load_file("stdlib.hoc")
load_file("ObliquePath.hoc")
objref cvode
cvode = new CVode()
cvode.active(0)
create axon[2]
objref SD, AXON, SA, Basal, Trunk, AIS
objref LM, RAD, RADt, LUC, PSA, PSB, ORI
create soma[1], apical[1], basal[1]
objref pl[150], opl[150]
objref netlist, s, ampasyn, f1, DEND, sapamp, somavec, sampvec
strdef str2
dt = 0.025
tstop = 1550// 1050 //1sec (first 50ms not counted)
steps_per_ms=40
Rm_soma=80000
Rm_end=400
Rm_dend = Rm_soma
Rm_axon = Rm_soma
rm_xhalf = 225
rm_slope = 30
Ra_soma=150
Ra_end=150
Ra_axon = Ra_soma
Ra_xhalf = 210
Ra_slope = 50
c_m = 1
cmsoma = c_m
cmdend = c_m*1.8
cmaxon = c_m
Vrest = -65
v_init = -65
celsius = 34.0
// uncomment/call find_epsp_amplitudes whenever u change any of the following parameters ..
gna=0.02
gkdr=0.0014
gna=0 //this is the w/o Na file
gkdr=0 //this is the w/o kdr file
gexFac = 0.9
AISFactor=5
epsp_amp = 0.0025 //mV
objref ampa_filename
ampa_filename = new String()
gh=25e-06//µS set to the value for which you'll be running withH.hoc and WithHfast.hoc
ghmax=20
xhalf=250
slopegrad=50
sprint(ampa_filename.s,"g_dist_withgh0_epspAmp_%f_calculated.txt",epsp_amp)
/********************************************************************/
Ek = -90
Ena = 55
Eh=-30
/********************************************************************/
//radial distance calculation
somax=2.497
somay=-13.006
somaz=11.12
double distances[200]
func raddist() {
distn0=distance(0)
distances[0]=0
sum=0
for i=1,n3d()-1 {
xx=(x3d(i)-x3d(i-1))*(x3d(i)-x3d(i-1))
yy=(y3d(i)-y3d(i-1))*(y3d(i)-y3d(i-1))
zz=(z3d(i)-z3d(i-1))*(z3d(i)-z3d(i-1))
sum=sum+sqrt(xx+yy+zz)
distances[i]=sum
}
xval=$1
// Amoung the various pt3d's find which one matches the distance of
// x closely
distn=distance(xval)
match=distn-distn0
matchptdist=100000
for i=0,n3d()-1 {
matptdist=(match-distances[i])*(match-distances[i])
if(matchptdist>matptdist){
matchptdist=matptdist
matchi=i
}
}
//print "Match for ", x, " is ", matchi, " XDIST ", match, " MATCH ", distances[matchi], " ERROR ", sqrt(matchptdist)
// Find the distance of the closely matched point to the somatic
// centroid and use that as the distance for this BPAP measurement
xx=(x3d(matchi)-somax)*(x3d(matchi)-somax)
yy=(y3d(matchi)-somay)*(y3d(matchi)-somay)
zz=(z3d(matchi)-somaz)*(z3d(matchi)-somaz)
return sqrt(xx+yy+zz)
}
/********************************************************************/
proc update_init(){
finitialize(v_init)
fcurrent()
forall {
for (x){
if (ismembrane("hd")||ismembrane("nas")||ismembrane("na3")||ismembrane("nax")) {
e_pas(x)=v(x)+(i_hd(x)+ina(x)+ik(x))/g_pas(x)
} else {
e_pas(x)=v(x)
}
}
}
}
/********************************************************************/
// Passive Conductances
proc setpassive(){
forall {
insert pas
e_pas = v_init
Ra=Ra_soma
}
forsec SD{ // For somato-dendritic compartments
cm=cmdend
g_pas=1/Rm_dend
}
forsec "soma" {
cm = cmsoma
g_pas=1/Rm_soma
}
forsec Trunk {
for (x) {
rdist=raddist(x)
rm = Rm_soma + (Rm_end - Rm_soma)/(1.0 + exp((rm_xhalf-rdist)/rm_slope))
Ra = Ra_soma + (Ra_end - Ra_soma)/(1.0 + exp((Ra_xhalf-rdist)/Ra_slope))
g_pas(x)=1/rm
}
}
for i=0,plcount {
seccount=0
forsec pl[i] {
if(!seccount){
trunk_pas=g_pas(1)
seccount=seccount+1
} else {
g_pas=trunk_pas
seccount=seccount+1
}
//print secname()
}
}
}
/**********************************************************************/
// Active Conductances
