load_file("stdlib.hoc")
load_file("ObliquePath.hoc")

objref cvode
cvode = new CVode()
cvode.active(0)


create axon[2]
objref SD, AXON, SA, Basal, Trunk, AIS
objref LM, RAD, RADt, LUC, PSA, PSB, ORI
create soma[1], apical[1], basal[1]
objref pl[150], opl[150]

objref netlist, s, ampasyn, f1, DEND, sapamp, somavec, sampvec
strdef  str2



dt = 0.025
tstop = 1650// 1050 //1sec (first 50ms not counted)
steps_per_ms=40

Rm_soma=80000
Rm_end=400
Rm_dend = Rm_soma
Rm_axon = Rm_soma
rm_xhalf = 225
rm_slope = 30

Ra_soma=150
Ra_end=150
Ra_axon = Ra_soma
Ra_xhalf = 210
Ra_slope = 50


c_m       = 1
cmsoma    = c_m
cmdend    = c_m*1.8
cmaxon    = c_m

Vrest = -65
v_init = -65
celsius = 34.0


// uncomment/call find_epsp_amplitudes whenever u change any of the following parameters .. 

gna=0.02
gkdr=0.0014
gna=0 //this is the w/o Na file
gkdr=0 //this is the w/o kdr file

gexFac = 0.9

AISFactor=5
epsp_amp = 0.0025  //mV



objref ampa_filename
ampa_filename = new String()
gh=85e-06//µS set to the value for which you'll be running withH.hoc and WithHfast.hoc

ghmax=20
xhalf=250
slopegrad=50

sprint(ampa_filename.s,"g_dist_withgh0_epspAmp_%f_calculated.txt",epsp_amp)



/********************************************************************/


Ek = -90
Ena = 55
Eh=-30


/********************************************************************/
//radial distance calculation

somax=2.497
somay=-13.006
somaz=11.12
double distances[200]

func raddist() {
	distn0=distance(0)
	distances[0]=0
	sum=0
    
	for i=1,n3d()-1 {
		xx=(x3d(i)-x3d(i-1))*(x3d(i)-x3d(i-1))
		yy=(y3d(i)-y3d(i-1))*(y3d(i)-y3d(i-1))
		zz=(z3d(i)-z3d(i-1))*(z3d(i)-z3d(i-1))
		sum=sum+sqrt(xx+yy+zz)
		distances[i]=sum
	}
    
	xval=$1
    
    // Amoung the various pt3d's find which one matches the distance of
    //  x closely
    
	distn=distance(xval)
	match=distn-distn0
	matchptdist=100000
	for i=0,n3d()-1 {		
		matptdist=(match-distances[i])*(match-distances[i])
		if(matchptdist>matptdist){
			matchptdist=matptdist
			matchi=i
		}
	}
    
	//print "Match for ", x, " is ", matchi, " XDIST ", match, " MATCH ", distances[matchi], " ERROR ", sqrt(matchptdist)
    
    
    // Find the distance of the closely matched point to the somatic
    // centroid and use that as the distance for this BPAP measurement			
    
	xx=(x3d(matchi)-somax)*(x3d(matchi)-somax)
	yy=(y3d(matchi)-somay)*(y3d(matchi)-somay)
	zz=(z3d(matchi)-somaz)*(z3d(matchi)-somaz)
	return sqrt(xx+yy+zz)
}

/********************************************************************/

proc update_init(){
	finitialize(v_init)
	fcurrent()
    forall {
        for (x){
            if (ismembrane("hd")||ismembrane("nas")||ismembrane("na3")||ismembrane("nax")) {
                e_pas(x)=v(x)+(i_hd(x)+ina(x)+ik(x))/g_pas(x)
            } else {
                e_pas(x)=v(x)
            }
        }
    }
}
/**********************************************************************/
// Passive Conductances 

proc setpassive(){
    forall {
        insert pas
        e_pas = v_init
        Ra=Ra_soma
    }
    forsec SD{		// For somato-dendritic compartments
        cm=cmdend
        g_pas=1/Rm_dend
    }
    forsec "soma" {
        cm = cmsoma 
        g_pas=1/Rm_soma
    }
    forsec Trunk {
        for (x) {
            rdist=raddist(x)
            rm = Rm_soma + (Rm_end - Rm_soma)/(1.0 + exp((rm_xhalf-rdist)/rm_slope))
            Ra = Ra_soma + (Ra_end - Ra_soma)/(1.0 + exp((Ra_xhalf-rdist)/Ra_slope))
            g_pas(x)=1/rm
        }
    }	
    
    for i=0,plcount {
        seccount=0
        forsec pl[i] {
            if(!seccount){
                trunk_pas=g_pas(1)
                seccount=seccount+1
            } else {
                g_pas=trunk_pas
                seccount=seccount+1
            }
            //print secname() 
        }
    }       
    
