSmQsKCoxNTU09ijkxMTEd3ZfT0tKse/bs0QPAwYMHg9PT05vwEKlUitdff72ttrbWf8OGDaEPtz8LrDgRERERET0jvlaCnjepVIqsrKyWJUuWiKdPn1ZKpVKxqqpKNnbsWCcA3LhxQ2YwGFwAoFQq3Q6Ho6vAUltb63NCFR4e7qqsrAz0LttsNr+WlpaunGPBggVRJpPJXlRUVKPT6Tz5+flDiouLdd3HEASh+yLefPNNa0JCwqvl5eWBNTU18oyMjObH7d/tdgsffvghn3EiIiIiIqJPz+PxYO/evVqbzSY1m82OlJSU5lWrVhmbm5v9rl27JissLDSkpaVZAcBisTjOnTunqqqqklmtVsnatWvD+hrfa/bs2c2nTp0KOnnypMrpdArLly+PEEWxKxNqa2uTaDQad1BQkOfSpUvyHTt2DHnSeAAwfPhwl8lkup+VlRUzefLkFpVKJQLARx99JP3FL36hu3fvnl9nZycOHz6sOXr0qP7rX/+67WnOUV+YOBERERERDVJpaWmxCoXCrFarzW+99ZZx69at1xMTE53btm27qVAoPMOGDTNNmDBh5MyZM5sWL158FwBSU1Nbp06d2myxWF4xm82jUlJSfJ5sITEx0blu3bqb2dnZMWFhYfE6na7TYDB03Xq3fv36W4cPH9arVCpzbm5u1PTp0x+57a43c+bMsVZVVQVmZmZavesEQcAvf/nLIS+99NIYrVZr/tu//duX/vEf//HWnDlzWj7FKfKZIIr98uxUv0tMTBTPnz8/0GEQERER0SAnCMIFURQTe2urqKi4ER8f79OECvT0Tpw4ocrJyYmpra29KpFI+m0/FRUVIfHx8dG9tbHiREREREREL6z29nZh8+bNhoyMjLv9mTT1hYkTERERERG9kC5evCjXarUJjY2N/qtXr24YyFg4qx4REREREb2QLBaL0+FwXBroOAAmTtQP7tffQMe9u1AYohCg7Zdp9ImIiIiInismTvTM3Kt5B5d/ugT3667DT+oPj6sDIWPGI37RJgQEBQ90eERERERET43PONEz0fZRNf7nxzNg+/P78HQ40Wm3weNqx53Lf8Af//ZbcLc7BjpEIiIiIqKnxsSJnonKA//Sa3IkujvR3nIHt/94dACiIiIiIiJ6Npg40TPRcP6/ANHTa5u73Y5bpw4+54iIiIiIiJ4dJk70TIidrie2uzuczykSGqw8zia0XVyHO/9uwZ1D8bCd+3u47QM6KykRERH5wGg0mo4cOaIe6Dg+KyZO9EwEDTM9ts3PPwCh5onPLRYafDrvVaNxfxxsF95C591L6LReQdul9bizPw6uu5cHOjwiIqIXktFoNMnlcotCoTBrNJqEiRMnjqiurvYf6Lj6w9WrVwMCAgIs06ZNi+mvfTBxomfi5bQfQSIL7LVNkEgRPTnrOUdEg0nzyZkQ25uAzm7P0bmdEDvuoek/vwXxMbeJEhERfdEdOHCgym63X6qvr68IDQ3tXLhw4dCBjslXLteT72jqbuHChUNHjx59vx/DYeJEz8YQ8ySMnLsafv4BkAQ8SKAkciWkCg2+9ONfQa4zDHCE9Hnlsl5F573qxz5DJ3bcQ8dHf3i+QREREX3OKBQKcdasWc3V1dWBAGC1WiWpqanROp0uPiIiwrRy5cpwt9sNAFi2bFlE98pNZWWlTBCEsd5EJikpKW7x4sURFotlpFKpNI8bNy62rq6u6zVHhYWF+oiICJNWq03Iy8sL6x5HaWmpIiEhYaRarU4IDQ0dk5mZOdTpdAredkEQxhYUFIRGRUWNjo6ONs2dO3fo/PnzX+o+RnJy8oj8/Pwh3uVf/OIXuqCgIPfXvvY127M9az0xcaJnJiYlB9/45XmMyvwxXv7Ocoz53ga8tuMy9CP/YqBDo8+xzntVEITHv3JOFN1wt1Y/x4hosOp0VMF599dobymFKHYOdDhERM+UzWbzO3jwoM5sNrcBQG5ubmRra6ukpqbmamlpaeWhQ4eCt2zZEuLreEVFRfpdu3Zdb2houOxyufzWrFljAIALFy7IV6xYEbV9+/brdXV1FVarVdrQ0CDzbieVSrFx48ZbTU1Nl8vKyj4oKytTr1+/PrT72MeOHdOePXv2/crKyndycnLuFhcX671JXV1dnbS8vFw9b968JgBoamryW7t2rXHLli23nsFpeiK+AJeeKZlaz9vy6JmSKMIAPP5WPEGQwC8w7LHtRH1xdzSg+f1ZcLVdgCD4AxABQYagEb9AYOiMgQ6PiD5vdpyOxEdNin7dh1FvR87XfEoU0tPTR0gkEtHhcEj0er3r+PHjVZ2dnSgpKdGXl5e/p9PpPDqdrmPRokX1+/fvD166dOldX8adPXu2dcyYMe0AMGPGjKaSkhItAOzfv1+XnJx8b8qUKW0AsGnTptu7d+/uqg6NHz/e7v0+Li6uIzs7+86ZM2fUABq961etWlVvMBjcADBp0iS7SqVyHz16VJOamtq6c+dOXVJSki0yMrITAJYvX27MyMi4O2LECN/v63tKrDgR0QvN3/AVCDLt4zsIfggYOvm5xUODi+jpgLXiq3C1/i/gcUB0t0J02yB2WtFybQ7aW04NdIhERJ/Jvn37qm0222Wn03lhw4YNN1977bW4mpoamcvlEmJjYzu8/WJiYjoaGhp8njgiLCysK1FRKBQeu93uBwC3b9/2NxqNXeNqNBqPVqvtKuNfuXIlYNKkSSNCQkLiVSqVuaCgwNjU1NSjmBMTE9PRfTktLc26Z88ePQAcPHgwOD09vQkA/ud//ifwzJkzmh//+MfPZZpdVpyI6IUmCAK03/gVmkqmAG5nt2edBEAaCO3X90CQyJ44BtHjOO8WweNqBNDLrXkeB2zX8xBgPvfc4yKizzEfK0HPm1QqRVZWVsuSJUvE06dPK6VSqVhVVSUbO3asEwBu3LghMxgMLgBQKpVuh8PRVWCpra31OaEKDw93VVZWds0YZrPZ/FpaWrpyjgULFkSZTCZ7UVFRjU6n8+Tn5w8pLi7WdR9DEITui3jzzTetCQkJr5aXlwfW1NTIMzIymgHgd7/7nfqjjz6SvfTSS2MAwG63+3k8HuGVV16Rv/fee+9/qhPkA1aciOiFFxAxASEz/gR5zAwIUiUgCUTA0BQET/sD5NHfGujw6HPMcfffIbrbHtvuun8Zotv+2HYios8Lj8eDvXv3am02m9RsNjtSUlKaV61aZWxubva7du2arLCw0JCWlmYFAIvF4jh37pyqqqpKZrVaJWvXrvX5nvjZs2c3nzp1KujkyZMqp9MpLF++PEIUxa5MqK2tTaLRaNxBQUGeS5cuyXfs2DHkSeMBwPDhw10mk+l+VlZWzOTJk1tUKpUIAEuXLr1bWVl59eLFi+9evHjx3Tlz5tyZOHFiy+9+97uqpzlHfWHFiYg+F/yDR0P3+r8PdBg02PQ1CYQIiPBAeHIvoscS2x24/7ttsJ98Gx6bFVLjSKhS8yAf+82BDo2+INLS0mL9/PxEQRAQERHRsXXr1uuJiYnObdu23czNzR06bNgwU0BAgDhnzpw7ixcvvgsAqamprUVFRc0Wi+UVnU7XuXjx4vpTp05pfdlfYmKic926dTezs7NjHA6HZMGCBfUGg6Hr1rv169ff+v73vx/19ttvh40aNco+ffr0po+fcXqiOXPmWBctWhSzcePGroqeWq32qNXqrgehVSqVJyAgQIyIiOiXGX4EURT7Y9x+l5iYKJ4/f36gwyAios8xe8MutFb/EKKn96qTVDEaoWOvPueoaLAQ2+24u3ocOm9XAh2fvIdOCFAi8K8WICh74wBGR5+GIAgXRFFM7K2toqLiRnx8vE8TKtDTO3HihConJyemtrb2qkQi6bf9VFRUhMTHx0f31sZb9YiI6AsrMOQ7EKRq9PrfoZ8C6ui1zz0mGjzaDheg86MPeiRNACC234f9tz9Hx7U/DVBkRJ8v7e3twubNmw0ZGRl3+zNp6gsTJyIi+sISJIEIjv8jJIFxgJ8S8FNAkKgh+CmgGbYZ8mA+Q0dP7/7JnwEuZ++NHU7c/8+tzzcgos+hixcvyrVabUJjY6P/6tWrn8vseY/DZ5yIiOgLTSqPQejYd+Gy/Qmd969CkOoQoJ8CP4lyoEOjzzFRFCG2WZ/QwQN3PV/eTdQXi8XidDgclwY6DoCJExEREQRBgEzzZcg0Xx7oUGiQEAQBgjoEou0xj74IfpCExz7foIjoM+GtekRERET9QDllESCT99om+Muh/ObfPOeIiOizYOJERERE1A9U0/MgjRwNBCh6NgQoofjm30A24i8GJjAieiq8VY+IiIioHwgBgQj5pzLYT+2E/Tdvw2O7C+lLr0A1fSUCEv5qoMMjok+JiRMRERFRPxH8A6B8fSGUry8c6FCI6DPirXpERERERNRvjEaj6ciRI+qBjuOzYuJERERERDQIGY1Gk1wutygUCrNGo0mYOHHiiOrqav+BjutZSkpKigsICLAoFAqzQqEwR0dHj+6vfTFxIiIiIiIapA4cOFBlt9sv1dfXV4SGhnYuXLhw6EDH5CuXy+VTv4KCgpt2u/2S3W6/dOPGjXf6Kx4mTkREREREg5xCoRBnzZrVXF1dHQgAVqtVkpqaGq3T6eIjIiJMK1euDHe73QCAZcuWRUybNi3Gu21lZaVMEISx3kQmKSkpbvHixREWi2WkUqk0jxs3Lraurq5r7oTCwkJ9RESESavVJuTl5YV1j6O0tFSRkJAwUq1WJ4SGho7JzMwc6nQ6BW+7IAhjCwoKQqOiokZHR0eb5s6dO3T+/PkvdR8jOTl5RH5+/pD+OE9PwsSJiIiIiGiQs9lsfgcPHtSZzeY2AMjNzY1sbW2V1NTUXC0tLa08dOhQ8JYtW0J8Ha+oqEi/a9eu6w0NDZddLpffmjVrDABw4cIF+YoVK6K2b99+va6ursJqtUobGhpk3u2kUik2btx4q6mp6XJZWdkHZWVl6vXr14d2H/vYsWPas2fPvl9ZWflOTk7O3eLiYr03qaurq5OWl5er582b1+Ttv2bNGqNOp4u3WCwjjx8/3m/PUnFWPSIiIiKiZ+R359+OtN67qei759MLDhpq/0bi92/50jc9PX2ERCIRHQ6HRK/Xu44fP17V2dmJkpISfXl5+Xs6nc6j0+k6Fi1aVL9///7gpUuX3vVl3NmzZ1vHjBnTDgAzZsxoKikp0QLA/v37dcnJyfemTJnSBgCbNm26vXv37q7q0Pjx4+3e7+Pi4jqys7PvnDlzRg2g0bt+1apV9QaDwQ0AkyZNsqtUKvfRo0c1qamprTt37tQlJSXZIiMjOwHgn//5n2vNZrNDLpeL27Zt03/nO98Zcfbs2fdeffXVdl+O49NgxYmIiIiIaJDat29ftc1mu+x0Oi9s2LDh5muvvRZXU1Mjc7lcQmxsbIe3X0xMTEdDQ4PPE0eEhYV1PYCkUCg8drvdDwBu377tbzQau8bVaDQerVbb6V2+cuVKwKRJk0aEhITEq1Qqc0FBgbGpqalHMScmJqaj+3JaWpp1z549egA4ePBgcHp6ele1KTk5+b5Op/MEBgaKP/zhD60Wi6XtyJEjQb4ex6fBihMRERER0TPiayXoeZNKpcjKympZsmSJePr0aaVUKhWrqqpkY8eOdQLAjRs3ZAaDwQUASqXS7XA4ugostbW1PidU4eHhrsrKykDvss1m82tpaenKORYsWBBlMpnsRUVFNTqdzpOfnz+kuLhY130MQRC6L+LNN9+0JiQkvFpeXh5YU1Mjz8jIaH7c/gVBgCiKvob7qbDiREREREQ0yHk8Huzdu1drs9mkZrPZkZKS0rxq1Spjc3Oz37Vr12SFhYWGtLQ0KwBYLBbHuXPnVFVVVTKr1SpZu3ZtWF/je82ePbv51KlTQSdPnlQ5nU5h+fLlEaIodmVCbW1tEo1G4w4KCvJcunRJvmPHjj4neRg+fLjLZDLdz8rKipk8eXKLSqUSAeDu3buSw4cPa+x2u+ByufCzn/1Mf+7cOdW3vvWte09zjvrCxImIiIiIaJBKS0uLVSgUZrVabX7rrbeMW7duvZ6YmOjctm3bTYVC4Rk2bJhpwoQJI2fOnNm0ePHiuwCQmpraOnXq1GaLxfKK2WwelZKS4nMikpiY6Fy3bt3N7OzsmLCwsHidTtdpMBi6br1bv379rcOHD+tVKpU5Nzc3avr06U1PGs9rzpw51qqqqsDMzEyrd11HR4fw93//98bQ0NAEvV6f8POf/3zIvn37PoyPj3/mzzcBgNBfpaz+lpiYKJ4/f36gwyAiIiKiQU4QhAuiKCb21lZRUXEjPj7epwkV6OmdOHFClZOTE1NbW3tVIpH0234qKipC4uPjo3trY8WJiIiIiIheWO3t7cLmzZsNGRkZd/szaeoLEyciIiIiInohXbx4Ua7VahMaGxv9V69e3TCQsXBWPSIiIiIieiFZLBanw+G4NNBxAKw4ERERERER9YmJExERERERUR+YOBEREREREfWBiRMREREREVEfmDgRERERERH1gYkTERERERH1G6PRaDpy5Ih6oOP4rJg4ERERERENQkaj0SSXyy0KhcKs0WgSJk6cOKK6utp/oON61n7xi1/ohg0b9mpgYKA5MjJy9G9+8xtVf+yHiRMRERER0SB14MCBKrvdfqm+vr4iNDS0c+HChUMHOiZfuVyuPvv8+te/1vzDP/zDS7/85S9vtLW1Xfrv//7vyri4uPb+iIeJExERERHRIKdQKMRZs2Y1V1dXBwKA1WqVpKamRut0uviIiAjTypUrw91uNwBg2bJlEdOmTYvxbltZWSkTBGGsN5FJSkqKW7x4cYTFYhmpVCrN48aNi62rq5N6+xcWFuojIiJMWq02IS8vL6x7HKWlpYqEhISRarU6ITQ0dExmZuZQp9MpeNsFQRhbUFAQGhUVNTo6Oto0d+7cofPnz3+p+xjJyckj8vPzhwBAfn5+xIoVK+q+/vWv35dIJIiJiXHFxMT0nXE9BSZORERERESDnM1m8zt48KDObDa3AUBubm5ka2urpKam5mppaWnloUOHgrds2RLi63hFRUX6Xbt2XW9oaLjscrn81qxZYwCACxcuyFesWBG1ffv263V1dRVWq1Xa0NAg824nlUqxcePGW01NTZfLyso+KCsrU69fvz60+9jHjh3Tnj179v3Kysp3cnJy7hYXF+u9SV1dXZ20vLxcPW/evKbOzk688847ijt37kiHDh062mAwjMnMzBza1tYmoB9I++5CRERERES+KM7PiWysfkfRn/sYMmK0fdpPdtzypW96evoIiUQiOhwOiV6vdx0/fryqs7MTJSUl+vLy8vd0Op1Hp9N1LFq0qH7//v3BS5cuvevLuLNnz7aOGTOmHQBmzJjRVFJSogWA/fv365KTk+9NmTKlDQA2bdp0e/fu3UO8240fP97u/T4uLq4jOzv7zpkzZ9QAGr3rV61aVW8wGNwAMGnSJLtKpXIfPXpUk5qa2rpz505dUlKSLTIysvPGjRv+nZ2dwtGjR3VnzpyplMlk4je/+c0Rf/u3fxuxdevWj3w5jk+DFSciIiIiokFq37591Tab7bLT6bywYcOGm6+99lpcTU2NzOVyCbGxsR3efjExMR0NDQ0+TxwRFhbWdTucQqHw2O12PwC4ffu2v9Fo7BpXo9F4tFptp3f5ypUrAZMmTRoREhISr1KpzAUFBcampqYexZyYmJiO7stpaWnWPXv26AHg4MGDwenp6U0AoFQqPQCwYMGCxqioKFd4eHjn3/zN39T/7ne/C/L1OD4NVpyIiIiIiJ4RXytBz5tUKkVWVlbLkiVLxNOnTyulUqlYVVUlGzt2rBMAbty4ITMYDC4AUCqVbofD0VVgqa2t9TmhCg8Pd1VWVgZ6l202m19LS0tXzrFgwYIok8lkLyoqqtHpdJ78/PwhxcXFuu5jCELPO