proc setactive () {
forall{
insert na3
gbar_na3= gna
insert kdr
gkdrbar_kdr=gkdr
insert hd
ghdbar_hd=gh vhalfl_hd=-82
tfactor_hd=0.2
}
forsec AXON{
gbar_na3= 0
gkdrbar_kdr=0
ghdbar_hd=0
}
forsec "apical"{
insert nas
gbar_nas = gna //has a slow "s" factor
gbar_na3 = 0 //since this was added forall, remove from apical section
}
forsec AIS {
gbar_na3= 0
insert nax
gbar_nax = gna*AISFactor//0//10 //5 //50
gkdrbar_kdr=gkdr
ghdbar_hd=0
}
forall{
if(ismembrane("hd")){
ehd_hd=-30
}
if(ismembrane("na3") || ismembrane("nas") || ismembrane("nax")){
ena=55
}
if(ismembrane("kdr")){
ek=-90
}
}
}
/********************************************************************/
proc gh_gradient(){
forsec Trunk { // Trunk
for (x) {
xdist=raddist(x)
ghdbar_hd(x) = gh*(1+ghmax/(1+exp(-(xdist-xhalf)/slopegrad)))
if (xdist > 100){
if (xdist>300) {
ndist=300
} else { // 100 <= xdist <= 300
ndist=xdist
}
vhalfl_hd(x)=-82-8*(ndist-100)/200
} else { // xdist < 100
vhalfl_hd(x)=-82
}
}
}
for i=0,plcount { // Apical obliques
seccount=0
forsec pl[i] {
if(!seccount){ // The first section is the trunk
trunk_h=ghdbar_hd(1)
trunk_vhalf=vhalfl_hd(1)
seccount=seccount+1
} else {
ghdbar_hd=trunk_h
vhalfl_hd=trunk_vhalf
seccount=seccount+1
}
//print secname()
}
}
forsec "soma" {
ghdbar_hd=gh vhalfl_hd=-82
}
forsec Basal {
ghdbar_hd=gh vhalfl_hd=-82
}
forall if (ismembrane("hd") ) ehd_hd = Eh
}
/**********************************************************************/
proc load_3dcell() {
// $s1 filename
forall delete_section()
xopen($s1)
access soma[2] //define origin for distance calculation
distance()
SD = new SectionList() //Somato-dendritic section
SA = new SectionList() // Somato-axonic section
Trunk = new SectionList() //Trunk
Basal = new SectionList() //Basal
forsec "soma" {
SD.append()
SA.append()
}
forsec "basal" {
SD.append()
Basal.append()
}
forsec "apical"{
SD.append()
SA.append()
}
// Trunk.
soma[0] Trunk.append()
apical[0] Trunk.append()
apical[4] Trunk.append()
apical[6] Trunk.append()
apical[14] Trunk.append()
apical[15] Trunk.append()
apical[16] Trunk.append()
apical[22] Trunk.append()
apical[23] Trunk.append()
apical[25] Trunk.append()
apical[26] Trunk.append()
apical[27] Trunk.append()
apical[41] Trunk.append()
apical[42] Trunk.append()
apical[46] Trunk.append()
apical[48] Trunk.append()
apical[56] Trunk.append()
apical[58] Trunk.append()
apical[60] Trunk.append()
apical[62] Trunk.append()
apical[64] Trunk.append()
apical[65] Trunk.append()
apical[69] Trunk.append()
apical[71] Trunk.append()
apical[81] Trunk.append()
apical[83] Trunk.append()
apical[95] Trunk.append()
apical[103] Trunk.append()
apical[104] Trunk.append()
load_file("oblique-paths.hoc")
setpassive() //before setting the nseg
// The lambda constraint
totcomp=0
forall{
nseg=int((L/(0.1*lambda_f(100))+0.9)/2)*2+1
totcomp=totcomp+nseg
}
print "totcomp = ",totcomp
init_cell() //calls setpassive()
DEND = new SectionList()
forsec "apical"{
xdist=raddist(1)
if(xdist<300 && xdist > 50){
DEND.append()
}
}
}
/**********************************************************************/
// For cell number n123 on the DSArchive, converted with CVAPP to give
// HOC file, the following definition holds. This is the same as Poirazi et
// al. have used in Neuron, 2003. The argument is that the subtree seems
// so long to be a dendrite, and the cell does not have a specific axon.