}
/**********************************************************************/
// Active Conductances 



proc setactive () {
    
	forall{
        insert na3
        gbar_na3= gna 
        insert kdr 
        gkdrbar_kdr=gkdr
        
        
        insert hd  
		ghdbar_hd=gh vhalfl_hd=-82
        tfactor_hd=1
	}
    
	forsec AXON{
        gbar_na3= 0 
        gkdrbar_kdr=0
        ghdbar_hd=0
        
    }
    
    
    forsec "apical"{
        insert nas
        gbar_nas = gna //has a slow "s" factor
        
        gbar_na3 = 0 //since this was added forall, remove from apical section
        
    }
    
    forsec AIS {
        gbar_na3= 0 
        insert nax 
        gbar_nax = gna*AISFactor//0//10          //5             //50
        
        gkdrbar_kdr=gkdr
        ghdbar_hd=0
	}
    
    forall{
        if(ismembrane("hd")){
            ehd_hd=-30
        }
        
        if(ismembrane("na3") || ismembrane("nas") || ismembrane("nax")){
            ena=55
        }
        
        if(ismembrane("kdr")){
            ek=-90
        }
        
        
        
    }
    
    
	
}


/********************************************************************/
proc gh_gradient(){
	
	
	forsec Trunk {	// Trunk
        
		for (x) {
			xdist=raddist(x)
			
			ghdbar_hd(x) = gh*(1+ghmax/(1+exp(-(xdist-xhalf)/slopegrad)))             
            
			if (xdist > 100){
				if (xdist>300) { 
					ndist=300
				} else { // 100 <= xdist <= 300
					ndist=xdist
				}
				vhalfl_hd(x)=-82-8*(ndist-100)/200
			} else {	// xdist < 100
				vhalfl_hd(x)=-82
			}	
            
		}
	}
    
	for i=0,plcount { // Apical obliques
    	seccount=0
    	forsec pl[i] {
        	if(!seccount){	// The first section is the trunk
            	trunk_h=ghdbar_hd(1)
				trunk_vhalf=vhalfl_hd(1)
				seccount=seccount+1
        	} else {
				
            	ghdbar_hd=trunk_h
				vhalfl_hd=trunk_vhalf
				seccount=seccount+1
        	}
        	//print secname() 
    	}
	}       
    
	forsec "soma" {
        ghdbar_hd=gh vhalfl_hd=-82
	}	
    
	forsec Basal {
        ghdbar_hd=gh vhalfl_hd=-82
	}	
    
	forall if (ismembrane("hd") ) ehd_hd = Eh
        
        
        
        
        }


/**********************************************************************/
proc load_3dcell() {
    
    // $s1 filename
    
	forall delete_section()
	xopen($s1)
    
	access soma[2] //define origin for distance calculation
	distance()
    
    
	SD = new SectionList() //Somato-dendritic section
	SA = new SectionList() // Somato-axonic section
	Trunk = new SectionList() //Trunk
	Basal = new SectionList() //Basal
    
	forsec "soma" {
		SD.append()
		SA.append()
	}
    
	forsec "basal" { 
		SD.append()
		Basal.append()
	}
    
	forsec "apical"{
		SD.append()
		SA.append()
	}
    
	// Trunk. 
    
	soma[0]	   Trunk.append()
	apical[0]  Trunk.append() 
	apical[4]  Trunk.append() 
	apical[6]  Trunk.append() 
	apical[14] Trunk.append() 
	apical[15] Trunk.append() 
	apical[16] Trunk.append() 
	apical[22] Trunk.append() 
	apical[23] Trunk.append() 
	apical[25] Trunk.append() 
	apical[26] Trunk.append() 
	apical[27] Trunk.append() 
	apical[41] Trunk.append() 
	apical[42] Trunk.append() 
	apical[46] Trunk.append() 
	apical[48] Trunk.append() 
	apical[56] Trunk.append() 
	apical[58] Trunk.append() 
	apical[60] Trunk.append() 
	apical[62] Trunk.append() 
	apical[64] Trunk.append() 
	apical[65] Trunk.append() 
	apical[69] Trunk.append() 
	apical[71] Trunk.append()
	apical[81] Trunk.append() 
	apical[83] Trunk.append() 
	apical[95] Trunk.append()
	apical[103] Trunk.append()
	apical[104] Trunk.append()
    
    load_file("oblique-paths.hoc")
    
    setpassive() //before setting the nseg
    // The lambda constraint
    totcomp=0
    forall{
        nseg=int((L/(0.1*lambda_f(100))+0.9)/2)*2+1   
        totcomp=totcomp+nseg
    }
    print "totcomp = ",totcomp
    
