function [init_idx, a_plot] = calcInitVmMaxCurvature(s, max_idx, min_idx, plotit)
% calcInitVmMaxCurvature - Calculates the action potential threshold using the
% maximum of the curvature equation.
%
% Usage:
% [init_idx, a_plot] = calcInitVmMaxCurvature(s, max_idx, min_idx, plotit)
%
% Description:
% Point of maximum curvature: Kp = V''[1 + (V')^2]^(-3/2)
% Taken from Sekerli, Del Negro, Lee and Butera.
% IEEE Trans. Biomed. Eng., 51(9): 1665-71, 2004.
%
% Parameters:
% s: A spike_shape object.
% max_idx: The index of the maximal point of the spike_shape [dt].
% min_idx: The index of the minimal point of the spike_shape [dt].
% plotit: If non-zero, plot a graph annotating the test results
% (optional).
%
% Returns:
% init_idx: AP threshold index in the spike_shape [dt].
% a_plot: plot_abstract, if requested.
%
% See also: calcInitVm
%
% $Id$
%
% Author:
% Cengiz Gunay <cgunay@emory.edu>, 2004/11/19
% Taken from Sekerli, Del Negro, Lee and Butera. IEEE Trans. Biomed. Eng.,
% 51(9): 1665-71, 2004.
% Copyright (c) 2007 Cengiz Gunay <cengique@users.sf.net>.
% This work is licensed under the Academic Free License ("AFL")
% v. 3.0. To view a copy of this license, please look at the COPYING
% file distributed with this software or visit
% http://opensource.org/licenses/afl-3.0.php.
if ~ exist('plotit', 'var')
plotit = 0;
end
a_plot = [];
d2 = diff2T(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
d1 = diffT(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
d2 = d2(3:(end -2));
d1 = d1(3:(end -2));
k1 = 1 + d1 .* d1;
k = d2 ./ sqrt(k1 .* k1 .* k1);
% Find first local maximum in k before spike peak
dk = diff(k);
dk2 = dk(2:end) .* dk(1:(end-1));
zc = find(dk2 < 0);
if length(zc) == 0
warning('spike_shape:curvature_failed', ...
['Failed to find local maximum of curvature near the AP peak. ', ...
'Taking the first point in the trace as threshold instead.']);
% Then, the first point of the trace is the spike initiation point.
idx = 1;
else
%[val, idx] = max(k);
idx = zc(end) + 1; % need to add 1 because of diff
idx = idx + 2;
end
if plotit
class_name = strrep(class(s), '_', ' ');
t = (3 : max_idx) * s.trace.dt * 1e3;
t_data = s.trace.data(3 : max_idx);
a_plot = ...
plot_abstract({t, d1/max(abs(d1)), t, d2/max(abs(d2)), ...
t, k/max(abs(k)), '.-', ...
t, t_data/max(abs(t_data)), ...
idx * s.trace.dt * 1e3, s.trace.data(idx)/max(abs(t_data)), '*'}, ...
{'time [ms]', 'normalized'}, ...
[class_name ': ' get(s, 'id') ', Curvature method, ' ...
'max of K_p = v\prime\prime[1 + v\prime^2]^{-3/2}' ], ...
{'v\prime', 'v\prime\prime', 'K_p', ...
'v', 'thr'}, 'plot');
end
init_idx = idx;