// There is a catch, though, if the morphology is closely scanned, then
// basal dendrites would branch from these axonal segments - which
// may be fine given the amount of ambiguity one has while tracing!
proc addaxon() {
AXON = new SectionList()
AIS = new SectionList() // Axonal initial segment
for i = 30,34 basal[i] {
AXON.append()
Basal.remove()
}
for i = 18,22 basal[i] {
AXON.append()
AIS.append()
Basal.remove()
}
forsec AXON {
e_pas=v_init
g_pas = 1/Rm_axon
Ra=Ra_axon
cm=cmaxon
}
}
/********************************************************************/
proc init_cell() {
setpassive()
addaxon()
setactive()
gh_gradient() //sets the gh gradient
access soma[2] // Reinitializing distance origin
distance()
finitialize(v_init)
fcurrent()
forall {
for (x) {
if (ismembrane("hd")||ismembrane("nas")||ismembrane("na3")||ismembrane("nax")) {
e_pas(x)=v(x)+(i_hd(x)+ina(x)+ik(x))/g_pas(x)
} else {
e_pas(x)=v(x)
}
}
}
}
/********************************************************************/
load_3dcell("n123.hoc") //calls setpassive()
///********************************************************************/
objref tvec,f_tvec,f_name_tvec // time vector , time file, time file name
objref cvec,f_cvec, f_name_cvec // soma(0.5) voltage vector, file , file name
objref cvec42, cvec62, cvec69 // apical[42], apical[62], apical[69]
cvec=new Vector()
cvec42=new Vector()
cvec62=new Vector()
cvec69=new Vector()
tvec=new Vector()
f_tvec = new File()
f_cvec = new File()
f_name_cvec= new String()
f_name_tvec = new String()
/********************************************************************/
numexsyn =50// 100//221//100//221//100//221 //100 //number of excitatory synapses
numinsyn = 25 //number of inhibitory synapses
use_mcell_ran4(1)
//highindex = 8 //use the same highindex for all trials for distribution of inhibitory synapses
trialNo = 1
highindex = trialNo + 1e8*mcell_ran4(&trialNo) //seed for synaptic distribution
objref r
r = new Random(highindex) // will be of type discunif() to generate comaparment #s where the excitatory synapses will go
//r = new Random()
no_of_comp=totcomp // total number fo compartments
/********************************************************************/
objref isExSynapse, isInSynapse, isSynapse //vectors to store synapse location; 1 for synapse, 0 for not
objref f_isSynapse,f_isExSynapse, f_isInSynapse // file objects for saving synapse location vectors
objref f_name_isSynapse, f_name_isExSynapse,f_name_isInSynapse // names -string objects for synpase location file names
objref i_total[no_of_comp], f_total_current,f_name_total //total current vector, file and file name
objref i_pas_current[no_of_comp],f_pas_current, f_name_pas // passive current vector, file and file name
objref i_cap_current[no_of_comp],f_cap_current, f_name_cap // capacitive current vector, file and file name
objref i_queer_current[no_of_comp],f_queer_current, f_name_queer // h current vector, file and file name
objref esyncurr[numexsyn+1], f_esyncurr, f_name_esyncurr // excitatory synaptic current vectot, file and file name; last index stores total ex syn current
objref isyncurr[numinsyn+1], f_isyncurr, f_name_isyncurr // inhibitory synaptic current vector, file and file name; last index stores total in syn current