    
    
	init_cell() //calls setpassive()
    
    DEND = new SectionList()
    forsec "apical"{
        xdist=raddist(1)
        if(xdist<300 && xdist > 50){
            DEND.append()
        }    
    }
    
    
    
	
}

/**********************************************************************/
// For cell number n123 on the DSArchive, converted with CVAPP to give
// HOC file, the following definition holds. This is the same as Poirazi et
// al. have used in Neuron, 2003. The argument is that the subtree seems
// so long to be a dendrite, and the cell does not have a specific axon.
// There is a catch, though, if the morphology is closely scanned, then 
// basal dendrites would branch from these axonal segments - which
// may be fine given the amount of ambiguity one has while tracing! 

proc addaxon() {
    
	AXON = new SectionList()
    AIS = new SectionList() // Axonal initial segment
    
	for i = 30,34 basal[i] {
		AXON.append()
		Basal.remove()
	}
    
	for i = 18,22 basal[i] {
		AXON.append()
        AIS.append()
		Basal.remove()
	}
    
	forsec AXON {
		e_pas=v_init 
		g_pas = 1/Rm_axon 
		Ra=Ra_axon 
		cm=cmaxon
	}
}

/********************************************************************/





proc init_cell() {
	setpassive()
	addaxon()
	setactive()
	gh_gradient() //sets the gh gradient
	
	access soma[2]	// Reinitializing distance origin
	distance()
    
	finitialize(v_init)
	fcurrent()
    forall {
        for (x) {
            if (ismembrane("hd")||ismembrane("nas")||ismembrane("na3")||ismembrane("nax")) {
                e_pas(x)=v(x)+(i_hd(x)+ina(x)+ik(x))/g_pas(x)
            } else {
                e_pas(x)=v(x)
            }
        }
    }   
}


/********************************************************************/


load_3dcell("n123.hoc") //calls setpassive()


/********************************************************************/
///********************************************************************/


objref tvec,f_tvec,f_name_tvec // time vector , time file, time file name
objref cvec,f_cvec, f_name_cvec // soma(0.5) voltage vector, file , file name
objref cvec42, cvec62, cvec69 // apical[42], apical[62], apical[69]
cvec=new Vector()
cvec42=new Vector()
cvec62=new Vector()
cvec69=new Vector()
tvec=new Vector()
f_tvec = new File()
f_cvec = new File()
f_name_cvec= new String()
f_name_tvec = new String()


/********************************************************************/

numexsyn =50// 100//221//100//221//100//221 //100 //number of excitatory synapses
numinsyn = 25 //number of inhibitory synapses

use_mcell_ran4(1)

//highindex = 8 //use the same highindex for all trials for distribution of inhibitory synapses
trialNo = 1
highindex = trialNo + 1e8*mcell_ran4(&trialNo) //seed for synaptic distribution


objref r
r = new Random(highindex) // will be of type discunif() to generate comaparment #s where the excitatory synapses will go
//r = new Random()

no_of_comp=totcomp // total number fo compartments

/********************************************************************/

objref isExSynapse, isInSynapse, isSynapse  //vectors to store synapse location; 1 for synapse, 0 for not
objref f_isSynapse,f_isExSynapse, f_isInSynapse // file objects for saving synapse location vectors
objref f_name_isSynapse, f_name_isExSynapse,f_name_isInSynapse // names -string objects for synpase location file names

objref i_total[no_of_comp], f_total_current,f_name_total //total current vector, file and file name
objref i_pas_current[no_of_comp],f_pas_current, f_name_pas // passive current vector, file and file name
objref i_cap_current[no_of_comp],f_cap_current, f_name_cap // capacitive current vector, file and file name
objref i_queer_current[no_of_comp],f_queer_current, f_name_queer // h current vector, file and file name



objref esyncurr[numexsyn+1], f_esyncurr, f_name_esyncurr // excitatory synaptic current vectot, file and file name; last index stores total ex syn current
objref isyncurr[numinsyn+1], f_isyncurr, f_name_isyncurr // inhibitory synaptic current vector, file and file name; last index stores total in syn current