+3efPNNa0JCwqvl5eWBNTU18oyMjGYACA0NdRsMBtfD/fsLK05ERERERIOcx+PB3r17tTabTWo2mx0pKSnNq1atMjY3N/tdu3ZNVlhYaEhLS7MCgMVicZw7d05VVVUls1qtkrVr14b1Nb7X7Nmzm0+dOhV08uRJldPpFJYvXx4himJXZtPW1ibRaDTuoKAgz6VLl+Q7duwY8qTxAGD48OEuk8l0PysrK2by5MktKpVK9LalpaXd/fnPfz7ko48+kt65c0eydetWw1/91V+1fMrT4xMmTkREREREg1RaWlqsQqEwq9Vq81tvvWXcunXr9cTEROe2bdtuKhQKz7Bhw0wTJkwYOXPmzKbFixffBYDU1NTWqVOnNlssllfMZvOolJSUe77uLzEx0blu3bqb2dnZMWFhYfE6na7TYDB03Xq3fv36W4cPH9arVCpzbm5u1PTp05t8GXfOnDnWqqqqwMzMTGv39evWratLSEi4P3LkyNGjRo0abTKZ7AUFBXW+xvtpCKIo9t3rBZSYmCieP39+oMMgIiIiokFOEIQLoigm9tZWUVFxIz4+3qcJFejpnThxQpWTkxNTW1t7VSKR9Nt+KioqQuLj46N7a2PFiYiIiIiIXljt7e3C5s2bDRkZGXf7M2nqCxMnIiIiIiJ6IV28eFGu1WoTGhsb/VevXt0wkLFwVj0iIiIiInohWSwWp8PhuDTQcQCsOBEREREREfWJiRMREREREVEfmDgRERERERH1gYkTERERERFRH5g4ERERERER9YGJExERERER9Ruj0Wg6cuSIeqDj+KyYOBERERERDUJGo9Ekl8stCoXCrNFoEiZOnDiiurraf6DjepYUCoW5+5dEIhmblZUV2R/7YuJERERERDRIHThwoMput1+qr6+vCA0N7Vy4cOHQgY7JVy6Xq88+drv9kvervr6+IiAgwJOWltbcH/EwcSIiIiIiGuQUCoU4a9as5urq6kAAsFqtktTU1GidThcfERFhWrlyZbjb7QYALFu2LGLatGkx3m0rKytlgiCM9SYySUlJcYsXL46wWCwjlUqledy4cbF1dXVSb//CwkJ9RESESavVJuTl5YV1j6O0tFSRkJAwUq1WJ4SGho7JzMwc6nQ6BW+7IAhjCwoKQqOiokZHR0eb5s6dO3T+/PkvdR8jOTl5RH5+/pCHj3H37t06vV7f+frrr7c9m7PWExMnIiIiIqJBzmaz+R08eFBnNpvbACA3NzeytbVVUlNTc7W0tLTy0KFDwVu2bAnxdbyioiL9rl27rjc0NFx2uVx+a9asMQDAhQsX5CtWrIjavn379bq6ugqr1SptaGiQebeTSqXYuHHjraampstlZWUflJWVqdevXx/afexjx45pz549+35lZeU7OTk5d4uLi/XepK6urk5aXl6unjdvXtPDMf3qV78K/va3v2318+ufFEfadxciIiIiIvLFlVt7Im3O24r+3IdaHmEfEzn3li9909PTR0gkEtHhcEj0er3r+PHjVZ2dnSgpKdGXl5e/p9PpPDqdrmPRokX1+/fvD166dOldX8adPXu2dcyYMe0AMGPGjKaSkhItAOzfv1+XnJx8b8qUKW0AsGnTptu7d+/uqg6NHz/e7v0+Li6uIzs7+86ZM2fUABq961etWlVvMBjcADBp0iS7SqVyHz16VJOamtq6c+dOXVJSki0yMrKzezxVVVWyc+fOqXft2nXDl/ifBitORERERESD1L59+6ptNttlp9N5YcOGDTdfe+21uJqaGpnL5RJiY2M7vP1iYmI6GhoafJ44IiwsrOsBJIVC4bHb7X4AcPv2bX+j0dg1rkaj8Wi12q4k58qVKwGTJk0aERISEq9SqcwFBQXGpqamHsWcmJiYju7LaWlp1j179ugB4ODBg8Hp6emPVJt++ctfBlsslraRI0d2PNz2rLDiRERERET0jPhaCXrepFIpsrKyWpYsWSKePn1aKZVKxaqqKtnYsWOdAHDjxg2ZwWBwAYBSqXQ7HI6uAkttba3PCVV4eLirsrIy0Ltss9n8WlpaunKOBQsWRJlMJntRUVGNTqfz5OfnDykuLtZ1H0MQhO6LePPNN60JCQmvlpeXB9bU1MgzMjIemfzh0KFDwUuWLKnzNc6n8dwTJ0EQYgFcBfAfoijO+Xjd1wEUAhgK4E8AskVR/PPzju1JRJcdbVf+FfZ3fgqP0wo/RRiUY5ZCOfoHECS9/yzVO9vxnw2NeKfVBg+AaEUgUgxD8LJK+fgd2f4DsK4BOt4H/BSAOh0I/jEgDe+1u93lRHHlafyu5hzuuxwIUWjx1y+PxzeGJcFPeExB8eZd4MgF4N3aB8svhwPTE4Hhjzxj9+DYRREf3PxvnP+gCPfaGuAvDcQr0ROROHIGAgN6n5Lf3nIXZ3YW4PKxneiwt0H/0gj85by/xZiUOY/8Mng137+OqoZjaLpfDUBAqHoUYg1ToQl8qdf+brcHv/j1BfzLnnLcargHrVqOBTPGYsXccdCoAnrdxtlUj2v/vhm3zxyB2+WE+qVYxM5agvCvfLP3cwXgWuN9lLx7B39udsJPAEwRaqS8EgKDuvd9iJ4O3L/9U9z/6F/hcTXAzz8EivAfQGVcCkES2Os2dztacaLxHC7brqNTdOMleQi+GfoXeEX9+IlvnBdK0HboLbhuVECQBkD+1VlQvfH3kA6J6rV/e2cnSqqq8NsPP4StvR1auRwpsbF4fcQISB9zL3Bn8wewnft7OP98HPC44R/2Zaj/4i0ERHyt92MXRVy614rfNN5BQ3s7/AU//IUuCJOHhCLI/zH/5rrvAU3rgXu/ADz3AP+hgG4FEDQfeMzP8PWW2zj07u9wpaEKIoBXQmPwnVdfQ6z+MbOPiiLwP1VAySXgjg2Q+wN/GQd8MwFQyXvfhoiIaBDxeDzYt2+f1mazSc1msyMlJaV51apVxkOHDl2/c+eOtLCw0PDDH/6wAQAsFovjpz/9aVhVVZVMr9e7165dG9bX+F6zZ89unjBhQtjJkydVX/va1+4vX748QhTFrg9/bW1tEo1G4w4KCvJcunRJvmPHjiHBwcFPnD5v+PDhLpPJdD8rKytm8uTJLSqVSuze/l//9V/KhoYG/6ysrH6ZTc9LEEWx717PcoeC8FsAgQD+LIriHEEQQgB8CCAXwDEAawCMF0Xxy08aJzExUTx//ny/xwsAYqcDd3/9l+hsfh9wOz5pkCogM3wF+qm/geDXMwf9s92BLTXX0eER0f0M+wsCvmMMx5f1PRLrB+78LdCyFRDvd98CkAQBQy8C/j0/FNpdTqz6/U9x134PLs8nt3kGSPyREPYyln8549Ek5f3bwP/9DeDqRI/AZBJgwdcBc3TPYxdF/P7Cz3Ht1h/R6W7vWu8nSKGQByHtG+ugCAjqsc39pkb8vwwL7C134HZ9Ui31lysxJiUDU1f/v0cOvf7eZVy+uRMesfvvjQCJ4I/EmO8jWPVyj/4ej4hZKw/h5P9+CLvzk23kMgmiwrU492/zoVb2TGzsjbU4s3IyOu02iO5PzpckIBAxU+djZHreI3GVX2/GocsNcLk/OVkCAJlUwJKvRSFS1zMREsVONF39Bjps5wCP/ZMGv0BIFa8iJP4MBL+eH9Tr25vxLzVFaPe40P2nRSZIMXVIEpJD4h+Jq634X2A7+PdAe/d9SCAEqhFS8L+QGuN69O9wu/GT0lJ81NoKl8fzyT4kErwcHIy//cu/hOSh5Kmj8RyaipMhuu2A+Mk2kCoQNOFnUMRlPhLXkdv1+G9rEzq6/bsiARAokSAvdjh0soeSJ/c94OZfAJ03AfGTny8ICkCZAoQfAh76Gb7a+CHW/XE32t09/42VSfyx7EuzMTZiVM99iCKw87+Bsx8CHd1uh5b6AZpA4O9nAmomT0RE9HiCIFwQRTGxt7aKioob8fHxPj0X9LwZjUaT1Wr19/PzEwVBQERERMeyZcvqvve97zXduXNHkpubO/S///u/NQEBAeKcOXPurFu3rk4ikQAA5s6dO/TIkSN6nU7XuXjx4vof/ehHUR0dHRf8/f2RlJQUl5aWZl22bNldANiyZUvw7t27Qy5cuFAJAFu3bg1eu3ZthMPhkCxYsKB+7969oYWFhTemT59uO3HihOr73/9+VENDg2zUqFH28ePH286cOaP2bisIwtirV6++M3r06Pbux/L222/rFy1aFHP06NFr3/rWt2zd29LT06PsdrvfkSNHrn/Wc1ZRURESHx8f3Vvbc02cBEFIAzADwHsARnycOH0XDypMX/24jxLAXQBmURQ/eNxYzzNxaqv4V9jO/h3Q6XikTZAqEfS1/4fAlzN6rF9TWYWG9t5vsfQXBBS8Egf5xz+YAICOD4A/WwDx0X0AEkD514CxqMfaX139DUqqyuDyuB/ZIkAiw/KvpMMc1u0DtEcElu8F7vW2DwCBMuD/zgWkn8RVZ63Er/97TY+kyctPkOCV6GQkj/1uj/VH899ExX/ugafz0T8e+MsVyPp5KYyjk7rWuT0u/P69PHR6nL2GFSANQvKof4LQrfpw/Mw1zF79H2hzPLoPuUyCH839KtZ8L7nH+nMF89B48fcQezlffjI5Jmz8L6gihnWtc7jcWH28qkfS1F24Roa/+6vhPdbZG/4N96q/D3juP7qBnwLq6H+GyvjDHqv/paYINxwNve5DKkiQ//IcaKSfPGPqbrqNxu8PB1y9nC9BgP+o8QhZc7rH6uPXruHQO++go1vS5BUgkeC7Y8di3NBPqluiKOLO/lFw36vsNS5IFTBk1cNP9knFsd7ZjnVVH8LVy78pAoD4IDVyox6qoN1ZBbRs7pk0dW2kBCIOA8rXu1Z5RA++e7wA99p7n2VU4S/H9m/9H0j9uv1uVdcD//KfPZMmL4kfMD4OyBzf+3ESERHh85s4DSYnTpxQ5eTkxNTW1l6VdP8M/Yw9KXF6bpNDCIKgAZAPYPlDTa8CqPAuiKJ4Hw8qUK8+r9j6Yn/np70mTQAgdt7H/atbeqyrczrR3PH4iqOfAFy+Z+u58t52QHzcNm7A/p+PfBj/3fVzvSZNANDu7sBvqv+358rqeqC9lw+PXqIIvFPbY9XVD3+LTnfvCaBHdOP9m6fRPfkWPR5c/c2+XpMmAOjscOL84Z/3WHfH9i6elL53epxosff8A0LhobO9Jk0A4Oxw4/8VXeg5hqMNdy7/odekCQBEdydunTrQY93lWht6v6nwgbv3Xahv7fmB//7tLb0nTQDgscN+e2uPVS2u+6h1Pvnf2gv3qnosO07vBR53xkQRrqo/wd3SMxH77Ycf9po0AUC7243fVFf3WNfZ9C7c9590i7YfnNd/3WPN/zQ1w/2YP8SIAN5pbXs0hnu/7D1pAh5UXlt+2mPVB3f/jPbH/DwCDxK+ioae5wul7z2osPbG7QH+59qDn30iIiJ6IbW3twubN282ZGRk3O3PpKkvz3NWvTUAtoui+PCnMRWAew+tuwfgkYdnBEH4riAI5wVBOH/nzp1+CvNRHqf1ye32nh9SWzs74feY53gAwOURYet86IOc6xaAJyQ18Hvw/Ec3dtdjKkcfa3I8dFpbn9wfHvGRPm0OKx77IR2Ax9MJt+eTBMbV7oDH/fjjED0etDb2TM46Om0Qxd4TGgAQIKC9s2ei+dEd22N6P9Bi61mNcbXdg/CEXzTR3Qmn9XaPda3tnY+tNgGAVBDQ1t4zbk9H75WjrvbOnklSW6cD0sc9iwagU3SjxWXvsc7d/BHgekyyAUCQyuBp7fn7YWt/fH8AaHH2PF8eRwMEvyc8B+p2wuNo7LGqxeVC76nZx3EBcLgfus6eh3/1H9LZ85rca2+D8IR01iOKuOd8qBrVdP9JP8KAy/0ggSIiIqIXzsWLF+VarTahsbHRf/Xq1U/+oNXPnkviJAhCAoBvAPjXXprbAGgeWqcB8MgnY1EUfyGKYqIoiomhoaEPN/cbiWbYk9t1I3ssh8pkj/3LOwD4+/lhSICs58qAMYDwpOcsBEDS851kwYFBj+n7INkYGvTQc3yGoAfJ0WM3Eh706b6PoCj4CY9POAL8FZB0+4DtL1dApuh9wggA8JP6wzBiTI91yoAhPW7De5goeqAM6DlxhWn4kCcmp5EPHYcsKPixfYEHt+qph/Z8NmaISgaZ9PFxuTwigpU9kwupYuRjej8gkfe8tU/nr0Kn+PgP7QGCFGEB2h7r/F96FQh4/AQjYqcLkuCez8MNUT5hQhIARk3PX0FJ0AiIvdye6SVIAyENiu2xLkIuh/QJ10QQAOXDyavU+ISoJIBsdI814aoQeJ5wvgQBCFc/9O6+l/SA5Am1Q2VAj9tTiYiI6MVhsVicDofj0qVLlz7Q6/UD+pfO51VxmgggGsBNQRDqAfwIwExBEC4CeBdA19PvHz/jNPzj9S8EVcJKCNLHfPCUKqFK+FGPVXqZDNGKwMeeXKkgYLTmoeQi6E3gcX9JF+SAJgcQeiZb33p5PAIeM6Ofv0SKb8aO67kyMhgYonnsbqAKAF7umWzFD58MP7/eP1RKJTLEj0jpMQGFIAhISvshpAG9zx7nJ5Ei8Y3v9VinV8bCX/K498QJUAYMgVoe0WPtkvQvQx7Q+6SQCrk/fjT3Kz3WSWRyvDTxDfj5y3rdBgAik9N6LJsi1I/9vO0nAMNDAqFT9Dz/qpdWQPDr/WdF8FNC9dLKHuuUUjleVUVB8rifFkGAJWhEj1Xy8bMfX3ORyiBPmgY/Zc/E8a/j4hDwmIpbgESCqS/3nHxDqo6CzPAlQHjMxJuSAARE9ZyJ8Kt67WPjkgoCvqLTPTp7n27Fg4kgeiMEALolPVZFa8MxRKl/bNVJI1NiZPBDswp+YzTwuDeIyyTAa6bHRE1ERET0ieeVOP0CD5KhhI+/fg6gBMDrAH4NYLQgCDMFQZAD+AmAK0+aGOJ5k4/4DuTD33goeRIAqQLK0d9HwEvfeGSbrKEvQeMvhaxbUiEVBAT4+WFB9FBIHv7LvNQAGHYBQiB6zBIvKAHZK0DoPz+yj78a/mWYhoyAXPJJMiBAgEzijzdGJWOYrpe/5i96DVDKH3xg9PKXAAoZsHjyIzOYadXhGD8mG1KJrEdVyF8ih0Efi8SR0x/Zxfh5qxHxyl/AP/CT8+UnkUIaEIgpP/q/0L/Us+oiCH5IjP4epH6B8BM+SUT8BH/IJEpYonpOPgEAf/GqEX+XMx4KuX+PypMq0B+vf3k4vps69pFtRs39P1AZYyGRf/JBXZBI4SeTI+Fv/i8CHqpKSf0ELBgXiQCpAKnfJ/uQSQRo5FJk/kXPZA4AAnR/hcCw70LwU6B7hir4KSEP/Q7kIbMe2WZ2xNegl6kh65akSOAHmSBFbuTrCHjoljm/QDW0K/4DQoACkHa79gFKSIbEIOi7P3tkH1+NjESS0dgjeRLwIGl6ffhwjB7y6FT02q//Cn4KA9BtYgpIAiD4q6GfcuyRmSQ1/v6Y81IE/AWhxz8sMkFAuDwAfx1ueGQf0H4PUCQ/+Dn/5AgfJFPB/wDIzY9ssuIrc6CSBULW7Y8GMokUSv9A5I3LfHQmSUMQkPYVQCZ9kPF6BUiBYQZgyqOzFhIRERE97LlPRw4AgiD8Az6eVe/j5W8A+CmAKHzyHqcbTxrjec6qBzx46Lzjo9/j/pUtcNtuQKqNg3LMYsjC//Kx2zjdbvypuQXnmu+hUxTxilqFCSF6aB/3PhsA6KgEmjcDjvIH05AHLQDUsx6pNnl5RA8u1lXi5If/i2ZnK4ZqwvDN2HEYru/93UcAgPvtwJkPHkzPLAKwxABfG/lgaubHuHvvz7h07TjutFxHYIAGpuGvY1h44mOrUZ7OTnxwuhjn/+NnsLfcQfioRHwlfSmGjBjda38AaO+04ab1DBruVUAQ/BCuHYtI/VefUI0Czr37ETbv+1+8U3MHESEq/OA7SZjy1Vj4+fVekfC4OnC7/Dhu/tev4LK3Qh+XiJipuVBFDO+1PwC0OFw4Xd2M9+vbIJUISBoahC9FaxHwhNv4Ou6dwf2PNqPTUQWJPAbKiL+BTJv82HdYdXg6cf5eFcqb30eHpxNxqpcwUW+CXvb42x47G67j/n9uQcc7pRDkKii+/iYCx6VBeEy1TxRFXG1sxG+qq3H3/n2Eq9VIiY1FXEhIr/0BwNNhg71yN5zX9kL0tCNg6DehHP19SJSPJo1eDc52lN614rrdjkCJBOP0OpiDNI99VxRED3C/BGgpfPBMU8AYQLcUkD+a/Hq1dThw6vo5/LH2CiCKSDK+im8MS0JQgOqx2+CWFfjtVeDPdx9MP578KmCOenw1ioiI6GOcVe+L44WZjvxZet6JExERERF9MTFx+uJ4IaYjJyIiIiIi+rxi4kRERERERP3GaDSajhw58vjnDz4nmDgREREREQ1CRqPRJJfLLQqFwqzRaBImTpw4orq6+gkP23/+VFZWyr72ta+N0Gg0CSEhIfGZmZlDXS5X3xs+BSZORERERESD1IEDB6rsdvul+vr6itDQ0M6FCxcOHeiYfOVLAvTd7353aEhISGd9fX3FxYsX3/3f//1f1bp16x6dLvgZYOJERERERDTIKRQKcdasWc3V1dWBAGC1WiWpqanROp0uPiIiwrRy5cpwt9sNAFi2bFnEtGnTYrzbVlZWygRBGOtNZJKSkuIWL14cYbFYRiqVSvO4ceNi6+rqut5TUlhYqI+IiDBptdqEvLy8Hi8JLS0tVSQkJIxUq9UJoaGhYzIzM4c6nc6uaYcFQRhbUFAQGhUVNTo6Oto0d+7cofPnz+8xXXRycvKI/Pz8IQBw69atgG9/+9vNCoVCHDp0aOekSZNa33vvvcdPFf0ZMHEiIiIiIhrkbDab38GDB3Vms7kNAHJzcyNbW1slNTU1V0tLSysPHToUvGXLlse/o+QhRUVF+l27dl1vaGi47HK5/NasWWMAgAsXLshXrFgRtX379ut1dXUVVqtV2tDQ0PVeHalUio0bN95qamq6XFZW9kFZWZl6/fr1od3HPnbsmPbs2bPvV1ZWvpOTk3O3uLhY703q6urqpOXl5ep58+Y1AcDChQsbDxw4oLPZbH7Xr1/3P3XqVNDkyZPvPYNT9ghp312IiIiIiMgXOfnFke9UNz7+JZTPwOgRQ+w7fjLtli9909PTR0gkEtHhcEj0er3r+PHjVZ2dnSgpKdGXl5e/p9PpPDqdrmPRokX1+/fvD166dKlPU6vPnj3bOmbMmHYAmDFjRlNJSYkWAPbv369LTk6+N2XKlDYA2LRp0+3du3d33To3fvx4u/f7uLi4juzs7DtnzpxRA2j0rl+1alW9wWBwA8CkSZPsKpXKffToUU1qamrrzp07dUlJSbbIyMhOAPjGN75h2717d4hOpzO73W7MmDHDOmfOnBZfjuHTYsWJiIiIiGiQ2rdvX7XNZrvsdDovbNiw4eZrr70WV1NTI3O5XEJsbGyHt19MTExHQ0ODzxNHhIWFdT2ApFAoPHa73Q8Abt++7W80GrvG1Wg0Hq1W2+ldvnLlSsCkSZNGhISExKtUKnNBQYGxqampRzEnJiamo/tyWlqadc+ePXoAOHjwYHB6enoTALjdbnzzm9+MnTp1arPNZrtYV1d3uaWlRfL973+/x619zworTkREREREz4ivlaDnTSqVIisrq2XJkiXi6dOnlVKpVKyqqpKNHTvWCQA3btyQGQwGFwAolUq3w+HoKrDU1tb6nFCFh4e7Kisru54xstlsfi0tLV05x4IFC6JMJpO9qKioRqfTefLz84cUFxfruo8hCEL3Rbz55pvWhISEV8vLywNramrkGRkZzQDQ2Ngora+vl61cufJOYGCgGBgY6M7Ozrbm5+cbAdR+ujPUN1aciIiIiIgGOY/Hg71792ptNpvUbDY7UlJSmletWmVsbm72u3btmqywsNCQlpZmBQCLxeI4d+6cqqqqSma1WiVr164N62t8r9mzZzefOnUq6OTJkyqn0yksX748QhTFrkyora1NotFo3EFBQZ5Lly7Jd+zY0ecMeMOHD3eZTKb7WVlZMZMnT25RqVQiAISHh3cajcaOjRs3hrpcLty9e1fyb//2b8GjRo2y9zXm02DiREREREQ0SKWlpcUqFAqzWq02v/XWW8atW7deT0xMdG7btu2mQqHwDBs2zDRhwoSRM2fObFq8ePFdAEhNTW2dOnVqs8ViecVsNo9KSUnxebKFxMRE57p1625mZ2fHhIWFxet0uk6DwdB169369etvHT58WK9Sqcy5ublR06dPb/Jl3Dlz5lirqqoCMzMzrd3XHzp0qPp3v/tdUHBwcEJsbOxoqVQq/uxnP+uXqp8gimJ/jNvvEhMTxfPnzw90GEREREQ0yAmCcEEUxcTe2ioqKm7Ex8f7NKECPb0TJ06ocnJyYmpra69KJJJ+209FRUVIfHx8dG9trDgREREREdELq729Xdi8ebMhIyPjbn8mTX1h4kRERERERC+kixcvyrVabUJjY6P/6tWrGwYyFs6qR0RERERELySLxeJ0OByXBjoOgBUnIiIiIiKiPjFxIiIiIiIi6gMTJyIiIiIioj4wcSIiIiIiIuoDEyciIiIiIqI+MHEiIiIiIqJ+YzQaTUeOHFEPdByfFRMnIiIiIqJByGg0muRyuUWhUJg1Gk3CxIkTR1RXV/sPdFzP0sWLF+Vf/vKXX1ar1QlDhw4d/W//9m/a/toXEyciIiIiokHqwIEDVXa7/VJ9fX1FaGho58KFC4cOdEy+crlcfbbPmDFjxOTJk+81Nzdf/ulPf/rnBQsWxFy5ciWgP+Jh4kRERERENMgpFApx1qxZzdXV1YEAYLVaJampqdE6nS4+IiLCtHLlynC32w0AWLZsWcS0adNivNtWVlbKBEEY601kkpKS4hYvXhxhsVhGKpVK87hx42Lr6uqk3v6FhYX6iIgIk1arTcjLywvrHkdpaakiISFhpFqtTggNDR2TmZk51Ol0Ct52QRDGFhQUhEZFRY2Ojo42zZ07d+j8+fNf6j5GcnLyiPz8/CGXL1+WNzY2+v/kJz9pkEql+Ou//mubxWJp2759e3B/nEMmTkREREREg5zNZvM7ePCgzmw2twFAbm5uZGtrq6SmpuZqaWlp5aFDh4K3bNkS4ut4RUVF+l27dl1vaGi47HK5/NasWWMAgAsXLshXrFgRtX379ut1dXUVVqtV2tDQIPNuJ5VKsXHjxltNTU2Xy8rKPigrK1OvX78+tPvYx44d0549e/b9ysrKd3Jycu4WFxfrvUldXV2dtLy8XD1v3rwmURQFPEQURbz33nuBT3mankjadxciIiIiIvJFReGyyNablYr+3IdmaJw9ftGmW770TU9PHyGRSESHwyHR6/Wu48ePV3V2dqKkpERfXl7+nk6n8+h0uo5FixbV79+/P3jp0qV3fRl39uzZ1jFjxrQDwIwZM5pKSkq0ALB//35dcnLyvSlTprQBwKZNm27v3r17iHe78ePH273fx8XFdWRnZ985c+aMGkCjd/2qVavqDQaDGwAmTZpkV6lU7qNHj2pSU1Nbd+7cqUtKSrJFRkZ2DhkyxK3X6zt/8pOfGH784x83lpSUqM+dO6f+0pe+ZPPlGD4tVpyIiIiIiAapffv2VdtststOp/PChg0bbr722mtxNTU1MpfLJcTGxnZ4+8XExHQ0NDT4PHFEWFhY1wNICoXCY7fb/QDg9u3b/kajsWtcjUbj0Wq1nd7lK1euBEyaNGlESEhIvEqlMhcUFBibmpp6FHNiYmI6ui+npaVZ9+zZoweAgwcPBqenpzcBQEBAgHj48OHqkydPag0GQ/ymTZsMKSkpzRERET22f1ZYcSIiIiIiekZ8rQQ9b1KpFFlZWS1LliwRT58+rZRKpWJVVZVs7NixTgC4ceOGzGAwuABAqVS6HQ5HV4GltrbW54QqPDzcVVlZ2XWrnM1m82tpaenKORYsWBBlMpnsRUVFNTqdzpOfnz+kuLhY130MQeh5B96bb75pTUhIeLW8vDywpqZGnpGR0ext+9KXvuQ4d+5cpXfZbDaPTE9P96lq9mmx4kRERERENMh5PB7s3btXa7PZpGaz2ZGSktK8atUqY3Nzs9+1a9dkhYWFhrS0NCsAWCwWx7lz51RVVVUyq9UqWbt2bVhf43vNnj27+dSpU0EnT55UOZ1OYfny5RHdn0Vqa2uTaDQad1BQkOfSpUvyHTt2DHnSeAAwfPhwl8lkup+VlRUzefLkFpVKJXrb/vSnPwXa7XbBZrP5/eQnPzE0Njb6/+AHP7B+2vPjCyZORERERESDVFpaWqxCoTCr1WrzW2+9Zdy6dev1xMRE57Zt224qFArPsGHDTBMmTBg5c+bMpsWLF98FgNTU1NapU6c2WyyWV8xm86iUlJR7vu4vMTHRuW7dupvZ2dkxYWFh8TqdrtNgMHTdOrd+/fpbhw8f1qtUKnNubm7U9OnTm3wZd86cOdaqqqrAzMzMHknRjh07gsPCwuINBkP8H/7wB83JkyevBQYGio8b57MQRLFfxu13iYmJ4vnz5wc6DCIiIiIa5ARBuCCKYmJvbRUVFTfi4+P75dYw+sSJEydUOTk5MbW1tVclEkm/7aeioiIkPj4+urc2VpyIiIiIiOiF1d7eLmzevNmQkZFxtz+Tpr4wcSIiIiIiohfSxYsX5VqtNqGxsdF/9erVDQMZC2fVIyIiIiKiF5LFYnE6HI5LAx0HwIoTERERERFRn5g4ERERERER9YGJExERERERUR+YOBEREREREfWBiRMREREREVEfmDgREREREVG/MRqNpiNHjqgHOo7PiokTEREREdEgZDQaTXK53KJQKMwajSZh4sSJI6qrq/0HOq5nae3ataGjR48eJZPJLDNnzox+uL24uFgdExPzamBgoPlLX/rSy9euXZM97b6YOBERERERDVIHDhyostvtl+rr6ytCQ0M7Fy5cOHSgY/KVy+Xqs4/RaHTl5eXVvfHGG3cfbqurq5POmTNn+I9//OPbVqv1ckJCgv2NN94Y9rTxMHEiIiIiIhrkFAqFOGvWrObq6upAALBarZLU1NRonU4XHxERYVq5cmW42+0GACxbtixi2rRpMd5tKysrZYIgjPUmMklJSXGLFy+OsFgsI5VKpXncuHGxdXV1Um//wsJCfUREhEmr1Sbk5eWFdY+jtLRUkZCQMFKtVieEhoaOyczMHOp0OgVvuyAIYwsKCkKjoqJGR0dHm+bOnTt0/vz5L3UfIzk5eUR+fv4QAMjKymqZO3duS3BwcOfDx/yrX/1KO2LECGdOTk6zQqEQN2zYcLuyslJx6dIl+dOcQyZORERERESDnM1m8zt48KDObDa3AUBubm5ka2urpKam5mppaWnloUOHgrds2RLi63hFRUX6Xbt2XW9oaLjscrn81qxZYwCACxcuyFesWBG1ffv263V1dRVWq1Xa0NDQdXucVCrFxo0bbzU1NV0uKyv7oKysTL1+/frQ7mMfO3ZMe/bs2fcrKyvfycnJuVtcXKz3JnV1dXXS8vJy9bx585r6ivHdd98NfOWVV+zeZY1G44mMjGyvqKh4qsRJ2ncXIiIiIiLyxd7ztyPr7rUr+nMf4UEB9jmJEbd86Zuenj5CIpGIDodDotfrXcePH6/q7OxESUmJvry8/D2dTufR6XQdixYtqt+/f3/w0qVLH7nlrTezZ8+2jhkzph0AZsyY0VRSUqIFgP379+uSk5PvTZkypQ0ANm3adHv37t1DvNuNHz++K5GJi4vryM7OvnPmzBk1gEbv+lWrVtUbDAY3AEyaNMmuUqncR48e1aSmprbu3LlTl5SUZIuMjHykwvSw+/fv+4WEhPTop1ar3a2trRJfjvFhrDgREREREQ1S+/btq7bZbJedTueFDRs23HzttdfiampqZC6XS4iNje3w9ouJieloaGjweeKIsLCwrgeQFAqFx263+wHA7du3/Y1GY9e4Go3Go9Vqu5KXK1euBEyaNGlESEhIvEqlMhcUFBibmpp6FHNiYmI6ui+npaVZ9+zZoweAgwcPBqenp/dZbQIApVLpeThJamtr89NoNG5fj7M7VpyIiIiIiJ4RXytBz5tUKkVWVlbLkiVLxNOnTyulUqlYVVUlGzt2rBMAbty4ITMYDC4AUCqVbofD0VVgqa2t9TmhCg8Pd1VWVgZ6l202m19LS0tXzrFgwYIok8lkLyoqqtHpdJ78/PwhxcXFuu5jCILQfRFvvvmmNSEh4dXy8vLAmpoaeUZGRrMvsbz66quOffv2dd1+2Nra6nfr1q2A+Ph4p6/H0x0rTkREREREg5zH48HevXu1NptNajabHSkpKc2rVq0yNjc3+127dk1WWFhoSEtLswKAxWJxnDt3TlVVVSWzWq2StWvXhvU1vtfs2bObT506FXTy5EmV0+kUli9fHiGKYlcm1NbWJtFoNO6goCDPpUuX5Dt27BjypPEAYPjw4S6TyXQ/KysrZvLkyS0qlUr0trlcLtjtdsHtdgtut1uw2+2CdxKL9PT0lqqqKvmuXbu0drtdyMvLC3/55ZcdZrOZiRMREREREX0iLS0tVqFQmNVqtfmtt94ybt269XpiYqJz27ZtNxUKhWfYsGGmCRMmjJw5c2bT4sWL7wJAampq69SpU5stFssrZrN5VEpKyj1f95eYmOhct27dzezs7JiwsLB4nU7XaTAYum69W79+/a3Dhw/rVSqVOTc3N2r69Ok+3XY3Z84ca1VVVWBmZqa1+/q8vLwIpVJpefvtt8OKi4v1SqXSkpeXFwEAERERnXv27PnwrbfeMur1evOFCxdUhw4dqvH1WB4miKLYd68XUGJionj+/PmBDoOIiIiIBjlBEC6IopjYW1tFRcWN+Ph4nyZUoKd34sQJVU5OTkxtbe1VieSp5nbwSUVFRUh8fHx0b22sOBERERER0Qurvb1d2Lx5syEjI+NufyZNfWHiREREREREL6SLFy/KtVptQmNjo//q1asbBjIWzqpHREREREQvJIvF4nQ4HJcGOg6AFSciIiIiIqI+MXEiIiIiIiLqAxMnIiIiIiKiPjBxIiIiIiIi6gMTJyIiIiIioj4wcSIiIiIion5jNBpNR44cUQ90HJ8VEyciIiIiokHIaDSa5HK5RaFQmDUaTcLEiRNHVFdX+w90XM/S2rVrQ0ePHj1KJpNZZs6cGd29zel0CpMnTx5mNBpNgiCMPX78+GdK3pg4ERERERENUgcOHKiy2+2X6uvrK0JDQzsXLlw4dKBj8pXL5eqzj9FodOXl5dW98cYbd3tr/+pXv9q2Y8eO6yEhIX0P1gcmTkREREREg5xCoRBnzZrVXF1dHQgAVqtVkpqaGq3T6eIjIiJMK1euDHe73QCAZcuWRUybNi3Gu21lZaVMEISx3kQmKSkpbvHixREWi2WkUqk0jxs3Lraurk7q7V9YWKiPiIgwabXahLy8vLDucZSWlioSEhJGqtXqhNDQ0DGZmZlDnU6n4G0XBGFsQUFBaFRU1Ojo6GjT3Llzh86fP/+l7mMkJyePyM/PHwIAWVlZLXPnzm0JDg7ufPiY5XK5+JOf/KTx9ddfb/Pz++xpDxMnIiIiIqJBzmaz+R08eFBnNpvbACA3NzeytbVVUlNTc7W0tLTy0KFDwVu2bAnxdbyioiL9rl27rjc0NFx2uVx+a9asMQDAhQsX5CtWrIjavn379bq6ugqr1SptaGiQebeTSqXYuHHjraampstlZWUflJWVqdevXx/afexjx45pz549+35lZeU7OTk5d4uLi/XepK6urk5aXl6unjdvXtMzOTGfgrTvLkRERERE5IuWazmRnfffUfTnPqTK0Xbtyztu+dI3PT19hEQiER0Oh0Sv17uOHz9e1dnZiZKSEn15efl7Op3Oo9PpOhYtWlS