objref f_e_time, f_name_etime, e_time[numexsyn+1] // excitatory synaptic timings - to check whether their histogram looks gaussian modulated or not; last index used for all ex syn times
objref f_i_time, f_name_itime, i_time[numinsyn+1] // inhibitory synaptic timings - to check whether their histogram looks random (uniform) or not; last index used for all in syn times
objref ex_syn_locations //contains compartment indices where excitatory synapses are present
objref in_syn_locations //contains compartment indices where inhibitory synapses are present
isExSynapse= new Vector(no_of_comp)
isInSynapse= new Vector(no_of_comp)
isSynapse = new Vector(no_of_comp)
ex_syn_locations = new Vector(numexsyn)
in_syn_locations = new Vector(numinsyn)
f_isSynapse = new File()
f_isExSynapse = new File()
f_isInSynapse = new File()
f_total_current = new File()
f_pas_current = new File()
f_cap_current = new File()
f_queer_current = new File()
f_esyncurr = new File()
f_isyncurr = new File()
f_e_time= new File()
f_i_time= new File()
f_name_isSynapse = new String()
f_name_isExSynapse= new String()
f_name_isInSynapse= new String()
f_name_total = new String()
f_name_pas = new String()
f_name_cap = new String()
f_name_queer = new String()
f_name_esyncurr = new String()
f_name_isyncurr = new String()
f_name_etime= new String()
f_name_itime= new String()
for(i=0;i<no_of_comp;i+=1){
i_total[i]=new Vector() //total current
i_pas_current[i] = new Vector() //passive current
i_cap_current[i] = new Vector() //capacitive current
i_queer_current[i] = new Vector() //queer current
}
for(i=0;i<=numexsyn;i+=1){
e_time[i]= new Vector()
esyncurr[i] = new Vector() // excitatory synaptic current vector
}
for(i=0;i<=numinsyn;i+=1){
i_time[i]= new Vector()
isyncurr[i] = new Vector() // inhibitory synaptic curren vector
}
/********************************************************************/
//objects to be used with NetCon
objref nile
objref conne[numexsyn]
objref nili
objref conni[numinsyn]
/********************************************************************/
cvec.record(&soma[2].v(0.5)) // save the voltage at the soma
cvec42.record(&apical[42].v(0.5)) // save the voltage at the apical[42] raddist(1)=158.16
cvec62.record(&apical[62].v(0.5)) // save the voltage at the apical[62] raddist(1)=235.56799
cvec69.record(&apical[69].v(0.5)) // save the voltage at the apical[69] raddist(1)=303.59043
//v_soma.record(&soma[2].v(0.5))
/********************************************************************/
objref ex_synapse_compartment_index //will store the index of the excitatory synaptic input
/********************************************************************/
//add synapses
//gex = 0.0008 //excitatory synaptic conductance µS
objref syne[numexsyn] // excitatory synapses - will be of type Exp2Syn()
Ecount=0 //counter for ex synpases
segcount=0
gin =0.0001// 0.0064//0.0025//0.0032 //0.0008 //0.0025 //0.0032 // µS - to balance the excitation - (as the number of inhibitory synapses is less) increase the inhibitory synaptic conductance ???
objref syni[numinsyn] //inhibitory synapses - will be of type Exp2Syn()
Icount=0 //counter for in synapses
count = 0 //keeps track of apical section compartment index
count_dend = 0// should be same as count
exsegcount=0 //indexes only the apical sections matching a certain criteria