objref f_e_time, f_name_etime, e_time[numexsyn+1] // excitatory synaptic timings - to check whether their histogram looks gaussian modulated or not; last index used for all ex syn times 
objref f_i_time, f_name_itime, i_time[numinsyn+1] // inhibitory synaptic timings - to check whether their histogram looks random (uniform) or not; last index used for all in syn times
objref ex_syn_locations //contains compartment indices where excitatory synapses are present
objref in_syn_locations //contains compartment indices where inhibitory synapses are present

print " No of compartments: ", no_of_comp

isExSynapse= new Vector(no_of_comp)
isInSynapse= new Vector(no_of_comp)
isSynapse = new Vector(no_of_comp)
ex_syn_locations = new Vector(numexsyn)
in_syn_locations = new Vector(numinsyn)

f_isSynapse = new File()
f_isExSynapse = new File()
f_isInSynapse = new File()
f_total_current = new File()
f_pas_current = new File()
f_cap_current = new File()
f_queer_current = new File()
f_esyncurr = new File()
f_isyncurr = new File()
f_e_time= new File()
f_i_time= new File()


f_name_isSynapse = new String()
f_name_isExSynapse= new String()
f_name_isInSynapse= new String()
f_name_total = new String()
f_name_pas = new String()
f_name_cap = new String()
f_name_queer = new String()
f_name_esyncurr = new String()
f_name_isyncurr = new String()   
f_name_etime= new String()
f_name_itime= new String()

for(i=0;i<no_of_comp;i+=1){
    i_total[i]=new Vector() //total current
    i_pas_current[i] = new Vector() //passive current
    i_cap_current[i] = new Vector() //capacitive current
    i_queer_current[i] = new Vector() //queer current
        
}

for(i=0;i<=numexsyn;i+=1){
    e_time[i]= new Vector()
    esyncurr[i] = new Vector() // excitatory synaptic current vector
    
}

for(i=0;i<=numinsyn;i+=1){
    i_time[i]= new Vector()
    isyncurr[i] = new Vector() // inhibitory synaptic curren vector 
    
}

/********************************************************************/

//objects to be used with NetCon
objref nile  
objref conne[numexsyn]

objref nili
objref conni[numinsyn]

/********************************************************************/

cvec.record(&soma[2].v(0.5)) // save the voltage at the soma
cvec42.record(&apical[42].v(0.5)) // save the voltage at the apical[42] raddist(1)=158.16
cvec62.record(&apical[62].v(0.5)) // save the voltage at the apical[62] raddist(1)=235.56799 
cvec69.record(&apical[69].v(0.5)) // save the voltage at the apical[69] raddist(1)=303.59043

//v_soma.record(&soma[2].v(0.5))

/********************************************************************/

objref ex_synapse_compartment_index //will store the index of the excitatory synaptic input


/********************************************************************/


//add synapses

//gex = 0.0008 //excitatory synaptic conductance  µS
objref syne[numexsyn] // excitatory synapses - will be of type Exp2Syn()
Ecount=0 //counter for ex synpases 

segcount=0

gin =0.0001// 0.0064//0.0025//0.0032 //0.0008 //0.0025 //0.0032 // µS - to balance the excitation - (as the number of inhibitory synapses is less) increase the inhibitory synaptic conductance ??? 
objref syni[numinsyn] //inhibitory synapses - will be of type Exp2Syn()
Icount=0 //counter for in synapses

count = 0 //keeps track of apical section compartment index
count_dend = 0// should be same as count 
exsegcount=0 //indexes only the apical sections matching a certain criteria

/*forsec "apical"{
 for(x){
 xdist = raddist(1) 
 if(xdist>50 && xdist<300){
 if(x!=0 && x!=1){
 xdist = raddist(x) //get the radial distance from the soma
 print "using apical ", xdist
 count = count + 1
 }
 }
 }
 }
 */
forsec DEND{
    for (x) {
        if (x!=0 && x!=1){
            xdist = raddist(x)
            //  print "using DEND ", xdist
            count_dend= count_dend + 1 
        }
    }
}

//print "count of apical >50 <300 : ", count
print "count of apical >50 <300 using DEND sectionlist: ", count_dend

r.discunif(0,count_dend-1) //set to generate compartment #s from 0 to count

ex_synapse_compartment_index = new Vector(count_dend) 

for(e_syn_count=0; e_syn_count < numexsyn; e_syn_count = e_syn_count+1){  
    
    ind=r.repick()
    while(ex_synapse_compartment_index.x[ind]!=0){
        ind=r.repick()  //keep repicking till you find a compartment which doesn't already have a synapse
    }
    ex_synapse_compartment_index.x[ind] = 1 //generate a uniformly distributed random number between 0 and count and use this to assign the ex synapse in that compartment
    