/f//+4KVLl/Z6y9vDZs+ebR0zZkw7AMyYMaOppKRECwD79+/XJScn35syZUobAGzatOn27t27h3i3Gz9+vN37fVxcXEd2dvadM2fOqAE0etevWrWq3mAwuAFg0qRJdpVK5T569KgmNTW1defOnbqkpCRbZGTkIxWm/saKExERERHRILVv375qm8122el0XtiwYcPN1157La6mpkbmcrmE2NjYDm+/mJiYjoaGBp8njggLC+t6ZkihUHjsdrsfANy+fdvfaDR2javRaDxarbYrybly5UrApEmTRoSEhMSrVCpzQUGBsampqUcxJyYmpqP7clpamnXPnj16ADh48GBwenr6c682Aaw4ERERERE9M75Wgp43qVSKrKysliVLloinT59WSqVSsaqqSjZ27FgnANy4cUNmMBhcAKBUKt0Oh6OrwFJbW+tzQhUeHu6qrKwM9C7bbDa/lpaWrpxjwYIFUSaTyV5UVFSj0+k8+fn5Q4qLi3XdxxAEofsi3nzzTWtCQsKr5eXlgTU1NfKMjIzmT30CngFWnIieI49HRNnlm/h16ft4//qdgQ6HiIiIviA8Hg/27t2rtdlsUrPZ7EhJSWletWqVsbm52e/atWuywsJCQ1pamhUALBaL49y5c6qqqiqZ1WqVrF27Nqyv8b1mz57dfOrUqaCTJ0+qnE6nsHz58ghRFLsyoba2NolGo3EHBQV5Ll26JN+xY8eQJ40HAMOHD3eZTKb7WVlZMZMnT25RqVSit83lcsFutwtut1twu92C3W4Xus/G53A4BLvdLgBAR0eHYLfbBY/H4+vh9MDEieg5+e3/foiIyRuR8je/QvY/FGPsnF/gLzJ/iZv19wY6NCIiIhqk0tLSYhUKhVmtVpvfeust49atW68nJiY6t23bdlOhUHiGDRtmmjBhwsiZM2c2LV68+C4ApKamtk6dOrXZYrG8YjabR6WkpPj8YSUxMdG5bt26m9nZ2TFhYWHxOp2u02AwdN16t379+luHDx/Wq1Qqc25ubtT06dN9uu1uzpw51qqqqsDMzExr9/V5eXkRSqXS8vbbb4cVFxfrlUqlJS8vL8LbPmLEiNFKpdLS2NjoP3PmzFilUmmpqqqSPbqHvgmiKPbd6wWUmJgonj9/fqDDIPLJ2Xc+wqSFu2F39nyFgMRPwBC9EteKfgiV4ql+h4mIiKifCYJwQRTFxN7aKioqbsTHx/s0oQI9vRMnTqhycnJiamtrr0okkn7bT0VFRUh8fHx0b22sOBE9B//nZ6ceSZoAwO0R0Xq/HXv+s2IAoiIiIiJ68bW3twubN282ZGRk3O3PpKkvTJyI+pkoiig9f+Ox7fcdLhz87bvPLyAiIiKiz4mLFy/KtVptQmNjo//q1asbBjIWzqpH9Bz0dUtsp/vpHlIk8rJ2dOB3d+7iyj0bRACj1Sp8Y0gIhgQEDHRoRERET81isTgdDselgY4DYMWJqN8JgoAvm156bLtC7o/USSOfY0Q02PzZ7sDaax/ij9Zm3OvsRGtnJ/63uQX/XPUhPrx/f6DDIyIiGhSYOBE9B//4vWQo5I++AkEQALlMipy/Ng9AVDQYiKKI7X++hXaPB93rlh4AHR4R227cgudzOgkQERHRi4SJE9FzMDExGtt//NdQK2RQK2VQyP2hUsgQHa5F2fZ50GkC+x6EqBfX7Q7cd7sf294hirjWxqoTERHRZ8VnnIiek7TXR2P6xJE48T9VuNNsx6iYEPxlwtBH3o5N9Gm0uB6drbE7URTR3Ecfor6IoogP7t7FrdZWqGQyWMLDIZfyIwQRfbHwXz2i50geIEXqpFEDHQYNIjr/R28B7U4QBOj76EP0JLdtNqwrK8M9pxMeUYSfnx88oois+Hh8fdiwgQ6PiOi54a16RESfY9GKQKie8E6LAD8/xKqUzzEiGkycnZ34hz/8AY3378PpdqPD44GzsxMdbjd2V1TgYl3dQIdIRJ8DRqPRdOTIEfVAx/FZMXEiIvocEwQBuVGRCPDzQ/f0yQ+AzO9Bmx9vB6WndObPf0Z7Zyd6m16kw+3GgXfeee4xEZHvjEajSS6XWxQKhVmj0SRMnDhxRHV19aC6DWHt2rWho0ePHiWTySwzZ86M7t72+9//XvnVr341NigoKEGn08VPmTJl2J///OenPn4mTkREn3ORikD83cvDMT5YD52/FFp/KcbpdVgdOwLDlIqBDo8+xy7U1aH9CZOP3Lp3D64ntBPRwDtw4ECV3W6/VF9fXxEaGtq5cOHCoQMdk69cPjyjazQaXXl5eXVvvPHG3YfbrFarJDc39+7169ev3Lx586pKpfLMmTMn+mnjYeJERDQI6GUyzDKGY82oOPzjqDh856UIhATIBjos+pzzpVrJCW7oM3E3AXdWANXBwDV/4HoccG8nwNcoPHMKhUKcNWtWc3V1dSDwIKlITU2N1ul08REREaaVK1eGuz/+Q8iyZcsipk2bFuPdtrKyUiYIwlhvIpOUlBS3ePHiCIvFMlKpVJrHjRsXW1dX1zV3QmFhoT4iIsKk1WoT8vLywrrHUVpaqkhISBipVqsTQkNDx2RmZg51Op1d/5AIgjC2oKAgNCoqanR0dLRp7ty5Q+fPn9/jhZjJyckj8vPzhwBAVlZWy9y5c1uCg4M7Hz7mb3/72605OTnNer3eo1arPYsXL268ePGi6mnPIRMnIiIi6tVXIyMhf8IzdLHBwZD68aMEPSW3FfizGWjeAniaAHQCrmtA4w+A+mwmT8+YzWbzO3jwoM5sNrcBQG5ubmRra6ukpqbmamlpaeWhQ4eCt2zZEuLreEVFRfpdu3Zdb2houOxyufzWrFljAIALFy7IV6xYEbV9+/brdXV1FVarVdrQ0ND1lzypVIqNGzfeampqulxWVvZBWVmZev369aHdxz527Jj27Nmz71dWVr6Tk5Nzt7i4WO9N6urq6qTl5eXqefPmNX3ac3Dq1CnViBEjHJ92u67Yn3ZDIiIiGty+ZDTi0LvvwmW3w/3Qh1iZRIJ0k2mAIqNB4e5PgM46AA/djiXagbbDgCMXUIwfkNA+i70flUbWtTf1633S4QF6+xzjpFu+9E1PTx8hkUhEh8Mh0ev1ruPHj1d1dnaipKREX15e/p5Op/PodLqORYsW1e/fvz946dKlj9zy1pvZs2dbx4wZ0w4AM2bMaCopKdECwP79+3XJycn3pkyZ0gYAmzZtur179+4h3u3Gjx9v934fFxfXkZ2dfefMmTNqAI3e9atWrao3GAxuAJg0aZJdpVK5jx49qklNTW3duXOnLikpyRYZGflIhelJ/vSnPwVu3Lgx4uDBg9WfZrvu+GciIiIi6pW/RIL8SZPwcnAw/P38oPD3h1wqRVBAAJZ8+csYGeLzH6eJehJFoHU3HkmautrtwL2fP9eQBqt9+/ZV22y2y06n88KGDRtuvvbaa3E1NTUyl8slxMbGdnj7xcTEdDQ0NPg8cUJYWFjXxVMoFB673e4HALdv3/Y3Go1d42o0Go9Wq+1Kcq5cuRIwadKkESEhIfEqlcpcUFBgbGpq6lHMiYmJ6ei+nJaWZt2zZ48eAA4ePBicnp7+qapN77zzTsC3vvWt2LVr196cPHly26fZtjtWnIiIiOixtHI5/n7iRNS3teGjj1+AGxsczNka6TNyP0iOHksEXD4VVF44vlaCnjepVIqsrKyWJUuWiKdPn1ZKpVKxqqpKNnbsWCcA3LhxQ2YwGFwAoFQq3Q6Ho6vAUltb63NCFR4e7qqsrAz0LttsNr+WlpaunGPBggVRJpPJXlRUVKPT6Tz5+flDiouLdd3HePjZyTfffNOakJDwanl5eWBNTY08IyOj2dd4rl27Jnv99ddf/tGPflS3aNGiT317X3esOBEREVGfwlQqjI2IQFxICJMm+uwEKSAJfUIHKRAw5rmF80Xg8Xiwd+9erc1mk5rNZkdKSkrzqlWrjM3NzX7Xrl2TFRYWGtLS0qwAYLFYHOfOnVNVVVXJrFarZO3atWF9je81e/bs5lOnTgWdPHlS5XQ6heXLl0eIotj1j0ZbW5tEo9G4g4KCPJcuXZLv2LFjyJPGA4Dhw4e7TCbT/aysrJjJkye3qFSqrnuHXS4X7Ha74Ha7BbfbLdjtdsE7icX169f9v/71r7+ck5PTuHLlyjuf6oT1gokTERERET1/2iWAENh7m+AP6H7wXMMZrNLS0mIVCoVZrVab33rrLePWrVuvJyYmOrdt23ZToVB4hg0bZpowYcLImTNnNi1evPguAKSmprZOnTq12WKxvGI2m0elpKTc83V/iYmJznXr1t3Mzs6OCQsLi9fpdJ0Gg6Hr1rv169ffOnz4sF6lUplzc3Ojpk+f7lMVaM6cOdaqqqrAzMxMa/f1eXl5EUql0vL222+HFRcX65VKpSUvLy8CAH7605+G1NbWBmzcuDFCoVCYvV++HsvDBPFzOmNJYmKieP78+YEOg4iIiIiehugCPkoBHOWAeP/jlRJAkAGh/wJovz+g4XUnCMIFURQTe2urqKi4ER8f79OECvT0Tpw4ocrJyYmpra29KnnCbJ+fVUVFRUh8fHx0b218xomIiIiInj/BHzD+Brh/DGh5G+hsAOQWQLeUt+lRD+3t7cLmzZsNGRkZd/szaeoLEyciIiIiGhiCBFBNf/BF1IuLFy/Kx40bN2rkyJGO1atXNwxkLEyciIiIiIjohWSxWJwOh+PSQMcBcHIIIiIiIiKiPjFxIiIiIiIi6gMTJyIiIiIioj4wcSIiIiIiIuoDEyciIiIiIqI+MHEiIiIiIqJ+YzQaTUeOHFEPdByfFRMnIiIiIqJByGg0muRyuUWhUJg1Gk3CxIkTR1RXV/sPdFzP0tq1a0NHjx49SiaTWWbOnBndve3ChQvy0aNHj9JoNAkajSbhq1/96ssXLlyQP+2+mDgREREREQ1SBw4cqLLb7Zfq6+srQkNDOxcuXDh0oGPylcvl6rOP0Wh05eXl1b3xxht3H26LiopyHT58+MOWlpbLTU1Nl1NSUlpmz5497GnjYeJERERERDTIKRQKcdasWc3V1dWBAGC1WiWpqanROp0uPiIiwrRy5cpwt9sNAFi2bFnEtGnTYrzbVlZWygRBGOtNZJKSkuIWL14cYbFYRiqVSvO4ceNi6+rqpN7+hYWF+oiICJNWq03Iy8sL6x5HaWmpIiEhYaRarU4IDQ0dk5mZOdTpdAredkEQxhYUFIRGRUWNjo6ONs2dO3fo/PnzX+o+RnJy8oj8/PwhAJCVldUyd+7cluDg4M6HjzkkJMQdFxfX4efnB1EUIZFIxFu3bgU87Tlk4kRERERENMjZbDa/gwcP6sxmcxsA5ObmRra2tkpqamqulpaWVh46dCh4y5YtIb6OV1RUpN+1a9f1hoaGyy6Xy2/NmjUG4MHtcStWrIjavn379bq6ugqr1SptaGiQebeTSqXYuHHjraampstlZWUflJWVqdevXx/afexjx45pz549+35lZeU7OTk5d4uLi/XepK6urk5aXl6unjdvXpOvsarV6oTAwMCxf/d3fzf0hz/8Yb2v2z1M2ncXIiIiIiLyRUthTmTnzXcU/bkP6dDRdu2iHbd86Zuenj5CIpGIDodDotfrXcePH6/q7OxESUmJvry8/D2dTufR6XQdixYtqt+/f3/w0qVLH7nlrTezZ8+2jhkzph0AZsyY0VRSUqIFgP379+uSk5PvTZkypQ0ANm3adHv37t1DvNuNHz/e7v0+Li6uIzs7+86ZM2fUABq961etWlVvMBjcADBp0iS7SqVyHz16VJOamtq6c+dOXVJSki0yMvKRCtPj2Gy2y62trX5vv/12cHR0dIev2z2MFSciIiIiokFq37591Tab7bLT6bywYcOGm6+99lpcTU2NzOVyCbGxsV1JRExMTEdDQ4PPE0eEhYV1PYCkUCg8drvdDwBu377tbzQau8bVaDQerVbbleRcuXIlYNKkSSNCQkLiVSqVuaCgwNjU1NSjmBMTE9MjuUlLS7Pu2bNHDwAHDx4MTk9P97na1D2OFStW3Fm4cGHMRx999FTFI1aciIiIiIieEV8rQc+bVCpFVlZWy5IlS8TTp08rpVKpWFVVJRs7dqwTAG7cuCEzGAwuAFAqlW6Hw9FVYKmtrfU5oQoPD3dVVlYGepdtNptfS0tLV86xYMGCKJPJZC8qKqrR6XSe/Pz8IcXFxbruYwiC0H0Rb775pjUhIeHV8vLywJqaGnlGRkbzpz4BADweD5xOp9+NGzf8jUajzxUrL1aciIiIiIgGOY/Hg71792ptNpvUbDY7UlJSmletWmVsbm72u3btmqywsNCQlpZmBQCLxeI4d+6cqqqqSma1WiVr164N62t8r9mzZzefOnUq6OTJkyqn0yksX748QhTFrkyora1NotFo3EFBQZ5Lly7Jd+zYMeRJ4wHA8OHDXSaT6X5WVlbM5MmTW1Qqlehtc7lcsNvtgtvtFtxut2C32wXvJBa//vWvNX/84x8DOzs70dTU5Dd//vxIjUbTaTabnZ/q5H2MiRMRERER0SCVlpYWq1AozGq12vzWW28Zt27dej0xMdG5bdu2mwqFwjNs2DDThAkTRs6cObNp8eLFdwEgNTW1derUqc0Wi+UVs9k8KiUl5Z6v+0tMTHSuW7fuZnZ2dkxYWFi8TqfrNBgMXbferV+//tbhw4f1KpXKnJubGzV9+nSfbrubM2eOtaqqKjAzM9PafX1eXl6EUqm0vP3222HFxcV6pVJpycvLiwCA5uZmyZw5c4ZpNBrz8OHDTdevXw84duxYlUKhEHvfy5MJovhU2w24xMRE8fz58wMdBhERERENcoIgXBBFMbG3toqKihvx8fE+TahAT+/EiROqnJycmNra2qsSiaTf9lNRURESHx8f3VsbK05ERERERPTCam9vFzZv3mzIyMi4259JU1+YOBERERER0Qvp4sWLcq1Wm9DY2Oi/evXqhoGMhbPqERERERHRC8lisTgdDselgY4DYMWJiIiIiIioT0yciIiIiIiI+sDEiYiIiIiIqA9MnIiIiIiIiPrAxImIiIiIiKgPTJyIiIiIiKjfGI1G05EjR9QDHcdnxcSJiIiIiGgQMhqNJrlcblEoFGaNRpMwceLEEdXV1f4DHdeztHbt2tDRo0ePkslklpkzZ0Y/rt/y5cvDBUEY+1kSuM/te5wuXLhwVxCEPz+j4UIA3H1GY9HnB6/7Fxev/RcTr/sXF6/9F9OzvO5Rz2ic5+7AgQNV06dPt9ntdiErKytq4cKFQ3/3u999ONBx+cLlcsHf/8l5ntFodOXl5dX95je/0Tidzl6LQu+++27AsWPHdKGhoa7PEs/nNnESRTH0WY0lCMJ5URQTn9V49PnA6/7FxWv/xcTr/sXFa//FxOvek0KhEGfNmtWcl5cXCQBWq1WSm5sb+Yc//CEoMDDQM2fOnLsFBQV1EokEy5Yti/jwww8DiouLrwNAZWWlbOTIkaaOjo4L/v7+SEpKivvKV75iO3PmjKaysjIwISGh7T/+4z+uh4eHdwJAYWGh/p/+6Z+MdrtdsmDBgvrucZSWliqWLl069MMPP5TL5XLPlClTWn7xi1/cksvlIgAIgjB27dq1N3/+858bOjs7heTk5Htyudzzy1/+stY7RnJy8oiJEye2/uQnP2nMyspqAYBz584pPvroI1lvx/69731v6Jo1az5atmzZ0M9yDnmrHhERERHRIGez2fwOHjyoM5vNbQCQm5sb2draKqmpqblaWlpaeejQoeAtW7aE+DpeUVGRfteuXdcbGhouu1wuvzVr1hgA4MKFC/IVK1ZEbd++/XpdXV2F1WqVNjQ0dCU0UqkUGzduvNXU1HS5rKzsg7KyMvX69et7FESOHTumPXv27PuVlZXv5OTk3C0uLta73W4AQF1dnbS8vFw9b968Jl/i3LFjh87f39/zne98556