/*forsec "apical"{
for(x){
xdist = raddist(1)
if(xdist>50 && xdist<300){
if(x!=0 && x!=1){
xdist = raddist(x) //get the radial distance from the soma
print "using apical ", xdist
count = count + 1
}
}
}
}
*/
forsec DEND{
for (x) {
if (x!=0 && x!=1){
xdist = raddist(x)
// print "using DEND ", xdist
count_dend= count_dend + 1
}
}
}
//print "count of apical >50 <300 : ", count
print "count of apical >50 <300 using DEND sectionlist: ", count_dend
r.discunif(0,count_dend-1) //set to generate compartment #s from 0 to count
ex_synapse_compartment_index = new Vector(count_dend)
for(e_syn_count=0; e_syn_count < numexsyn; e_syn_count = e_syn_count+1){
ind=r.repick()
while(ex_synapse_compartment_index.x[ind]!=0){
ind=r.repick() //keep repicking till you find a compartment which doesn't already have a synapse
}
ex_synapse_compartment_index.x[ind] = 1 //generate a uniformly distributed random number between 0 and count and use this to assign the ex synapse in that compartment
}
forall{
for(x){
if(x!=0 && x!=1){
xdist = raddist(x) //get the radial distance from the soma
if(xdist<100){ //add inhibitory synapses at distance<100µm from soma
if(mcell_ran4(&highindex)>0.50 && Icount<numinsyn){ //if prob>0.5 and # of inh syn<total #of inhi synapses, then add an inhibitory synapse
syni[Icount] = new Exp2Syn(x)
syni[Icount].tau1 = 0.1
syni[Icount].tau2 = 5
syni[Icount].e = -80
in_syn_locations.x[Icount]=segcount
Icount+=1
isInSynapse.x[segcount]=1
isSynapse.x[segcount]=1
} else{
isInSynapse.x[segcount]=0
isSynapse.x[segcount]=0
}
} //end of if xdist<100
// if(xdist>50 && xdist<300){ //distance>50µm && distance <300µm from soma
ifsec DEND {
if(ex_synapse_compartment_index.x[exsegcount]==1){ //if this compartment was chosen earlier using repick(), add an excitatory synapse
// print "xdist ",xdist
syne[Ecount] = new Exp2Syn(x)
syne[Ecount].tau1 = 0.1
syne[Ecount].tau2 = 5
syne[Ecount].e = 0
ex_syn_locations.x[Ecount]=segcount
Ecount+=1
isExSynapse.x[segcount]=1
isSynapse.x[segcount]=1
} else{
isExSynapse.x[segcount]=0
isSynapse.x[segcount]=0
}
exsegcount = exsegcount +1
} // end of ifsec ...
segcount+=1
}
}
}
print "segcount = ", segcount
print "exsegcount = ", exsegcount
print "No of excitatory synapses",Ecount
print "No of inhibitory synapses",Icount
/**************************************************************/
seg=0
Ecount=0
Icount=0
objref g_ampa,f1
g_ampa= new Vector(220)
f1=new File()
f1.ropen(ampa_filename.s)
g_ampa.scanf(f1) //reading into vector
f1.close()
wopen("synapse_location_with_conductance.txt")
within50to300count=0
forall{
for(x){
if(x!=0 && x!=1){
xdist = raddist(x)
ifsec DEND {
if(isExSynapse.x[seg]==1){
gex=g_ampa.x[within50to300count]/gexFac
// print within50to300count+1, " ", gex
conne[Ecount] = new NetCon(nile,syne[Ecount],0,0,gex) //(src, target, threshold, delay, wt)
Ecount+=1
// print "gex = ", gex
fprint("%f\t%f\n",xdist,gex)
}
within50to300count= within50to300count + 1
}
if(isInSynapse.x[seg]==1){
//gin=gex*3
conni[Icount] = new NetCon(nili,syni[Icount],0,0,gin) //(src, target, threshold, delay, wt)
Icount+=1
}
seg+=1
}
}
}
wopen()
/**************************************************************/
use_mcell_ran4(1)
junk = area(0.5) // need to call area(0.5) once coz ofsome bug in the way area is calculated