}




forall{
    for(x){
        if(x!=0 && x!=1){
            xdist = raddist(x) //get the radial distance from the soma
            
            if(xdist<100){ //add inhibitory synapses at distance<100µm from soma
                
                
                if(mcell_ran4(&highindex)>0.50 && Icount<numinsyn){ //if prob>0.5 and # of inh syn<total #of inhi synapses, then add an inhibitory synapse
                    syni[Icount] = new Exp2Syn(x)
                    syni[Icount].tau1 = 0.1
                    syni[Icount].tau2 = 5
                    syni[Icount].e = -80
                    in_syn_locations.x[Icount]=segcount
                    Icount+=1
                    isInSynapse.x[segcount]=1
                    isSynapse.x[segcount]=1
                } else{ 
                    isInSynapse.x[segcount]=0 
                    isSynapse.x[segcount]=0
                }
                
            } //end of if xdist<100
            
            
            
            //            if(xdist>50 && xdist<300){ //distance>50µm && distance <300µm from soma
            
            ifsec DEND {
                
                if(ex_synapse_compartment_index.x[exsegcount]==1){ //if this compartment was chosen earlier using repick(), add an excitatory synapse
                    // print "xdist ",xdist
                    syne[Ecount] = new Exp2Syn(x)
                    syne[Ecount].tau1 = 0.1
                    syne[Ecount].tau2 = 5
                    syne[Ecount].e = 0
                    ex_syn_locations.x[Ecount]=segcount
                    Ecount+=1
                    isExSynapse.x[segcount]=1
                    isSynapse.x[segcount]=1
                } else{ 
                    isExSynapse.x[segcount]=0 
                    isSynapse.x[segcount]=0
                }
                exsegcount = exsegcount +1
            } // end of ifsec  ...
            
            
            
            segcount+=1
        }
    }
}


print "segcount = ", segcount
print "exsegcount = ", exsegcount

print "No of excitatory synapses",Ecount

print "No of inhibitory synapses",Icount

/**************************************************************/


seg=0
Ecount=0
Icount=0

objref g_ampa,f1

g_ampa= new Vector(220)

f1=new File()
f1.ropen(ampa_filename.s)
g_ampa.scanf(f1) //reading into vector
f1.close()

wopen("synapse_location_with_conductance.txt")

within50to300count=0

forall{
    for(x){
        if(x!=0 && x!=1){
            
            xdist = raddist(x)
            ifsec DEND {
                
                if(isExSynapse.x[seg]==1){
                     gex=g_ampa.x[within50to300count]/gexFac
                    
                    //  print within50to300count+1, " ", gex
                    conne[Ecount] = new NetCon(nile,syne[Ecount],0,0,gex) //(src, target, threshold, delay, wt)
                    Ecount+=1
                    //  print "gex = ", gex
                    fprint("%f\t%f\n",xdist,gex)
                }
                
                within50to300count= within50to300count + 1
            }
            
            if(isInSynapse.x[seg]==1){
                //gin=gex*3
                conni[Icount] = new NetCon(nili,syni[Icount],0,0,gin) //(src, target, threshold, delay, wt)
                Icount+=1
            }
            
            seg+=1
        }
    }
}

wopen()

/**************************************************************/


use_mcell_ran4(1)
junk = area(0.5) // need to call area(0.5) once coz ofsome bug in the way area is calculated


/**************************************************************/
//for(trialNo=1;trialNo<51;trialNo+=1){ //if you're using this for loop.. ensure that highindex gets changed inside the loop for each trial

//highindex = trialNo // this highindex is used for initialization of mcell_ran4() for synapse activation timing calculation
print highindex

trialNo = trialNo -1 //mcell_ran4 increases it by one, so decrease by one to get back


print "Trial number: ", trialNo 



sprint(f_name_isSynapse.s,"Trial_synWithH_%d/synWithH_isSynapse.txt",trialNo)
sprint(f_name_isExSynapse.s,"Trial_synWithH_%d/synWithH_isExSynapse.txt",trialNo)
sprint(f_name_isInSynapse.s,"Trial_synWithH_%d/synWithH_isInSynapse.txt",trialNo)




f_isSynapse.wopen(f_name_isSynapse.s)
isSynapse.printf(f_isSynapse)
f_isSynapse.close()

f_isExSynapse.wopen(f_name_isExSynapse.s)
isExSynapse.printf(f_isExSynapse)
f_isExSynapse.close()

f_isInSynapse.wopen(f_name_isInSynapse.s)
isInSynapse.printf(f_isInSynapse)
f_isInSynapse.close()