vx/Y4n9uKExERERHRi+bn589H3rp3T9Gf+4gMCrIvTEy85Uvf9PT0ERKJRHQ4HBK9Xu86fvx4VWdnJ0pKSvTl5eXv6XQ6j06n61i0aFH9/v37g5cuXerT7Y2zZ8+2jhkzph0AZsyY0VRSUqIFgP379+uSk5PvTZkypQ0ANm3adHv37t1DvNuNHz/e7v0+Li6uIzs7+86ZM2fUABq961etWlVvMBjcADBp0iS7SqVyHz16VJOamtq6c+dOXVJSki0yMrKzrxjv3bvn99ZbbxlPnjx5zZdj6gsrTg/8YqADoAHB6/7FxWv/xcTr/sXFa//FxOsOYN++fdU2m+2y0+m8sGHDhpuvvfZaXE1NjczlcgmxsbEd3n4xMTEdDQ0NPk8cERYW1vW8kEKh8Njtdj8AuH37tr/RaOwaV6PReLRabVeSc+XKlYBJkyaNCAkJiVepVOaCggJjU1NTj2JOTExMR/fltLQ06549e/QAcPDgweD09HSfqk0/+tGPIt544w3ryJEjO/ru3TdWnACIoshfrC8gXvcvLl77LyZe9y8uXvsvpoG67r5Wgp43qVSKrKysliVLloinT59WSqVSsaqqSjZ27FgnANy4cUNmMBhcAKBUKt0Oh6OrwFJbW+tzQhUeHu6qrKwM9C7bbDa/lpaWrpxjwYIFUSaTyV5UVFSj0+k8+fn5Q4qLi3XdxxAEoceYb775pjUhIeHV8vLywJqaGnlGRkazL7GcOXNG09DQ4L9r164hANDc3CzNysoa/oMf/KD+n/7pn+r72v5hrDgREREREQ1yHo8He/fu1dpsNqnZbHakpKQ0r1q1ytjc3Ox37do1WWFhoSEtLc0KABaLxXHu3DlVVVWVzGq1StauXRvm635mz57dfOrUqaCTJ0+qnE6nsHz58ghRFLsyoba2NolGo3EHBQV5Ll26JN+xY8eQJ40HAMOHD3eZTKb7WVlZMZMnT25RqVSit83lcsFutwtut1twu92C3W4XXK4HxbA//OEPlRUVFe9evHjx3YsXL74bGhrq+td//dc/r1y5svGxO3sCJk5ERERERINUWlparEKhMKvVavNbb71l3Lp16/XExETntm3bbioUCs+wYcNMEyZMGDlz5symxYsX3wWA1NTU1qlTpzZbLJZXzGbzqJSUFJ8nVkhMTHSuW7fuZnZ2dkxYWFi8TqfrNBgMXbfKrV+//tbhw4f1KpXKnJubGzV9+nSfbrubM2eOtaqqKjAzM9PafX1eXl6EUqm0vP3222HFxcV6pVJpycvLiwCAsLAw99ChQzu9XxKJRNTr9Z1BQUEeX4+nO0EUxb57DVKCIOgBbAfwV3gwz//fiqK4b2CjomdNEIQfAMgGYAKwXxTF7G5tXwdQCGAogD8ByBZF8Vm9H4wGkCAIAQDeBvANAHoA1QBWi6J44uN2XvtBShCEvQC+DkAJoB7AelEUt33cxus+yAmCEAvgKoD/EEVxzsfreN0HMUEQ/gDgywC8z9F8JIpi3Mdt/X7tKyoqbsTHx/M9Yf3sxIkTqpycnJja2tqrEomk3/ZTUVEREh8fH91b2xe94lQIoAOAAUAGgJ8JgvDqwIZE/eA2gH8EsKP7SkEQQgAUAfgxHnywPg/g4HOPjvqLFMAtAF8DEIQH1/mQIAjRvPaDXgGAaFEUNQD+GsA/CoIwltf9C6MQwDnvAq/7F8YPRFFUffzlTZp47QeJ9vZ2YfPmzYaMjIy7/Zk09eULmzgJgqAEMBPAj0VRbBNFsQzAUQBzBzYyetZEUSwSRfEIAOtDTTMAvCuK4r+LougE8A8A4gVBGPmcQ6R+IIrifVEU/0EUxRuiKHpEUTwO4DqAseC1H9REUXxXFMV27+LHX8PB6z7oCYKQBqAFwO+7reZ1/+LitR8ELl68KNdqtQmNjY3+q1evbhjIWL6wiROAlwG4RVHsPq97BQBWnL44XsWDaw7gwQdtAB+CPwODkiAIBjz4vX8XvPaDniAIbwuCYAfwAYA6AP8JXvdBTRAEDYB8AMsfauJ1/2IoEAThriAIfxQEYeLH63jtBwGLxeJ0OByXLl269IFer3+qZ5OelS9y4qQC8PCDbvcAqAcgFhoY/Bn4ghAEwR/ArwDsFkXxA/DaD3qiKH4fD67neDy4VacdvO6D3RoA20VRfHgqaF73wS8PwDAARjx4d9MxQRCGg9eenrEvcuLUBkDz0DoNANsAxEIDgz8DXwCCIPgB2IMHzzP+4OPVvPZfAKIouj++DfslAN8Dr/ugJQhCAh5MBPOvvTTzug9yoij+SRRFmyiK7aIo7gbwRwAp4LWnZ+yLnDhdAyD9ePYdr3g8uI2HvhjexYNrDqDrubfh4M/AoCE8eIPedjyYAGamKIret5zz2n+xSPHJ9eV1H5wmAogGcFMQhHoAPwIwUxCEi+B1/yISAQjgtadn7AubOH18n2sRgHxBEJSCIIwDMA0P/jJNg4ggCFJBEOQAJAAkgiDIBUGQAvg1gNGCIMz8uP0nAK58fCsXDQ4/AzAKwLdEUXR0W89rP0gJgjBEEIQ0QRBUgiBIBEF4HcBsAKfA6z6Y/QIPPhAnfPz1cwAlAF4Hr/ugJgiCVhCE173/twuCkAFgAoCT4LWnZ+wLmzh97PsAAgE0AtgP4HuiKPKvEIPP/wHgALAKwJyPv/8/oijewYOZFf8JQDOALwFIG6gg6dkSBCEKwAI8+BBVLwhC28dfGbz2g5qIB7fl1eLBtf0XAEtEUSzmdR+8RFG0i6JY7/3Cg1u0nKIo3uF1H/T88eCVI3fw4J2cPwQwXRTFSl57eta+0C/AJSIiIiL6LPgC3L4ZjUZTYWHhjenTp7/wz5fxBbhERERERF8wRqPRJJfLLQqFwqzRaBImTpw4orq62n+g43qW1q5dGzp69OhRMpnMMnPmzOjubZWVlTJBEMYqFAqz92vFihXhT7svJk5ERERERIPUgQMHqux2+6X6+vqK0NDQzoULFw4d6Jh85XK5+uxjNBpdeXl5dW+88cZjq3737t27ZLfbL9nt9ksbNmyoe9p4mDgREREREQ1yCoVCnDVrVnN1dXUgAFitVklqamq0TqeLj4iIMK1cuTLc7XYDAJYtWxYxbdq0GO+23sqNN5FJSkqKW7x4cYTFYhmpVCrN48aNi62rq5N6+xcWFuojIiJMWq02IS8vL6x7HKWlpYqEhISRarU6ITQ0dExmZuZQp9MpeNsFQRhbUFAQGhUVNTo6Oto0d+7cofPnz3+p+xjJyckj8vPzhwBAVlZWy9y5c1uCg4M7n/1Z64mJExERERHRIGez2fwOHjyoM5vNbQCQm5sb2draKqmpqblaWlpaeejQoeAtW7aE+DpeUVGRfteuXdcbGhouu1wuvzVr1hgA4MKFC/IVK1ZEbd++/XpdXV2F1WqVNjQ0yLzbSaVSbNy48VZTU9PlsrKyD8rKytTr168P7T72sWPHtGfPnn2/srLynZycnLvFxcV6b1JXV1cnLS8vV8+bN6/J11iNRuMYg8EwZtasWdHdE7xP66k3JCIiIiKinlpKcyI7m95R9Oc+pPrRdu2kHbd86Zuenj5CIpGIDodDotfrXcePH6/q7OxESUmJvry8/D2dTufR6XQdixYtqt+/f3/w0qVLfZroYvbs2dYxY8a0A8CMGTOaSkpKtACwf/9+XXJy8r0pU6a0AcCmTZtu7969e4h3u/Hjx9u938fFxXVkZ2ffOXPmjBoPZrkGAKxatareYDC4AWDSpEl2lUrlPnr0qCY1NbV1586duqSkJFtkZGSfFaawsLDO06dPv/+Vr3zFXl9fL50/f/7QN954I6asrKzKl2N8GCtORERERESD1L59+6ptNttlp9N5YcOGDTdfe+21uJqaGpnL5RJiY2M7vP1iYmI6GhoafJ44IiwsrOsBJIVC4bHb7X4AcPv2bX+j0dg1rkaj8Wi12q4k58qVKwGTJk0aERISEq9SqcwFBQXGpqamHsWcmJiYju7LaWlp1j179ugB4ODBg8Hp6ek+VZuCgoI8EyZMsPv7+yMyMrLzF7/4xc0//vGPmqampqfKgVhxIiIaZARBKADQIIri5n4Y+yyAeXznHRFR73ytBD1vUqkUWVlZLUuWLBFPnz6tlEqlYlVVlWzs2LFOALhx44bMYDC4AECpVLodDkdXclFbW+tzQhUeHu6qrKwM9C7bbDa/lpaWrpxjwYIFUSaTyV5UVFSj0+k8+fn5Q4qLi3XdxxAEofsi3nzzTWtCQsKr5eXlgTU1NfKMjIzmT30Cuo0riqLQR9deseJERDSICIIQCiATwP/rp138C4D8fhqbiIj6icfjwd69e7U2m01qNpsdKSkpzatWrTI2Nzf7Xbt2TVZYWGhIS0uzAoDFYnGcO3dOVVVVJbNarZK1a9eG9TW+1+zZs5tPnToVdPLkSZXT6RSWL18e0T1RaWtrk2g0GndQUJDn0qVL8h07dgx50ngAMHz4cJfJZLqflZUVM3ny5BaVStX1IlqXywW73S643W7B7XYLdrtd8E5icerUKWVFRUWA2+1GfX29ZOHChUOTkpJswcHB7k918j7GxImIaHDJBvCfoig6+mn8owAmCYLw1O/BICKi5yctLS1WoVCY1Wq1+a233jJu3br1emJionPbtm03FQqFZ9iwYaYJEyaMnDlzZtPixYvvAkBqamrr1KlTmy0Wyytms3lUSkrKPV/3l5iY6Fy3bt3N7OzsmLCwsHidTtdpMBi6br1bv379rcOHD+tVKpU5Nzc3avr06T7ddjdnzhxrVVVVYGZmprX7+ry8vAilUml5++23w4qLi/VKpdKSl5cXAQBVVVUBKSkpL6tUKrPJZHpVJpN5/v3f/73G12N5mCCKYt+9iIhoQAiCMBzAOQDfEEXxoiAIEQCuAJgliuIfeul/CsAOURT3frycDSBXFMW/7NZHBBArimK1IAi7ANgBxAAYD6ACwEwAqwBkAWgAMFsUxUvdtv8vAHtFUdz97I+YiOjzpaKi4kZ8fLxPEyrQ0ztx4oQqJycnpra29qpEIum3/VRUVITEx8dH99bGihMR0QtMFMUPAeQB+JUgCAoAOwHs6i1p+pgJQOWn3M23AfwfACEA2gGUA7j48fJ/ANj0UP/3AcR/yn0QERE9lfb2dmHz5s2GjIyMu/2ZNPWFiRMR0QtOFMVfAqgC8CcA4QD+7gndtQBsn3IXvxZF8YIoik4AvwbgFEXx30RRdAM4CMD8UH/bx/shIiLqVxcvXpRrtdqExsZG/9WrVzcMZCycVY+I6PPhl3jwfNF3RVFsf0K/ZgDqTzl29/+IHL0sqx7qrwbQ8in3QURE9KlZLBanw+G41HfP/seKExHRC04QBBWAzQC2A/gHQRD0T+h+BcDL3ZbvA+h6EaMgCD7PjPQEo/DgWSgiIqIvDCZOREQvvv8L4IIoirkASgD8/Al9/xPA17otVwB4VRCEBEEQ5AD+4bMEIghCAICxAP7rs4xDRET0ecPEiYjoBSYIwjQAkwEs/HjVMgAWQRAyHrPJvwFIEQQhEABEUbyGB+9d+h0ePCdV9hlD+msAfxBF8fZnHIeIiOhzhdORExENMoIgrAXQKIri5n4Y+08A3hRF8Z1nPTYR0ecRpyMfXJ40HTknhyAiGmREUVzdj2N/qb/GJiIiepHxVj0iIiIiIuo3RqPRdOTIkU874+sLh4kTEREREdEgZDQaTXK53KJQKMwajSZh4sSJI6qrq/0HOq5nae3ataGjR48eJZPJLDNnzox+uN1ms/nNmTNnqE6ni1er1QmJiYlxT7svJk5ERERERIPUgQMHqux2+6X6+vqK0NDQzoULFw4d6Jh85XK5+uxjNBpdeXl5dW+88Uavz5nNmTMnqqWlRfruu+++29zcfPlf//Vfbz1tPEyciIiIiIgGOYVCIc6aNau5uro6EACsVqskNTU1WqfTxUdERJhWrlwZ7na7AQDLli2LmDZtWox328rKSpkgCGO9iUxSUlLc4sWLIywWy0ilUmkeN25cbF1dXdfcCYWFhfqIiAiTVqtNyMvL6/H+wNLSUkVCQsJItVqdEBoaOiYzM3Oo0+kUvO2CIIwtKCgIjYqKGh0dHW2aO3fu0Pnz57/UfYzk5OQR+fn5QwAgKyurZe7cuS3BwcGdDx9zRUVFwO9//3vtv/3bv92IiIjolEqlGD9+vP1pzyETJyIiIiKiQc5ms/kdPHhQZzab2wAgNzc3srW1VVJTU3O1tLS08tChQ8FbtmwJ8XW8oqIi/a5du643NDRcdrlcfmvWrDEAwIULF+QrVqyI2r59+/W6uroKq9UqbWhokHm3k0ql2Lhx462mpqbLZWVlH5SVlanXr18f2n3sY8eOac+ePft+ZWXlOzk5OXeLi4v13qSurq5OWl5erp43b15TXzGeOXNGFRER0b5ixQqjTqeLf/nll1/ZtWuX1tdjfBhn1SMiIiIiekb23vooss7ZrujPfYTLA+xzIo0+3XKWnp4+QiKRiA6HQ6LX613Hjx+v6uzsRElJib68vPw9nU7n0el0HYsWLarfv39/8NKlS32aWn327NnWMWPGtAPAjBkzmkpKSrQAsH//fl1ycvK9KVOmtAHApk2bbu/evXuId7vuFZ+4uLiO7OzsO2fOnFEDaPSuX7VqVb3BYHADwKRJk+wqlcp99OhRTWpqauvOnTt1SUlJtsjIyEcqTA+rra31r6qqCpw6dWpLXV3dld///vfKN954I3bMmDHvWywWpy/H2R0rTkREREREg9S+ffuqbTbbZafTeWHDhg03X3vttbiamhqZy+USYmNjO7z9YmJiOhoaGnyeOCIsLKzrASSFQuGx2+1+AHD79m1/o9HYNa5Go/FotdquJOfKlSsBkyZNGhESEhKvUqnMBQUFxqamph7FnJiYmI7uy2lpadY9e/boAeDgwYPB6enpfVabACAwMNAjlUrFdevW3ZbL5eI3v/nNti9/+cu2kpISja/H2R0rTkREREREz4ivlaDnTSqVIisrq2XJkiXi6dOnlVKpVKyqqpKNHTvWCQA3btyQGQwGFwAolUq3w+HoKrDU1tb6nFCFh4e7KisrA73LNpvNr6WlpSvnWLBgQZTJZLIXFRXV6HQ6T35+/pDi4mJd9zEEQei+iDfffNOakJDwanl5eWBNTY08IyOj2ZdYEhISHL7G7QtWnIiIiIiIBjmPx4O9e/dqbTab1Gw2O1JSUppXrVplbG5u9rt27ZqssLDQkJaWZgUAi8XiOHfunKqqqkpmtVola9euDetrfK/Zs2c3nzp1KujkyZMqp9MpLF++PEIUxa5MqK2tTaLRaNxBQUGeS5cuyXfs2DHkSeMBwPDhw10mk+l+VlZWzOTJk1tUKpXobXO5XLDb7YLb7Rbcbrdgt9sF7yQWkydPbgsPD+9YvXp1uMvlwm9/+1vln/70J/XUqVNbP9XJ+xgTJyIiIiKiQSotLS1WoVCY1Wq1+a233jJu3br1emJionPbtm03FQqFZ9iwYaYJEyaMnDlzZtPixYvvAkBqamrr1KlTmy0Wyytms3lUSkrKPV/3l5iY6Fy3bt3N7OzsmLCwsHidTtdpMBi6br1bv379rcOHD+tVKpU5Nzc3avr06T7ddjdnzhxrVVVVYGZmprX7+ry8vAilUml5++23w4qLi/VKpdKSl5cXAQABAQFiUVFR9X/9138FaTQa8/e+973on/3sZ9fNZvOnfr4JAARRFPvuRUREREREj6ioqLgRHx/v04QK9PROnDihysnJiamtrb0qkUj6bT8VFRUh8fHx0b21seJEREREREQvrPb2dmHz5s2GjIyMu/2ZNPWFiRMREREREb2QLl68KNdqtQmNjY3+q1evbhjIWDirHhERERERvZAsFovT4XBcGug4AFaciIiIiIiI+sTEiYiIiIiIqA9MnIiIiIiIiPrAxImIiIiIiKgPTJyIiIiIiIj6wMSJiIiIiIj6jdFoNB05ckQ90HF8VkyciIiIiIgGIaPRaJLL5RaFQmHWaDQJEydOHFFdXe0/0HE9S2vXrg0dPXr0KJlMZpk5c2Z097af/exneoVCYfZ+BQYGmgVBGHvmzBnF0+yLiRMRERER0SB14MCBKrvdfqm+vr4iNDS0c+HChUMHOiZfuVyuPvsYjUZXXl5e3RtvvHH34bbvfe97TXa7/ZL3a926dTdfeuml9nHjxtmfJh4mTkREREREg5xCoRBnzZrVXF1dHQgAVqtVkpqaGq3T6eIjIiJMK1euDHe73QCAZcuWRUybNi3Gu21lZaVMEISx3kQmKSkpbvHixREWi2WkUqk0jxs3Lraurk7q7V9YWKiPiIgwabXahLy8vLDucZSWlioSEhJGqtXqhNDQ0DGZmZlDnU6n4G0XBGFsQUFBaFRU1Ojo6GjT3Llzh86fP/+l7mMkJyePyM/PHwIAWVlZLXPnzm0JDg7u7Osc/OpXvwr+9re/bfXze7oUiIkTEREREdEgZ7PZ/A4ePKgzm81tAJCbmxvZ2toqqampuVpaWlp56NCh4C1btoT4Ol5RUZF+165d1xsaGi67XC6/NWvWGADgwoUL8hUrVkRt3779el1dXYXVapU2NDTIvNtJpVJs3LjxVlNT0+WysrIPysrK1OvXrw/tPvaxY8e0Z8+efb+ysvKdnJycu8XFxXpvUldXVyctLy9Xz5s3r+nTHP+1a9dk58+fV8+fP9/6abbrTtp3FyIiIiIi8kl9TiTa33mqZ2h8FjDajrAdt3zpmp6ePkIikYgOh0Oi1+tdx48fr+rs7ERJSYm+vLz8PZ1O59HpdB2LFi2q379/f/DSpUsfueWtN7Nnz7aOGTOmHQBmzJjRVFJSogWA/fv365KTk+9NmTKlDQA2bdp0e/fu3UO8240fP77rNrm4uLiO7OzsO2fOnFEDaPSuX7VqVb3BYHADwKRJk+wqlcp99OhRTWpqauvOnTt1SUlJtsjIyD4rTN398pe/DB47dmzbyJEjOz7Ndt2x4kRERERENEjt27ev2mazXXY6nRc2bNhw87XXXourqamRuVwuITY2tiuJiImJ6WhoaPB54oiwsLCuB5AUCoXHbrf7AcDt27f9jUZj17gajcaj1Wq7kpwrV64ETJo0aURISEi8SqUyFxQUGJuamnoUc2JiYnokN2lpadY9e/boAeDgwYPB6enpn6raBACHDh0KzsjI8CkpfBxWnIiIiIiInhUfK0HPm1QqRVZWVsuSJUvE06dPK6VSqVhVVSUbO3asEwBu3LghMxgMLgBQKpVuh8PRVWCpra31OaEKDw93VVZWBnqXbTabX0tLS1fOsWDBgiiTyWQvKiqq0el0nvz8/CHFxcW67mMIgtB9EW+++aY1ISHh1fLy8sCamhp5RkZG86c59t/+9rfKxsZG/8zMzE+13cNYcSIiIiIiGuQ8Hg/27t2rtdlsUrPZ7EhJSWletWqVsbm52e/atWuywsJCQ1pamhUALBaL49y5c6qqqiqZ1WqVrF27Nqyv8b1mz57dfOrUqaCTJ0+qnE6nsHz58ghRFLsyoba2NolGo3EHBQV5Ll26JN+xY8eQJ40HAMOHD3eZTKb7WVlZMZMnT25RqVSit83lcsFutwtut1twu92C3W4XHp6Nb+fOnSGTJ09u1ul0Hl+PozdMnIiIiIiIBqm0tLRYhUJhVqvV5rfeesu4devW64mJic5t27bdVCgUnmHDhpkmTJgwcubMmU2LFy++CwCpqamtU6dObbZYLK+YzeZRKSkp93zdX2JionPdunU3s7OzY8LCwuJ1Ol2nwWDouvVu/fr1tw4fPqxXqVTm3NzcqOnTp/t0292cOXOsVVVVgZmZmT0md8jLy4tQKpWWt99+O6y4uFivVCoteXl5Ed52u90uHD9+XJednf3Uk0J4CaIo9t2LiIiIiIgeUVFRcSM+Pv4zPTtDfTtx4oQqJycnpra29qpEIum3/VRUVITEx8dH99bGihMREREREb2w2tvbhc2bNxsyMjLu9mfS1BcmTkRERERE9EK6ePGiXKvVJjQ2NvqvXr26YSBj4ax6RERERET0QrJYLE6Hw3FpoOMAWHEiIiIiIiLqExMnIiIiIiKiPjBxIiIiIiIi6gMTJyIiIiIioj4wcSIiIiIiIuoDEyciIiIiIuo3RqPRdOTIEfVAx/FZMXEiIiIiIhqEjEajSS6XWxQKhVmj0SRMnDhxRHV1tf9Ax/UsrV27NnT06NGjZDKZZebMmdEPt2/btk03bNiwV5VKpXn48OGv7tmzR/u0+2LiREREREQ0SB04cKDKbrdfqq+vrwgNDe1cuHDh0IGOyVcul6vPPkaj0ZWXl1f3xhtv3H247fr16/7f+973Yv75n//5ls1mu/RP//RPtd/97ndjPvroo6d6ly0TJyIiIiKiQU6hUIizZs1qrq6uDgQAq9UqSU1NjdbpdPERERGmlStXhrvdbgDAsmXLIqZNmxbj3bayslImCMJYbyKTlJQUt3jx4giLxTJSqVSax40bF1tXV9eVjBQWFuojIiJMWq02IS8vL6x7HKWlpYqEhISRarU6ITQ0dExmZuZQp9MpeNsFQRhbUFAQGhUVNTo6Oto0d+7cofPnz3+p+xjJyckj8vPzhwBAVlZWy9y5c1uCg4M7Hz7m69evy9Rqtfvb3/52q5+fH9LS0u7J5XLP+++/H/A055CJExERERHRIGez2fwOHjyoM5vNbQCQm5sb2draKqmpqblaWlpaeejQoeAtW7aE+DpeUVGRfteuXdcbGhouu1wuvzVr1hgA4MKFz49/kgAADJJJREFUC/IVK1ZEbd++/XpdXV2F1WqVNjQ0yLzbSaVSbNy48VZTU9PlsrKyD8rKytTr168P7T72sWPHtGfPnn2/srLynZycnLvFxcV6b1JXV1cnLS8vV8+bN6+prxgnTJhwf/jw4c5f/epXQZ2dndizZ49WJpOJSUlJDl+Ps7unKlMREREREdGj3j7/H5E37zUo+nMfQ4MM9u8nzrrlS9/09PQREolEdDgcEr1e7zp+/HhVZ2cnSkpK9OXl5f+/vfuNaerc4wD+O1AY9hxqD4Kt9AoWJWxXa/+ALNsubJCYKJIoMLcCShlgXGIWdEaL7hVsg4gZITN43ziZ0chYIrFuRHyjMbqRDQTRu92LJR1xDARtQYqnpbWn98VdG6bb2rF5NeT7edVzznOe8zztq29+z3n6Pc/zIs/znl27dt1pa2tbsmfPnseWvP2a4uJi+9q1a2eJiAoLCx2dnZ1yIqK2tjY+Nzf3/saNG2eIiJqamkZPnDixNHBfVlaWEPiclpbmKS8vv3vlypVYIpoInK+pqbmjUCh8REQ5OTkCx3G+c+fOyQoKCqZbW1v5zMxM5/Llyx+rMD1KIpFQSUmJfceOHSkmkykiKipKbG1ttclkMjGcOT4KFScAAAAAgAXq9OnTQ06n87rb7b52+PDh2+vXr0+z2WzRXq+XSU1N9QTaqdVqz/j4eNgbRyiVyuALSFKpVBQEIYKIaHR0NEqlUgX7lclkolwuD4acGzduPJeTk7MqPj5ey3GcvqGhQeVwOH5RzFGr1Z65x0aj0X7y5Mk4IqL29vYlJSUlIatNRERnz56Nra2t/VtXV9fg7Ozsta6ursF33nkn+euvv14U7jznQsUJAAAAAOAvEm4l6P9NIpGQyWSa2r17t//y5cusRCLxW63W6PT0dDcR0fDwcLRCofASEbEs63O5XMECy8jISNiBatmyZd7BwcFgMHE6nRFTU1PBzLFz585kjUYjdHR02HieF+vq6pZaLBZ+bh8Mw8w9pMrKSrtOp1vd3d29yGazxZSWlk6GM5a+vj7punXrnNnZ2QIR0auvvipotdoHXV1dspdffvkPL9dDxQkAAAAAYIETRZFOnToldzqdEr1e78rLy5usqalRTU5ORty6dSu6paVFYTQa7UREBoPB1dPTw1mt1mi73R5ZX1+vDNV/QHFx8eTFixcXX7hwgXO73czevXsT/X5/MAnNzMxEymQy3+LFi8X+/v6Y48ePL/29/oiIVq5c6dVoNA9MJpN6w4YNUxzH+QPXvF4vCYLA+Hw+xufzMYIgMIFNLF588cUHvb29XKDC9NVXXy3q7e2N1el083rHCcEJAAAAAGCBMhqNqVKpVB8bG6uvra1VHTly5IeMjAz3sWPHbkulUjElJUWTnZ39fFFRkaO6uvoeEVFBQcF0fn7+pMFg+Lter38hLy/vfrjPy8jIcB86dOh2eXm5WqlUanmef6hQKIJL7xobG388c+ZMHMdx+qqqquQtW7aEtexu27ZtdqvVuqisrMw+97zZbE5kWdZw9OhRpcViiWNZ1mA2mxOJiDZt2jSzb9++UaPRuJJlWf2bb765qrq6eqywsHA63PnMxfj9/tCtAAAAAADgMQMDA8NarTasDRVg/s6fP89VVFSoR0ZGbkZGRj6x5wwMDMRrtdoVv3YNFScAAAAAAHhmzc7OMs3NzYrS0tJ7TzI0hYLgBAAAAAAAz6S+vr4YuVyum5iYiDp48OD40xwLdtUDAAAAAIBnksFgcLtcrv6nPQ4iVJwAAAAAAABCQnACAAAAAAAIAcEJAAAAAAAgBAQnAAAAAACAEBCcAAAAAAAAQkBwAgAAAACAJ0alUmnOnj0b+7TH8WchOAEAAAAALEAqlUoTExNjkEqleplMpnvttddWDQ0NRT3tcf2V6uvrE9asWfNCdHS0oaioaMWj15uamuKTkpLWSKVSfVZWVurw8PC854/gBAAAAACwQH322WdWQRD679y5M5CQkPDw7bffTnraYwqX1+sN2UalUnnNZvPY1q1b7z16rbOzk/vggw9UHR0dQw6H43pSUtLs1q1bU+Y7HgQnAAAAAIAFTiqV+l9//fXJoaGhRUREdrs9sqCgYAXP89rExETN/v37l/l8PiIievfddxM3b96sDtw7ODgYzTBMeiDIZGZmplVXVycaDIbnWZbVv/LKK6ljY2OSQPuWlpa4xMREjVwu15nNZuXccVy6dEmq0+mej42N1SUkJKwtKytLcrvdTOA6wzDpDQ0NCcnJyWtWrFih2b59e9KOHTv+NreP3NzcVXV1dUuJiEwm09T27dunlixZ8vDROVssFvmmTZsmMzIy3DExMf4PP/xwrLe3l/vuu++em893iOAEAAAAALDAOZ3OiPb2dl6v188QEVVVVS2fnp6OtNlsNy9dujT4+eefL/n444/jw+2vo6Mj7tNPP/1hfHz8utfrjXj//fcVRETXrl2L2bdvX/Inn3zyw9jY2IDdbpeMj49HB+6TSCT00Ucf/ehwOK5fvXr1P1evXo1tbGxMmNv3F198If/222//PTg4+K+Kiop7FoslLhDqxsbGJN3d3bFvvfWWI9QY/X4/+f3+XxwTEfX39y8Kd55zSUI3AQAAAACAsBy/vJx+ckif6DNUcQJVvPpjOE1LSkpWRUZG+l0uV2RcXJz3yy+/tD58+JA6Ozvjuru7v+d5XuR53rNr1647bW1tS/bs2fPYkrdfU1xcbF+7du0sEVFhYaGjs7NTTkTU1tbG5+bm3t+4ceMMEVFTU9PoiRMnlgbuy8rKEgKf09LSPOXl5XevXLkSS0QTgfM1NTV3FAqFj4goJydH4DjOd+7cOVlBQcF0a2srn5mZ6Vy+fPljFaZH5efn3y8vL0/55ptv7q5evdr93nvvJTIMQw8ePJhX8QgVJwAAAACABer06dNDTqfzutvtvnb48OHb69evT7PZbNFer5dJTU31BNqp1WrP+Ph42BsnKJXK4AtIUqlUFAQhgohodHQ0SqVSBfuVyWSiXC4PhpwbN248l5OTsyo+Pl7LcZy+oaFB5XA4flHMUavVnrnHRqPRfvLkyTgiovb29iUlJSUhq01ERJs3b3bu379/9I033liZlJS0Njk5eZZlWV9ycrIn9N2PQ8UJAAAAAOCvEmYl6P9NIpGQyWSa2r17t//y5cusRCLxW63W6PT0dDcR0fDwcLRCofASEbEs63O5XMECy8jISNiBatmyZd7BwcHgUjin0xkxNTUVzBw7d+5M1mg0QkdHh43nebGurm6pxWLh5/bBMMzcQ6qsrLTrdLrV3d3di2w2W0xpaelkuOM5cODA3QMHDtwl+l9oa25uXpaenu4K9/65UHECAAAAAFjgRFGkU6dOyZ1Op0Sv17vy8vIma2pqVJOTkxG3bt2KbmlpURiNRjsRkcFgcPX09HBWqzXabrdH1tfXK0P1H1BcXDx58eLFxRcuXODcbjezd+/eRL/fH0xCMzMzkTKZzLd48WKxv78/5vjx40t/rz8iopUrV3o1Gs0Dk8mk3rBhwxTHccEXl7xeLwmCwPh8Psbn8zGCIDCBTSwEQWB6enpiRFEkq9UaXVVVtaKysnIiISHB94e+vJ8hOAEAAAAALFBGozFVKpXqY2Nj9bW1taojR478kJGR4T527NhtqVQqpqSkaLKzs58vKipyVFdX3yMiKigomM7Pz580GAx/1+v1L+Tl5d0P93kZGRnuQ4cO3S4vL1crlUotz/MPFQpFcGlcY2Pjj2fOnInjOE5fVVWVvGXLlrCW3W3bts1utVoXlZWV2eeeN5vNiSzLGo4ePaq0WCxxLMsazGZzIhGRIAgRpaWlKSzL6l966aUX1q1bN9Pc3PxTuHN5FDN3pwkAAAAAAAjfwMDAsFarDWtDBZi/8+fPcxUVFeqRkZGbkZGRT+w5AwMD8VqtdsWvXUPFCQAAAAAAnlmzs7NMc3OzorS09N6TDE2hIDgBAAAAAMAzqa+vL0Yul+smJiaiDh48OP40x4Jd9QAAAAAA4JlkMBjcLper/2mPgwgVJwAAAAAAgJAQnAAAAAAA5s+PzdYWhp9/R/G3riM4AQAAAADME8Mw9z0eT9h/EAvPLo/HE8UwzG9uvY7gBAAAAAAwTz6fr3V0dJQVRZEJ3RqeVaIoMqOjo5zP5/v0t9pgcwgAAAAAgHkSRfGf09PThps3b/6DiJ7eXtnwZ/mI6Kooiv/8rQb4A1wAAAAAAIAQsFQPAAAAAAAgBAQnAAAAAACAEBCcAAAAAAAAQkBwAgAAAAAACAHBCQAAAAAAIIT/AuvEvfkPRiVKAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 864x864 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "  Done; plotting time = 5.93 s\n",
      "\n",
      "Total time = 3009.97 s\n",
      "\n",
      "End time:  2022-10-29 10:35:09.719731\n"
     ]
    }
   ],
   "source": [
    "sim.simulate()\n",
    "sim.analyze()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "ceb34061",
   "metadata": {},
   "outputs": [],
   "source": [
    "# plotting\n",
    "\n",
    "#sim.analysis.plotLFP(  plots = ['timeSeries', 'locations'] , electrodes=[ 'all'], lineWidth=1000 ,  fontSize=14, saveFig=True)\n",
    "\n",
    "# from matplotlib import pyplot\n",
    "# %matplotlib inline\n",
    "# pyplot.plot(t, ap1 )\n",
    "# #pyplot.xlim((0, 10))\n",
