function [Fval,A,f,sig,sd] = ftestc(data,params,p,plt)
% computes the F-statistic for sine wave in locally-white noise (continuous data).
%
% [Fval,A,f,sig,sd] = ftestc(data,params,p,plt)
%
% Inputs:
% data (data in [N,C] i.e. time x channels/trials or a single
% vector) - required.
% params structure containing parameters - params has the
% following fields: tapers, Fs, fpass, pad
% tapers : precalculated tapers from dpss or in the one of the following
% forms:
% (1) A numeric vector [TW K] where TW is the
% time-bandwidth product and K is the number of
% tapers to be used (less than or equal to
% 2TW-1).
% (2) A numeric vector [W T p] where W is the
% bandwidth, T is the duration of the data and p
% is an integer such that 2TW-p tapers are used. In
% this form there is no default i.e. to specify
% the bandwidth, you have to specify T and p as
% well. Note that the units of W and T have to be
% consistent: if W is in Hz, T must be in seconds
% and vice versa. Note that these units must also
% be consistent with the units of params.Fs: W can
% be in Hz if and only if params.Fs is in Hz.
% The default is to use form 1 with TW=3 and K=5
%
% Fs (sampling frequency) -- optional. Defaults to 1.
% fpass (frequency band to be used in the calculation in the form
% [fmin fmax])- optional.
% Default all frequencies between 0 and Fs/2
% pad (padding factor for the FFT) - optional (can take values -1,0,1,2...).
% -1 corresponds to no padding, 0 corresponds to padding
% to the next highest power of 2 etc.
% e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
% to 512 points, if pad=1, we pad to 1024 points etc.
% Defaults to 0.
% p (P-value to calculate error bars for) - optional.
% Defaults to 0.05/N where N is the number of samples which
% corresponds to a false detect probability of approximately 0.05.
% plt (y/n for plot and no plot respectively)
%
% Outputs:
% Fval (F-statistic in frequency x channels/trials form)
% A (Line amplitude for X in frequency x channels/trials form)
% f (frequencies of evaluation)
% sig (F distribution (1-p)% confidence level)
% sd (standard deviation of the amplitude C)
if nargin < 1; error('Need data'); end;
if nargin < 2 || isempty(params); params=[]; end;
[tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);
clear err trialave
data=change_row_to_column(data);
[N,C]=size(data);
if nargin<3 || isempty(p);p=0.05/N;end;
if nargin<4 || isempty(plt); plt='n';end;
tapers=dpsschk(tapers,N,Fs); % calculate the tapers
[N,K]=size(tapers);
nfft=max(2^(nextpow2(N)+pad),N);% number of points in fft
[f,findx]=getfgrid(Fs,nfft,fpass);% frequency grid to be returned
% errorchk = 0; % set error checking to default (no errors calculated)
% if nargout <= 3 % if called with 4 output arguments, activate error checking
% errorchk = 0;
% else
% errorchk = 1;
% end
Kodd=1:2:K;
Keven=2:2:K;
J=mtfftc(data,tapers,nfft,Fs);% tapered fft of data - f x K x C
Jp=J(findx,Kodd,:); % drop the even ffts and restrict fft to specified frequency grid - f x K x C
tapers=tapers(:,:,ones(1,C)); % add channel indices to the tapers - t x K x C
H0 = squeeze(sum(tapers(:,Kodd,:),1)); % calculate sum of tapers for even prolates - K x C
if C==1;H0=H0';end;
Nf=length(findx);% number of frequencies
H0 = H0(:,:,ones(1,Nf)); % add frequency indices to H0 - K x C x f
H0=permute(H0,[3 1 2]); % permute H0 to get dimensions to match those of Jp - f x K x C
H0sq=sum(H0.*H0,2);% sum of squares of H0^2 across taper indices - f x C
JpH0=sum(Jp.*squeeze(H0),2);% sum of the product of Jp and H0 across taper indices - f x C
A=squeeze(JpH0./H0sq); % amplitudes for all frequencies and channels
Kp=size(Jp,2); % number of even prolates
Ap=A(:,:,ones(1,Kp)); % add the taper index to C
Ap=permute(Ap,[1 3 2]); % permute indices to match those of H0
Jhat=Ap.*H0; % fitted value for the fft
num=(K-1).*(abs(A).^2).*squeeze(H0sq);%numerator for F-statistic
den=squeeze(sum(abs(Jp-Jhat).^2,2)+sum(abs(J(findx,Keven,:)).^2,2));% denominator for F-statistic
Fval=num./den; % F-statisitic
if nargout > 3
sig=finv(1-p,2,2*K-2); % F-distribution based 1-p% point
var=den./(K*squeeze(H0sq)); % variance of amplitude
sd=sqrt(var);% standard deviation of amplitude
end;
if nargout==0 || strcmp(plt,'y');
[S,f]=mtspectrumc(detrend(data),params);subplot(211); plot(f,10*log10(S));xlabel('frequency Hz'); ylabel('Spectrum dB');
subplot(212);plot(f,Fval); line(get(gca,'xlim'),[sig sig],'Color','r');xlabel('frequency Hz');
ylabel('F ratio');
end
A=A*Fs;