/**************************************************************/
//for(trialNo=1;trialNo<51;trialNo+=1){ //if you're using this for loop.. ensure that highindex gets changed inside the loop for each trial
//highindex = trialNo // this highindex is used for initialization of mcell_ran4() for synapse activation timing calculation
print highindex
trialNo = trialNo -1 //mcell_ran4 increases it by one, so decrease by one to get back
print "Trial number: ", trialNo
sprint(f_name_isSynapse.s,"Trial_synWithHfast_%d/synWithHfast_isSynapse.txt",trialNo)
sprint(f_name_isExSynapse.s,"Trial_synWithHfast_%d/synWithHfast_isExSynapse.txt",trialNo)
sprint(f_name_isInSynapse.s,"Trial_synWithHfast_%d/synWithHfast_isInSynapse.txt",trialNo)
f_isSynapse.wopen(f_name_isSynapse.s)
isSynapse.printf(f_isSynapse)
f_isSynapse.close()
f_isExSynapse.wopen(f_name_isExSynapse.s)
isExSynapse.printf(f_isExSynapse)
f_isExSynapse.close()
f_isInSynapse.wopen(f_name_isInSynapse.s)
isInSynapse.printf(f_isInSynapse)
f_isInSynapse.close()
/********************************************************************/
syncurrcount = 0
finitialize(Vrest)
fcurrent()
forall {
for (x) {
if (ismembrane("hd")||ismembrane("nas")||ismembrane("na3")||ismembrane("nax")) {
e_pas(x)=v(x)+(i_hd(x)+ina(x)+ik(x))/g_pas(x)
} else {
e_pas(x)=v(x)
}
}
}
// finitialize(Vrest)
// fcurrent()
/**************************************************************/
OscFreq = 8 ///////in Hz, frequency of modulation of mean synaptic activation rate
sigma_ex=1000/(8*OscFreq) //std for gaussian distribution
sigma_in=1000/(5*OscFreq) //std for gaussian distribution
mod_factor=1000/OscFreq //used in rate_ex, duration of 1 cycle in ms
mean= mod_factor/2 //used in rate_ex, as the mean to be subtracted for gaussian distri under the mod usage
phi=PI/3//PI //phase difference in radians (for interneurons)
phase=mod_factor*phi/(2*PI) //phaase difference in ms
while (t<tstop) {
if (t >= 50) {
rate_ex = exp(-(((t%mod_factor)-mean)^2)/(2*(sigma_ex^2))) ///////sets mean activation rate for excitatory synapses
for i=0,numexsyn-1 {
if (dt*rate_ex > mcell_ran4(&highindex) ) {
e_time[i].append(t)
e_time[Ecount].append(t)
conne[i].event(t)
}
esyncurr[i].append(syne[i].i)
esyncurrcount = esyncurrcount + syne[i].i
}
esyncurr[i].append(esyncurrcount) //last index.. save total ex synaptic current
esyncurrcount = 0
rate_in = exp(-((((t+phase)%mod_factor)-mean)^2)/(2*(sigma_in^2)))
for i=0,numinsyn-1 {
if (dt*rate_in > mcell_ran4(&highindex)) {
i_time[i].append(t)
i_time[Icount].append(t)
conni[i].event(t)
}
isyncurr[i].append(syni[i].i)
isyncurrcount = isyncurrcount + syni[i].i
}
isyncurr[i].append(isyncurrcount)
isyncurrcount = 0
} // end of if(t>=50)
seg=0
ecount=0
icount=0
segcount=0
if( t>=50){
// print "t = ", t*1000
forall{
for(x){
if(x!=0 && x!=1){
if(isSynapse.x[seg]==1){
if(isExSynapse.x[seg]==1){
i_total[seg].append(((i_pas(x)+i_cap(x)+i_hd(x)+ina(x)+ik(x))*area(x)*1e-2)+syne[ecount].i) //convert i_pas, i_hd and i_cap from mA/cm2 to nA
// print secname(), x, "exc curr ", syne[ecount].i
ecount+=1
}
if(isInSynapse.x[seg]==1){
i_total[seg].append(((i_pas(x)+i_cap(x)+i_hd(x)+ina(x)+ik(x))*area(x)*1e-2)+syni[icount].i) //convert i_pas, i_hd and i_cap from mA/cm2 to nA