    "# pyplot.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "ddb4904a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Duration: 0:50:12.620575\n"
     ]
    }
   ],
   "source": [
    "# show the execution time\n",
    "\n",
    "end_time = datetime.now()\n",
    "print('Duration: {}'.format(end_time - start_time))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3ce6eb39",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "b23076f1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Longitudinal Current: picoamp\n",
    "\n",
    "\n",
    "\n",
    "# xraxia = xr*1e6   #ohm/cm\n",
    "# xraxia = xraxia*2*1e-4    # ohm,  length between node to MYSA is 2 micron\n",
    "\n",
    "\n",
    "# v_diff_00 = (Abeta0_vext1_node0-Abeta0_vext1_MYSA0)/1000     #volt\n",
    "# Longi_Current_node0_MYSA0 = v_diff_00/xraxia   #amp\n",
    "# Longi_Current_node0_MYSA0 = Longi_Current_node0_MYSA0*1e12   #picoamp\n",
    "\n",
    "# v_diff_12 = (Abeta0_vext1_node1-Abeta0_vext1_MYSA2)/1000     #volt\n",
    "# Longi_Current_node1_MYSA2 = v_diff_12/xraxia   \n",
    "# Longi_Current_node1_MYSA2 = Longi_Current_node1_MYSA2*1e12   \n",
    "\n",
    "# v_diff_24 = (Abeta0_vext1_node2-Abeta0_vext1_MYSA4)/1000     #volt\n",
    "# Longi_Current_node2_MYSA4 = v_diff_24/xraxia  \n",
    "# Longi_Current_node2_MYSA4 = Longi_Current_node2_MYSA4*1e12  \n",
    "\n",
    "# v_diff_36 = (Abeta0_vext1_node3-Abeta0_vext1_MYSA6)/1000     #volt\n",
    "# Longi_Current_node3_MYSA6 = v_diff_36/xraxia   \n",
    "# Longi_Current_node3_MYSA6 = Longi_Current_node3_MYSA6*1e12  \n",
    "\n",
    "# v_diff_48 = (Abeta0_vext1_node4-Abeta0_vext1_MYSA8)/1000     #volt\n",
    "# Longi_Current_node4_MYSA8 = v_diff_48/xraxia  \n",
    "# Longi_Current_node4_MYSA8 = Longi_Current_node4_MYSA8*1e12  \n",
    "\n",
    "# v_diff_510 = (Abeta0_vext1_node5-Abeta0_vext1_MYSA10)/1000     #volt\n",
    "# Longi_Current_node5_MYSA10 = (v_diff_510/xraxia)*1e12  \n",
    "\n",
    "# v_diff_612 = (Abeta0_vext1_node6-Abeta0_vext1_MYSA12)/1000     #volt\n",
    "# Longi_Current_node6_MYSA12 = (v_diff_612/xraxia)*1e12  \n",
    "\n",
    "# v_diff_714 = (Abeta0_vext1_node7-Abeta0_vext1_MYSA14)/1000     #volt\n",
    "# Longi_Current_node7_MYSA14 = (v_diff_714/xraxia)*1e12 \n",
    "\n",
    "# v_diff_816 = (Abeta0_vext1_node8-Abeta0_vext1_MYSA16)/1000     #volt\n",
    "# Longi_Current_node8_MYSA16 = (v_diff_816/xraxia)*1e12  \n",
    "\n",
    "# v_diff_918 = (Abeta0_vext1_node9-Abeta0_vext1_MYSA18)/1000     #volt\n",
    "# Longi_Current_node9_MYSA18 = (v_diff_918/xraxia)*1e12  \n",
    "\n",
    "# v_diff_1020 = (Abeta0_vext1_node10-Abeta0_vext1_MYSA20)/1000     #volt\n",
    "# Longi_Current_node10_MYSA20 = (v_diff_1020/xraxia)*1e12 \n",
    "\n",
    "# v_diff_1122 = (Abeta0_vext1_node11-Abeta0_vext1_MYSA22)/1000     #volt\n",
    "# Longi_Current_node11_MYSA22 = (v_diff_1122/xraxia)*1e12  \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a336588c",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "e600ae81",
   "metadata": {},
   "outputs": [],
   "source": [
    "# import csv\n",
    "\n",
    "# with open('LongTranVoltageDifference_stimulateonlyAbeta0_edgedist0.1_.csv', 'w', newline='') as f:\n",
    "#      csv.writer(f).writerows(zip( t , v_diff_36  ))\n",
    "                "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f3b15f1",
   "metadata": {},
   "source": [
    "#### saving the data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "bc5f9cde",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import csv\n",
    "\n",
    "  \n",
    "    \n",
    "    \n",
    "    \n",
    "    \n",
    "with open('BoundarytoGround1000_radius6_20Fibers_v_Abeta0_stimulateonlyAbeta0_edgedist0.1_.csv', 'w', newline='') as f:\n",
    "     csv.writer(f).writerows(zip( t , Abeta0_v_node0 , Abeta0_v_node1 , Abeta0_v_node2 , Abeta0_v_node3 , Abeta0_v_node4 , Abeta0_v_node5 , Abeta0_v_node6 , Abeta0_v_node7 , Abeta0_v_node8 , Abeta0_v_node9 , Abeta0_v_node10 , Abeta0_v_node11 , Abeta0_v_node12 , Abeta0_v_node13 , Abeta0_v_node14 , Abeta0_v_node15 , Abeta0_v_node16 , Abeta0_v_node17 , Abeta0_v_node18 , Abeta0_v_node19 , Abeta0_v_node20 , Abeta0_v_node21 , Abeta0_v_node22 , Abeta0_v_node23 , Abeta0_v_node24 , Abeta0_v_node25 , Abeta0_v_node26 , Abeta0_v_node27 , Abeta0_v_node28 , Abeta0_v_node29 , Abeta0_v_node30 , Abeta0_v_node31 , Abeta0_v_node32 , Abeta0_v_node33 , Abeta0_v_node34 , Abeta0_v_node35 )) \n",
    "\n",
    "\n",
    "        \n",
    "        \n",
    "with open('BoundarytoGround1000_radius6_20Fibers_imembrane_Abeta0_stimulateonlyAbeta0_edgedist0.1_.csv', 'w', newline='') as f:\n",
    "     csv.writer(f).writerows(zip( t , Abeta0_imembrane_node0 , Abeta0_imembrane_node1 , Abeta0_imembrane_node2 , Abeta0_imembrane_node3 , Abeta0_imembrane_node4 , Abeta0_imembrane_node5 , Abeta0_imembrane_node6 , Abeta0_imembrane_node7 , Abeta0_imembrane_node8 , Abeta0_imembrane_node9 , Abeta0_imembrane_node10 , Abeta0_imembrane_node11 , Abeta0_imembrane_node12 , Abeta0_imembrane_node13 , Abeta0_imembrane_node14 , Abeta0_imembrane_node15 , Abeta0_imembrane_node16 , Abeta0_imembrane_node17 , Abeta0_imembrane_node18 , Abeta0_imembrane_node19 , Abeta0_imembrane_node20 , Abeta0_imembrane_node21 , Abeta0_imembrane_node22 , Abeta0_imembrane_node23 , Abeta0_imembrane_node24 , Abeta0_imembrane_node25 , Abeta0_imembrane_node26 , Abeta0_imembrane_node27 , Abeta0_imembrane_node28 , Abeta0_imembrane_node29 , Abeta0_imembrane_node30 , Abeta0_imembrane_node31 , Abeta0_imembrane_node32 , Abeta0_imembrane_node33 , Abeta0_imembrane_node34 , Abeta0_imembrane_node35 )) \n",
    "        \n",
    "        \n",
    "        \n",
    "        \n",
    "        \n",
    "# with open('boundary1_stimulateALL_Abeta0_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap00 , Abeta_ap01 , Abeta_ap02 , Abeta_ap03, Abeta_ap04 , Abeta_ap05 , Abeta_ap06 , Abeta_ap07 , Abeta_ap08 , Abeta_ap09 , Abeta_ap010 , Abeta_ap011                              ))\n",
    "\n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta1_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap10 , Abeta_ap11 , Abeta_ap12 , Abeta_ap13, Abeta_ap14 , Abeta_ap15 , Abeta_ap16 , Abeta_ap17 , Abeta_ap18 , Abeta_ap19 , Abeta_ap110  , Abeta_ap111                          ))\n",
    "\n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta2_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap20 , Abeta_ap21 , Abeta_ap22 , Abeta_ap23, Abeta_ap24 , Abeta_ap25 , Abeta_ap26 , Abeta_ap27 , Abeta_ap28 , Abeta_ap29 , Abeta_ap210 , Abeta_ap211                         ))\n",
    "        \n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta3_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap30 , Abeta_ap31 , Abeta_ap32 , Abeta_ap33, Abeta_ap34 , Abeta_ap35 , Abeta_ap36 , Abeta_ap37 , Abeta_ap38 , Abeta_ap39 , Abeta_ap310 , Abeta_ap311                          ))\n",
    "\n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta4_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap40 , Abeta_ap41 , Abeta_ap42 , Abeta_ap43, Abeta_ap44 , Abeta_ap45 , Abeta_ap46 , Abeta_ap47 , Abeta_ap48 , Abeta_ap49 , Abeta_ap410 , Abeta_ap411                     ))\n",
    "      \n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta5_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap50 , Abeta_ap51 , Abeta_ap52 , Abeta_ap53, Abeta_ap54 , Abeta_ap55 , Abeta_ap56 , Abeta_ap57  , Abeta_ap58  , Abeta_ap59 , Abeta_ap510 , Abeta_ap511                       ))\n",
    "      \n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta6_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap60 , Abeta_ap61 , Abeta_ap62 , Abeta_ap63, Abeta_ap64 , Abeta_ap65 , Abeta_ap66 , Abeta_ap67 , Abeta_ap68 , Abeta_ap69 , Abeta_ap610 , Abeta_ap611                             ))\n",
    "    \n",
