function [init_idx, a_plot] = calcInitVmV2PPLocal(s, max_idx, min_idx, lo_thr, plotit)
% calcInitVmV2PPLocal - Calculates the action potential threshold by finding the local second derivative maximum in voltage-time slope versus voltage phase plane, nearest a slope threshold crossing.
%
% Usage:
% [init_idx, a_plot] = calcInitVmV2PPLocal(s, max_idx, min_idx, lo_thr, plotit)
%
% Description:
%
% Parameters:
% s: A spike_shape object.
% max_idx: The index of the maximal point of the spike_shape [dt].
% min_idx: The index of the minimal point of the spike_shape [dt].
% lo_thr: Lower threshold for time voltage slope.
% plotit: If non-zero, plot a graph annotating the test results
% (optional).
%
% Returns:
% init_idx: Its index in the spike_shape [dt].
% a_plot: plot_abstract, if requested.
%
% See also: calcInitVm
%
% $Id$
%
% Author:
% Cengiz Gunay <cgunay@emory.edu>, 2004/11/18
% Taken from Sekerli, Del Negro, Lee and Butera. IEEE Trans. Biomed. Eng.,
% 51(9): 1665-71, 2004.
% Copyright (c) 2007 Cengiz Gunay <cengique@users.sf.net>.
% This work is licensed under the Academic Free License ("AFL")
% v. 3.0. To view a copy of this license, please look at the COPYING
% file distributed with this software or visit
% http://opensource.org/licenses/afl-3.0.php.
if ~ exist('plotit', 'var')
plotit = 0;
end
a_plot = [];
d3 = diff3T_h4(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
d2 = diff2T_h4(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
d1 = diffT(s.trace.data(1 : (max_idx + 2)) * s.trace.dy, s.trace.dt);
% Remove boundary artifacts
d3 = d3(4:(end - 3));
d2 = d2(4:(end - 3));
d1 = d1(4:(end - 3));
h = (d3 .* d1 - d2 .* d2) ./ (d1 .* d1 .* d1);
% Find local maxima in h
dh = diffT(h, 1);
dh2 = dh(2:end) .* dh(1:(end-1));
hd2 = diff2T_h4(h, 1); % 2nd deriv
zc = find(dh2 < 0 & dh(1:(end-1)) > 0);
if length(zc) == 0
% TODO: this should throw an error that can be caught and handled
% then another method can be tried.
error('calcInitVm:failed', ...
['Failed to find local maximum of phase place acceleration '...
' during rising edge of spike shape. ']);
else
% find slope threshold crossing point
cross_idx = find(d1 >= lo_thr);
if length(cross_idx) == 0
warning('spike_shape:sekerli:threshold_derivative', ...
['Derivative threshold ' num2str(lo_thr) ...
' failed to find spike initiation point. '...
'Taking the first point in the trace as threshold instead.']);
% Then, the first point of the trace is the spike initiation point.
idx = 1;
else
cross_idx = cross_idx(1);
% choose maximum nearest to crossing point
[nearest, nearest_idx] = min(abs(zc - cross_idx));
idx = zc(nearest_idx) + 3;
end
end
if plotit
t = (4 : (max_idx -1)) * s.trace.dt * 1e3;
class_name = strrep(class(s), '_', ' ');
t_data = s.trace.data(4 : (max_idx -1));
a_plot = ...
plot_abstract({t, d1/max(abs(d1)), t, d2/max(abs(d2)), ...
t, d3/max(abs(d3)), t, h/max(abs(h)), '.-', ...
t, t_data/max(abs(t_data)), ...
idx * s.trace.dt * 1e3, s.trace.data(idx)/max(abs(t_data)), '*'}, ...
{'time [ms]', 'normalized'}, ...
[class_name ': ' get(s, 'id') ', Sekerli''s method, ' ...
'local max of h = d^2v\prime/dv^2 nearest to v\prime > ' ...
num2str(lo_thr) ' crossing'], ...
{'v\prime', 'v\prime\prime', 'v\prime\prime\prime', 'h', ...
'v', 'thr'}, 'plot');
end
init_idx = idx;