/********************************************************************/


syncurrcount = 0

finitialize(Vrest)
fcurrent()
forall {
    for (x) {
        if (ismembrane("hd")||ismembrane("nas")||ismembrane("na3")||ismembrane("nax")) {
            e_pas(x)=v(x)+(i_hd(x)+ina(x)+ik(x))/g_pas(x)
        } else {
            e_pas(x)=v(x)
            
        }
    }
}




// finitialize(Vrest)
// fcurrent()


/**************************************************************/




OscFreq = 8 ///////in Hz, frequency of modulation of mean synaptic activation rate
sigma_ex=1000/(8*OscFreq) //std for gaussian distribution
sigma_in=1000/(5*OscFreq) //std for gaussian distribution
mod_factor=1000/OscFreq //used in rate_ex, duration of 1 cycle in ms
mean= mod_factor/2 //used in rate_ex, as the mean to be subtracted for gaussian distri under the mod usage
phi=PI/3//PI //phase difference in radians (for interneurons)
phase=mod_factor*phi/(2*PI) //phaase difference in ms

tstop=1650

while (t<tstop) {
    
    
    if (t >= 50) {
        
        rate_ex = exp(-(((t%mod_factor)-mean)^2)/(2*(sigma_ex^2))) ///////sets mean activation rate for excitatory synapses 
        for i=0,numexsyn-1 {
            if (dt*rate_ex > mcell_ran4(&highindex) ) {
                e_time[i].append(t)
                e_time[Ecount].append(t)
                conne[i].event(t)
            }
            esyncurr[i].append(syne[i].i)
            esyncurrcount = esyncurrcount + syne[i].i
            
        }
        
        esyncurr[i].append(esyncurrcount) //last index.. save total ex synaptic current
        esyncurrcount = 0
        
        rate_in = exp(-((((t+phase)%mod_factor)-mean)^2)/(2*(sigma_in^2)))
        
        for i=0,numinsyn-1 {
            if (dt*rate_in > mcell_ran4(&highindex)) {
                i_time[i].append(t)
                i_time[Icount].append(t)
                conni[i].event(t)
            }
            isyncurr[i].append(syni[i].i)
            isyncurrcount = isyncurrcount + syni[i].i
        }
        
        isyncurr[i].append(isyncurrcount)
        isyncurrcount = 0
        
    } // end of if(t>=50)
    
    seg=0
    ecount=0
    icount=0
    segcount=0
    
    if( t>=50){
        // print "t = ", t*1000
        forall{
            for(x){
                
                if(x!=0 && x!=1){
                    
                    if(isSynapse.x[seg]==1){
                        
                        if(isExSynapse.x[seg]==1){
                            i_total[seg].append(((i_pas(x)+i_cap(x)+i_hd(x)+ina(x)+ik(x))*area(x)*1e-2)+syne[ecount].i) //convert i_pas, i_hd and i_cap from mA/cm2 to nA
                            //   print secname(), x, "exc curr ", syne[ecount].i
                            ecount+=1
                            
                        }
                        if(isInSynapse.x[seg]==1){
                            i_total[seg].append(((i_pas(x)+i_cap(x)+i_hd(x)+ik(x)+ina(x))*area(x)*1e-2)+syni[icount].i) //convert i_pas, i_hd and i_cap from mA/cm2 to nA
                            //    print secname(), x, "inhi curr ", syni[icount].i
                            icount+=1
                            
                        }
                    }else{
                        i_total[seg].append((i_pas(x)+i_cap(x)+i_hd(x)+ina(x)+ik(x))*area(x)*1e-2) //convert i_pas, i_hd and i_cap from mA/cm2 to nA
                    }
                    
                    
                    i_pas_current[seg].append(i_pas(x)*area(x)*1e-2) //convert i_pas from mA/cm2 to nA
                    i_cap_current[seg].append(i_cap(x)*area(x)*1e-2) //convert i_cap from mA/cm2 to nA
                    i_queer_current[seg].append(i_hd(x)*area(x)*1e-2) //convert i_hd from mA/cm2 to nA
                                        
                    
                    
                    
                    //   calc_axial_currents(x,i_total[seg].x[i_total[seg].size()-1])   
                    
                    seg+=1
                }
                 //print "Something ", seg
                
            }
        }
        segcount =0
        seg=0
        tvec.append(t)
    }
    fadvance()
}

print "Done with simulations..."