    "    \n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta7_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap70 , Abeta_ap71 , Abeta_ap72 , Abeta_ap73, Abeta_ap74 , Abeta_ap75 , Abeta_ap76 , Abeta_ap77 , Abeta_ap78 , Abeta_ap79 , Abeta_ap710 , Abeta_ap711                       ))\n",
    "      \n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta8_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap80 , Abeta_ap81 , Abeta_ap82 , Abeta_ap83, Abeta_ap84 , Abeta_ap85 , Abeta_ap86 , Abeta_ap87 , Abeta_ap88 , Abeta_ap89  , Abeta_ap810 , Abeta_ap811                           ))\n",
    "    \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta9_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap90 , Abeta_ap91 , Abeta_ap92 , Abeta_ap93, Abeta_ap94 , Abeta_ap95 , Abeta_ap96 , Abeta_ap97 , Abeta_ap98 , Abeta_ap99 , Abeta_ap910 , Abeta_ap911                              ))\n",
    "     \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta10_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap100 , Abeta_ap101 , Abeta_ap102 , Abeta_ap103, Abeta_ap104 , Abeta_ap105 , Abeta_ap106 , Abeta_ap107 , Abeta_ap108 , Abeta_ap109  , Abeta_ap1010  , Abeta_ap1011                                ))\n",
    "     \n",
    "\n",
    "# with open('stimulateonlyAbeta0_Abeta11_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap110 , Abeta_ap111 , Abeta_ap112 , Abeta_ap113, Abeta_ap114 , Abeta_ap115 , Abeta_ap116 , Abeta_ap117 , Abeta_ap118 , Abeta_ap119 , Abeta_ap1110 , Abeta_ap1111                            ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta12_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap120 , Abeta_ap121 , Abeta_ap122 , Abeta_ap123, Abeta_ap124 , Abeta_ap125 , Abeta_ap126 , Abeta_ap127 , Abeta_ap128  , Abeta_ap129 , Abeta_ap1210 , Abeta_ap1211                           ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta13_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap130 , Abeta_ap131 , Abeta_ap132 , Abeta_ap133, Abeta_ap134 , Abeta_ap135 , Abeta_ap136 , Abeta_ap137 , Abeta_ap138 , Abeta_ap139                           ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta14_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap140 , Abeta_ap141 , Abeta_ap142 , Abeta_ap143, Abeta_ap144 , Abeta_ap145 , Abeta_ap146 , Abeta_ap147 , Abeta_ap148                               ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta15_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap150 , Abeta_ap151 , Abeta_ap152 , Abeta_ap153, Abeta_ap154 , Abeta_ap155 , Abeta_ap156 , Abeta_ap157 , Abeta_ap158 , Abeta_ap159                               ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta16_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap160 , Abeta_ap161 , Abeta_ap162 , Abeta_ap163, Abeta_ap164 , Abeta_ap165 , Abeta_ap166 , Abeta_ap167 , Abeta_ap168                         ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta17_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap170 , Abeta_ap171 , Abeta_ap172 , Abeta_ap173, Abeta_ap174 , Abeta_ap175 , Abeta_ap176 , Abeta_ap177 , Abeta_ap178 , Abeta_ap179 , Abeta_ap1710                            ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta18_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap180 , Abeta_ap181 , Abeta_ap182 , Abeta_ap183, Abeta_ap184 , Abeta_ap185 , Abeta_ap186 , Abeta_ap187 , Abeta_ap188                           ))\n",
    " \n",
    "    \n",
    "# with open('stimulateonlyAbeta0_Abeta19_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap190 , Abeta_ap191 , Abeta_ap192 , Abeta_ap193, Abeta_ap194 , Abeta_ap195 , Abeta_ap196 , Abeta_ap197 , Abeta_ap198 , Abeta_ap199 , Abeta_ap1910                             ))\n",
    " \n",
    "  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "890baeb5",
   "metadata": {},
   "outputs": [],
   "source": [
    "## saving the data\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "# ## writing\n",
    "\n",
    "\n",
    "import csv\n",
    "\n",
    "# with open('v_Abeta0_stimulateonlyAbeta0_dist0.1_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap00 , Abeta_ap01 , Abeta_ap02 , Abeta_ap03, Abeta_ap04 , Abeta_ap05 , Abeta_ap06 , Abeta_ap07 , Abeta_ap08 , Abeta_ap09 , Abeta_ap010 , Abeta_ap011                              ))\n",
    "\n",
    "\n",
    "\n",
    "# with open('imembrane_Abeta0_stimulateALL_dist0.1_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta0_imembrane_node0 , Abeta0_imembrane_node1 , Abeta0_imembrane_node2 , Abeta0_imembrane_node3, Abeta0_imembrane_node4 , Abeta0_imembrane_node5 , Abeta0_imembrane_node6 , Abeta0_imembrane_node7 , Abeta0_imembrane_node8 , Abeta0_imembrane_node9 , Abeta0_imembrane_node10 , Abeta0_imembrane_node11      ))\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "    \n",
    "# with open('stimulateAbeta4_v_Abeta4_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap40 , Abeta_ap41 , Abeta_ap42 , Abeta_ap43, Abeta_ap44 , Abeta_ap45 , Abeta_ap46 , Abeta_ap47 , Abeta_ap48 , Abeta_ap49 , Abeta_ap410  , Abeta_ap411                         ))\n",
    "\n",
    "    \n",
    "# with open('stimulateAbeta5_v_Abeta5_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap50 , Abeta_ap51 , Abeta_ap52 , Abeta_ap53, Abeta_ap54 , Abeta_ap55 , Abeta_ap56 , Abeta_ap57 , Abeta_ap58 , Abeta_ap59 , Abeta_ap510 , Abeta_ap511                         ))\n",
    "        \n",
    "\n",
    "# with open('stimulateAbeta7_v_Abeta7_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap70 , Abeta_ap71 , Abeta_ap72 , Abeta_ap73, Abeta_ap74 , Abeta_ap75 , Abeta_ap76 , Abeta_ap77 , Abeta_ap78 , Abeta_ap79 , Abeta_ap710 , Abeta_ap711                          ))\n",
    "\n",
    "\n",
    "# with open('stimulateAbeta9_v_Abeta9_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap90 , Abeta_ap91 , Abeta_ap92 , Abeta_ap93, Abeta_ap94 , Abeta_ap95 , Abeta_ap96 , Abeta_ap97 , Abeta_ap98 , Abeta_ap99 , Abeta_ap910 , Abeta_ap911                         ))\n",
    "      \n",
    "\n",
    "# with open('stimulateAbeta12_v_Abeta12_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap120 , Abeta_ap121 , Abeta_ap122 , Abeta_ap123, Abeta_ap124 , Abeta_ap125 , Abeta_ap126 , Abeta_ap127  , Abeta_ap128  , Abeta_ap129 , Abeta_ap1210 , Abeta_ap1211                         ))\n",
    "      \n",
    "\n",
    "# with open('stimulateAbeta15_v_Abeta15_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap150 , Abeta_ap151 , Abeta_ap152 , Abeta_ap153, Abeta_ap154 , Abeta_ap155 , Abeta_ap156 , Abeta_ap157 , Abeta_ap158 , Abeta_ap159 , Abeta_ap1510 , Abeta_ap1511                           ))\n",
    "    \n",
    "    \n",
    "\n",
    "# with open('stimulateAbeta17_v_Abeta17_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap170 , Abeta_ap171 , Abeta_ap172 , Abeta_ap173, Abeta_ap174 , Abeta_ap175 , Abeta_ap176 , Abeta_ap177 , Abeta_ap178 , Abeta_ap179 , Abeta_ap1710  , Abeta_ap1711                         ))\n",
    "      \n",
    "\n",
    "# with open('stimulateAbeta18_v_Abeta18_boundary17.1_dist0.2_dt0.005_.csv', 'w', newline='') as f:\n",
    "#     csv.writer(f).writerows(zip( t , Abeta_ap180 , Abeta_ap181 , Abeta_ap182 , Abeta_ap183, Abeta_ap184 , Abeta_ap185 , Abeta_ap186 , Abeta_ap187 , Abeta_ap188 , Abeta_ap189 , Abeta_ap1810 , Abeta_ap1811                              ))\n",
    "   "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "16d8bddc",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "9766ae7e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# netParams.cellParams.keys()\n",
    "# netParams.cellParams['']['']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "e19fa77c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pyplot.plot(t,  ap1 )\n",
    "# #pyplot.xlim((0, 10))\n",
    "# pyplot.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "94e4f559",
   "metadata": {},
   "outputs": [],
   "source": [
    "#(1211 * 1e-6 ) / (0.1225 * 1e-8)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aca60f88",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}