function [init_idx, a_plot] = ...
calcInitVmLtdMaxCurv(s, max_idx, min_idx, lo_thr, hi_thr, plotit)
% calcInitVmLtdMaxCurv - Calculates the action potential threshold using the maximum of the curvature equation only in the limited range given with two voltage slope thresholds.
%
% Usage:
% [init_idx, a_plot] = calcInitVmLtdMaxCurv(s, max_idx, min_idx, lo_thr, hi_thr, plotit)
%
% Description:
% Point of maximum curvature: Kp = V''[1 + (V')^2]^(-3/2)
% Taken from Sekerli, Del Negro, Lee and Butera.
% IEEE Trans. Biomed. Eng., 51(9): 1665-71, 2004.
%
% Parameters:
% s: A spike_shape object.
% max_idx: The index of the maximal point of the spike_shape [dt].
% min_idx: The index of the minimal point of the spike_shape [dt].
% lo_thr, hi_thr: Lower and higher thresholds for time derivative of voltage.
% plotit: If non-zero, plot a graph annotating the test results
% (optional).
%
% Returns:
% init_idx: AP threshold index in the spike_shape [dt].
% a_plot: plot_abstract, if requested.
%
% See also: calcInitVm
%
% $Id$
%
% Author:
% Cengiz Gunay <cgunay@emory.edu>, 2004/11/19
% Inspired by Sekerli, Del Negro, Lee and Butera. IEEE Trans. Biomed. Eng.,
% 51(9): 1665-71, 2004.
% Copyright (c) 2007 Cengiz Gunay <cengique@users.sf.net>.
% This work is licensed under the Academic Free License ("AFL")
% v. 3.0. To view a copy of this license, please look at the COPYING
% file distributed with this software or visit
% http://opensource.org/licenses/afl-3.0.php.
if ~ exist('plotit', 'var')
plotit = 0;
end
s_props = get(s, 'props');
a_plot = [];
d2 = diff2T_h4(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
d1 = diffT(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
d2 = d2(3:(end -2));
d1 = d1(3:(end -2));
k1 = 1 + d1 .* d1;
k = d2 ./ sqrt(k1 .* k1 .* k1);
% Find maximum of k between given derivative thresholds and on the rising edge
constrained_idx = find(d1 >= lo_thr & d1 <= hi_thr & d2 > 0);
if length(constrained_idx) == 0
warning('spike_shape:threshold_derivative', ...
['Failed to find any points between derivative thresholds (' ...
num2str(lo_thr), num2str(hi_thr) ') while v'''' > 0. ' ...
'Using supersampled slope threhold crossing method (7) instead.']);
[init_idx a_plot] = ...
calcInitVmSlopeThresholdSupsample(s, max_idx, min_idx, ...
s_props.init_threshold, plotit);
return;
else
[val, idx] = max(k(constrained_idx));
idx = constrained_idx(idx);
idx = idx + 2;
end
if plotit
class_name = strrep(class(s), '_', ' ');
t = (3 : max_idx) * s.trace.dt * 1e3;
t_data = s.trace.data(3 : max_idx);
a_plot = ...
plot_abstract({t, d1/max(abs(d1)), t, d2/max(abs(d2)), ...
t, k/max(abs(k)), '.-', ...
t, t_data/max(abs(t_data)), ...
idx * s.trace.dt * 1e3, s.trace.data(idx)/max(abs(t_data)), '*'}, ...
{'time [ms]', 'normalized'}, ...
[class_name ': ' get(s, 'id') ', Curvature method, ' ...
'max of K_p = v\prime\prime[1 + v\prime^2]^{-3/2}, ' ...
'while ' num2str(lo_thr) ' < v\prime < ' num2str(hi_thr) ], ...
{'v\prime', 'v\prime\prime', 'K_p', ...
'v', 'thr'}, 'plot');
end
init_idx = idx;