/*****************************************************************/
    //write to files
    //define all file names according to current trial

    for(i=0;i<Ecount;i+=1){
        sprint(f_name_etime.s,"Trial_synWithH_%d/synWithH_ExCurrTime_Syn%d.txt",trialNo,i)
        
        f_e_time.wopen(f_name_etime.s)
        e_time[i].printf(f_e_time)
        f_e_time.close()
//        e_time[i].resize(0)
        
        sprint(f_name_esyncurr.s,"Trial_synWithH_%d/synWithH_esyncurr_%d.txt",trialNo,ex_syn_locations.x[i])
        f_esyncurr.wopen(f_name_esyncurr.s)
        esyncurr[i].printf(f_esyncurr)
        f_esyncurr.close()
//        esyncurr[i].resize(0)
        
        
    }

print "Done with Time writing..."


    sprint(f_name_etime.s,"Trial_synWithH_%d/synWithH_ExCurrTime_SynTotal.txt",trialNo)

    f_e_time.wopen(f_name_etime.s)
    e_time[Ecount].printf(f_e_time)
    f_e_time.close()
//    e_time[Ecount].resize(0)

    sprint(f_name_esyncurr.s,"Trial_synWithH_%d/synWithH_esyncurr_total.txt",trialNo)
    f_esyncurr.wopen(f_name_esyncurr.s)
    esyncurr[i].printf(f_esyncurr)
    f_esyncurr.close()
//    esyncurr[i].resize(0)

print "Done with Time writing 2..."



    for(i=0;i<Icount;i+=1){
        sprint(f_name_itime.s,"Trial_synWithH_%d/synWithH_InCurrTime_Syn%d.txt",trialNo,i)
        f_i_time.wopen(f_name_itime.s)
        i_time[i].printf(f_i_time)
        f_i_time.close()
//        i_time[i].resize(0)
        
        
        sprint(f_name_isyncurr.s,"Trial_synWithH_%d/synWithH_isyncurr_%d.txt",trialNo,in_syn_locations.x[i])
        f_isyncurr.wopen(f_name_isyncurr.s)
        isyncurr[i].printf(f_isyncurr)
        f_isyncurr.close()
//        isyncurr[i].resize(0)
        
        
    }
    
    print "Done with Time writing 3..."


    sprint(f_name_itime.s,"Trial_synWithH_%d/synWithH_InCurrTime_SynTotal.txt",trialNo)
    f_i_time.wopen(f_name_itime.s)
    i_time[Icount].printf(f_i_time)
    f_i_time.close()
//    i_time[Icount].resize(0)

    sprint(f_name_isyncurr.s,"Trial_synWithH_%d/synWithH_isyncurr_total.txt",trialNo)
    f_isyncurr.wopen(f_name_isyncurr.s)
    isyncurr[i].printf(f_isyncurr)
    f_isyncurr.close()
//    isyncurr[i].resize(0)






    sprint(f_name_tvec.s,"Trial_synWithH_%d/synWithH_tvec.txt",trialNo)
    f_tvec.wopen(f_name_tvec.s)
    tvec.printf(f_tvec)
    f_tvec.close()
//    tvec.resize(0) //resize for next trail - needed if using the for loop for running several trials




    sprint(f_name_cvec.s,"Trial_synWithH_%d/synWithH_cvec.txt",trialNo)
    f_cvec.wopen(f_name_cvec.s)
    cvec.printf(f_cvec)
    f_cvec.close()
//    cvec.resize(0) //resize for next trail - needed if using the for loop for running several trials

    sprint(f_name_cvec.s,"Trial_synWithH_%d/synWithH_cvec42.txt",trialNo)
    f_cvec.wopen(f_name_cvec.s)
    cvec42.printf(f_cvec)
    f_cvec.close()
//    cvec42.resize(0) //resize for next trail - needed if using the for loop for running several trials



    sprint(f_name_cvec.s,"Trial_synWithH_%d/synWithH_cvec62.txt",trialNo)
    f_cvec.wopen(f_name_cvec.s)
    cvec62.printf(f_cvec)
    f_cvec.close()
//    cvec62.resize(0) //resize for next trail - needed if using the for loop for running several trials


    sprint(f_name_cvec.s,"Trial_synWithH_%d/synWithH_cvec69.txt",trialNo)
    f_cvec.wopen(f_name_cvec.s)
    cvec69.printf(f_cvec)
    f_cvec.close()
//    cvec69.resize(0) //resize for next trail - needed if using the for loop for running several trials


print "Done with Time writing 4..."