// print secname(), x, "inhi curr ", syni[icount].i
icount+=1
}
}else{
i_total[seg].append((i_pas(x)+i_cap(x)+i_hd(x)+ina(x)+ik(x))*area(x)*1e-2) //convert i_pas, i_hd and i_cap from mA/cm2 to nA
}
i_pas_current[seg].append(i_pas(x)*area(x)*1e-2) //convert i_pas from mA/cm2 to nA
i_cap_current[seg].append(i_cap(x)*area(x)*1e-2) //convert i_cap from mA/cm2 to nA
i_queer_current[seg].append(i_hd(x)*area(x)*1e-2) //convert i_hd from mA/cm2 to nA
// calc_axial_currents(x,i_total[seg].x[i_total[seg].size()-1])
seg+=1
}
// print "Something ", seg
}
}
segcount =0
seg=0
tvec.append(t)
}
fadvance()
}
/*****************************************************************/
//write to files
//define all file names according to current trial
for(i=0;i<Ecount;i+=1){
sprint(f_name_etime.s,"Trial_synWithHfast_%d/synWithHfast_ExCurrTime_Syn%d.txt",trialNo,i)
f_e_time.wopen(f_name_etime.s)
e_time[i].printf(f_e_time)
f_e_time.close()
e_time[i].resize(0)
sprint(f_name_esyncurr.s,"Trial_synWithHfast_%d/synWithHfast_esyncurr_%d.txt",trialNo,ex_syn_locations.x[i])
f_esyncurr.wopen(f_name_esyncurr.s)
esyncurr[i].printf(f_esyncurr)
f_esyncurr.close()
esyncurr[i].resize(0)
}
sprint(f_name_etime.s,"Trial_synWithHfast_%d/synWithHfast_ExCurrTime_SynTotal.txt",trialNo)
f_e_time.wopen(f_name_etime.s)
e_time[Ecount].printf(f_e_time)
f_e_time.close()
e_time[Ecount].resize(0)
sprint(f_name_esyncurr.s,"Trial_synWithHfast_%d/synWithHfast_esyncurr_total.txt",trialNo)
f_esyncurr.wopen(f_name_esyncurr.s)
esyncurr[i].printf(f_esyncurr)
f_esyncurr.close()
esyncurr[i].resize(0)
for(i=0;i<Icount;i+=1){
sprint(f_name_itime.s,"Trial_synWithHfast_%d/synWithHfast_InCurrTime_Syn%d.txt",trialNo,i)
f_i_time.wopen(f_name_itime.s)
i_time[i].printf(f_i_time)
f_i_time.close()
i_time[i].resize(0)
sprint(f_name_isyncurr.s,"Trial_synWithHfast_%d/synWithHfast_isyncurr_%d.txt",trialNo,in_syn_locations.x[i])
f_isyncurr.wopen(f_name_isyncurr.s)
isyncurr[i].printf(f_isyncurr)
f_isyncurr.close()
isyncurr[i].resize(0)
}
sprint(f_name_itime.s,"Trial_synWithHfast_%d/synWithHfast_InCurrTime_SynTotal.txt",trialNo)
f_i_time.wopen(f_name_itime.s)
i_time[Icount].printf(f_i_time)
f_i_time.close()
i_time[Icount].resize(0)
sprint(f_name_isyncurr.s,"Trial_synWithHfast_%d/synWithHfast_isyncurr_total.txt",trialNo)
f_isyncurr.wopen(f_name_isyncurr.s)
isyncurr[i].printf(f_isyncurr)
f_isyncurr.close()
isyncurr[i].resize(0)
sprint(f_name_tvec.s,"Trial_synWithHfast_%d/synWithHfast_tvec.txt",trialNo)
f_tvec.wopen(f_name_tvec.s)
tvec.printf(f_tvec)
f_tvec.close()
tvec.resize(0) //resize for next trail - needed if using the for loop for running several trials
sprint(f_name_cvec.s,"Trial_synWithHfast_%d/synWithHfast_cvec.txt",trialNo)
f_cvec.wopen(f_name_cvec.s)
cvec.printf(f_cvec)
f_cvec.close()
cvec.resize(0) //resize for next trail - needed if using the for loop for running several trials
sprint(f_name_cvec.s,"Trial_synWithHfast_%d/synWithHfast_cvec42.txt",trialNo)
f_cvec.wopen(f_name_cvec.s)
cvec42.printf(f_cvec)
f_cvec.close()
cvec42.resize(0) //resize for next trail - needed if using the for loop for running several trials
sprint(f_name_cvec.s,"Trial_synWithHfast_%d/synWithHfast_cvec62.txt",trialNo)
f_cvec.wopen(f_name_cvec.s)
cvec62.printf(f_cvec)
f_cvec.close()
