import ctng
import surfaces
import triangularMesh
import numpy
from numpy import sqrt, fabs
def surface(source, dx=0.25, internal_membranes=False, n_soma_step=100, nouniform=False):
"""
Generates a triangularized mesh of the surface of a neuron.
Parameters
----------
source : :func:`list`, ``nrn.SectionList``, or ``nrn.Import3D``
The geometry to mesh.
dx : double, optional
Underlying mesh used to generate the triangles.
internal_membranes : [``True`` | ``False``], optional
Set to True to not remove internal membranes.
n_soma_step : integer, optional
Number of pieces to slice a soma outline into.
nouniform : boolean, optional
Set to true to not force unique diameters at branch points.
Returns
-------
result : :class:`TriangularMesh`
The mesh.
Examples
--------
A simple meshing of the entire NEURON morphology.
>>> tri_mesh = geometry3d.surface(h.allsec()) #doctest: +SKIP
Importing from Neurolucida with a coarser grid.
>>> h.load_file('stdlib.hoc')
1.0
>>> h.load_file('import3d.hoc')
1.0
>>> cell = h.Import3d_Neurolucida3()
>>> cell.input(filename_dot_asc)
>>> tri_mesh = geometry3d.surface(cell, dx=0.5)
Removal of the internal membranes is not necessary if the only
goal is to plot the surface; here we use :mod:`mayavi.mlab`.
>>> tri_mesh = geometry3d.surface([sec1, sec2, sec3],
... internal_membranes=True)
>>> mlab.triangular_mesh(tri_mesh.x, tri_mesh.y, tri_mesh.z,
... tri_mesh.faces, color=(1, 0, 0))
>>> mlab.show()
.. note::
The use of Import3D objects is recommended over lists of sections
because the former preserves the soma outline information while
the later does not. Up to one soma outline is currently supported.
"""
objects = ctng.constructive_neuronal_geometry(source, n_soma_step, dx, nouniform=nouniform)
xlo = min(obj.xlo for obj in objects)
ylo = min(obj.ylo for obj in objects)
zlo = min(obj.zlo for obj in objects)
xhi = max(obj.xhi for obj in objects)
yhi = max(obj.yhi for obj in objects)
zhi = max(obj.zhi for obj in objects)
# I'm implicitly taking dx = dy = dz here
# NOTE: triangulate_surface requires consistent discretization
xs = numpy.arange(xlo - 3 * dx, xhi + 3 * dx, dx)
ys = numpy.arange(ylo - 3 * dx, yhi + 3 * dx, dx)
zs = numpy.arange(zlo - 3 * dx, zhi + 3 * dx, dx)
return triangularMesh.TriangularMesh(surfaces.triangulate_surface(objects, xs, ys, zs, internal_membranes))