    for(seg=0;seg<no_of_comp;seg+=1){
        
        sprint(f_name_total.s,"Trial_synWithH_%d/synWithH_TotalCurrent_Cmpt%d.txt",trialNo,seg)
        f_total_current.wopen(f_name_total.s)
        i_total[seg].printf(f_total_current)
        f_total_current.close()
        
        sprint(f_name_pas.s,"Trial_synWithH_%d/synWithH_PasCurrent_Cmpt%d.txt",trialNo,seg)
        f_pas_current.wopen(f_name_pas.s)
        i_pas_current[seg].printf(f_pas_current)
        f_pas_current.close()
        
        sprint(f_name_cap.s,"Trial_synWithH_%d/synWithH_CapCurrent_Cmpt%d.txt",trialNo,seg)
        f_cap_current.wopen(f_name_cap.s)
        i_cap_current[seg].printf(f_cap_current)
        f_cap_current.close()
        
        sprint(f_name_queer.s,"Trial_synWithH_%d/synWithH_QueerCurrent_Cmpt%d.txt",trialNo,seg)
        f_queer_current.wopen(f_name_queer.s)
        i_queer_current[seg].printf(f_queer_current)
        f_queer_current.close()
        
                
        //resize the vectors for next trial
//        i_total[seg].resize(0)
//        i_pas_current[seg].resize(0)
//        i_cap_current[seg].resize(0)
//        i_queer_current[seg].resize(0)
               
        
        
    }

print "Done with Time writing 5..."

                      
/**************************************************************/
   //save the parameters used in this simulation - for future reference
f1= new File()
f1.wopen("Parameter_noVGIC.txt")

f1.printf("Rm_soma = %f\n",Rm_soma)
f1.printf("Rm_end = %f\n",Rm_end)
f1.printf("Rm_dend = %f\n",Rm_dend)
f1.printf("Rm_axon = %f\n",Rm_axon)
f1.printf("rm_xhalf = %f\n",rm_xhalf)
f1.printf("rm_slope = %f\n",rm_slope)

f1.printf("Ra_soma = %f\n",Ra_soma)
f1.printf("Ra_end = %f\n",Ra_end)
f1.printf("Ra_axon = %f\n",Ra_axon)
f1.printf("Ra_xhalf = %f\n",Ra_xhalf)
f1.printf("Ra_slope = %f\n",Ra_slope)

f1.printf("c_m = %f\n",c_m)
f1.printf("cmsoma = %f\n",cmsoma)
f1.printf("cmdend = %f\n",cmdend)
f1.printf("cmaxon = %f\n",cmaxon)

f1.printf("Vrest = %f\n",Vrest)
f1.printf("v_init = %f\n",v_init)
f1.printf("celsius = %f\n",celsius)

f1.printf("gna = %f\n",gna)
f1.printf("gkdr = %f\n",gkdr)
f1.printf("AIS factor = %d\n", AISFactor)
f1.printf("gexFac = %f\n",gexFac)
f1.printf("gh = %f\n",gh)
f1.printf("ghmax = %d\n",ghmax)
f1.printf("xhalf = %d\n", xhalf)
f1.printf("slopegrad = %d\n", slopegrad)

f1.printf("Ek = %d\n",Ek)
f1.printf("Ena = %d\n",Ena)
f1.printf("Eh = %d\n", Eh)
f1.printf("no_of_comp = %f\n", no_of_comp)


f1.printf("Num. of excitatory synapses = %d\n",numexsyn)
f1.printf("Num. of inhibitory synapses = %d\n",numinsyn)
f1.printf("gin = %f\n",gin)
f1.printf("epsp amp = %f\n",epsp_amp) //determines gex .. note : gex=gex/some_factor

f1.printf("Oscillation Frequency = %d\n", OscFreq)
f1.printf("mod_factor = %f\n", mod_factor)
f1.printf("sigma_ex = %f\n", sigma_ex)
f1.printf("sigma_in = %f\n", sigma_in)
f1.printf("phi = %f\n", phi)
f1.printf("phase = %f\n",phase)
f1.printf("rate_ex = %f\n", rate_ex)
f1.printf("rate_in = %f\n", rate_in)

f1.close()


/**************************************************************/


//WAKE UP!!!! SIMLATION'S OVER
CTRLG = 7 // ASCII code for ^G or "bell" character
strdef foo
sprint(foo,"%c",CTRLG)
for(i=0;i<10;i+=1){
    print foo
    for (j=0; j<2000000; j+=1){
    }
}


//}//end of trial loop