cvec62.resize(0) //resize for next trail - needed if using the for loop for running several trials
sprint(f_name_cvec.s,"Trial_synWithHfast_%d/synWithHfast_cvec69.txt",trialNo)
f_cvec.wopen(f_name_cvec.s)
cvec69.printf(f_cvec)
f_cvec.close()
cvec69.resize(0) //resize for next trail - needed if using the for loop for running several trials
for(seg=0;seg<no_of_comp;seg+=1){
sprint(f_name_total.s,"Trial_synWithHfast_%d/synWithHfast_TotalCurrent_Cmpt%d.txt",trialNo,seg)
f_total_current.wopen(f_name_total.s)
i_total[seg].printf(f_total_current)
f_total_current.close()
sprint(f_name_pas.s,"Trial_synWithHfast_%d/synWithHfast_PasCurrent_Cmpt%d.txt",trialNo,seg)
f_pas_current.wopen(f_name_pas.s)
i_pas_current[seg].printf(f_pas_current)
f_pas_current.close()
sprint(f_name_cap.s,"Trial_synWithHfast_%d/synWithHfast_CapCurrent_Cmpt%d.txt",trialNo,seg)
f_cap_current.wopen(f_name_cap.s)
i_cap_current[seg].printf(f_cap_current)
f_cap_current.close()
sprint(f_name_queer.s,"Trial_synWithHfast_%d/synWithHfast_QueerCurrent_Cmpt%d.txt",trialNo,seg)
f_queer_current.wopen(f_name_queer.s)
i_queer_current[seg].printf(f_queer_current)
f_queer_current.close()
//resize the vectors for next trial
i_total[seg].resize(0)
i_pas_current[seg].resize(0)
i_cap_current[seg].resize(0)
i_queer_current[seg].resize(0)
}
/**************************************************************/
//save the parameters used in this simulation - for future reference
f1= new File()
f1.wopen("Parameter_Hfast.txt")
f1.printf("Rm_soma = %f\n",Rm_soma)
f1.printf("Rm_end = %f\n",Rm_end)
f1.printf("Rm_dend = %f\n",Rm_dend)
f1.printf("Rm_axon = %f\n",Rm_axon)
f1.printf("rm_xhalf = %f\n",rm_xhalf)
f1.printf("rm_slope = %f\n",rm_slope)
f1.printf("Ra_soma = %f\n",Ra_soma)
f1.printf("Ra_end = %f\n",Ra_end)
f1.printf("Ra_axon = %f\n",Ra_axon)
f1.printf("Ra_xhalf = %f\n",Ra_xhalf)
f1.printf("Ra_slope = %f\n",Ra_slope)
f1.printf("c_m = %f\n",c_m)
f1.printf("cmsoma = %f\n",cmsoma)
f1.printf("cmdend = %f\n",cmdend)
f1.printf("cmaxon = %f\n",cmaxon)
f1.printf("Vrest = %f\n",Vrest)
f1.printf("v_init = %f\n",v_init)
f1.printf("celsius = %f\n",celsius)
f1.printf("gna = %f\n",gna)
f1.printf("gkdr = %f\n",gkdr)
f1.printf("AIS factor = %d\n", AISFactor)
f1.printf("gexFac = %f\n",gexFac)
f1.printf("gh = %f\n",gh)
f1.printf("ghmax = %d\n",ghmax)
f1.printf("xhalf = %d\n", xhalf)
f1.printf("slopegrad = %d\n", slopegrad)
f1.printf("Ek = %d\n",Ek)
f1.printf("Ena = %d\n",Ena)
f1.printf("Eh = %d\n", Eh)
f1.printf("no_of_comp = %f\n", no_of_comp)
f1.printf("Num. of excitatory synapses = %d\n",numexsyn)
f1.printf("Num. of inhibitory synapses = %d\n",numinsyn)
f1.printf("gin = %f\n",gin)
f1.printf("epsp amp = %f\n",epsp_amp) //determines gex .. note : gex=gex/some_factor
f1.printf("Oscillation Frequency = %d\n", OscFreq)
f1.printf("mod_factor = %f\n", mod_factor)
f1.printf("sigma_ex = %f\n", sigma_ex)
f1.printf("sigma_in = %f\n", sigma_in)
f1.printf("phi = %f\n", phi)
f1.printf("phase = %f\n",phase)
f1.printf("rate_ex = %f\n", rate_ex)
f1.printf("rate_in = %f\n", rate_in)
f1.close()
/**************************************************************/
//WAKE UP!!!! SIMLATION'S OVER
/*CTRLG = 7 // ASCII code for ^G or "bell" character
strdef foo
sprint(foo,"%c",CTRLG)
for(i=0;i<10;i+=1){
print foo
for (j=0; j<2000000; j+=1){
}
}
*/
//}//end of trial loop