TITLE Hippocampal HH channels
:
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
: 2019: From ModelDB, accession no. 279
: Modified vtraub, vtraub2 by Elisabetta Iavarone @ Blue Brain Project
: See PARAMETER section for references
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX TC_HH
USEION na READ ena WRITE ina
USEION k READ ek WRITE ik
RANGE gna_max, gk_max, vtraub, vtraub2, i_rec
RANGE m_inf, h_inf, n_inf
RANGE tau_m, tau_h, tau_n
RANGE m_exp, h_exp, n_exp
RANGE ina, ik
RANGE m, h, n
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
}
PARAMETER {
gna_max = 1.0e-1 (S/cm2)
gk_max = 1.0e-1 (S/cm2)
celsius (degC)
dt (ms)
v (mV)
vtraub = -55.5 : Average of original value and Amarillo et al., J Neurophysiol 112:393-410, 2014
vtraub2 = -45.5 : Shift for K current
}
STATE {
m h n
}
ASSIGNED {
ina (mA/cm2)
ik (mA/cm2)
ena (mV)
ek (mV)
i_rec (mA/cm2)
m_inf
h_inf
n_inf
tau_m
tau_h
tau_n
m_exp
h_exp
n_exp
tcorr
}
BREAKPOINT {
SOLVE states METHOD cnexp
ina = gna_max * m*m*m*h * (v - ena)
ik = gk_max * n*n*n*n * (v - ek)
i_rec = ina + ik
}
DERIVATIVE states { : exact Hodgkin-Huxley equations
evaluate_fct(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
n' = (n_inf - n) / tau_n
}
:PROCEDURE states() { : exact when v held constant
: evaluate_fct(v)
: m = m + m_exp * (m_inf - m)
: h = h + h_exp * (h_inf - h)
: n = n + n_exp * (n_inf - n)
: VERBATIM
: return 0;
: ENDVERBATIM
:}
UNITSOFF
INITIAL {
m = 0
h = 0
n = 0
:
: Q10 was assumed to be 3 for both currents
:
: original measurements at roomtemperature?
tcorr = 3.0 ^ ((celsius-36)/ 10 )
:DB>>
: printf("celsius=%f\n",celsius)
:<<DB
}
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2, v3
v2 = v - vtraub : convert to traub convention
v3 = v - vtraub2 : EI: shift only K
if(v2 == 13 || v2 == 40 || v2 == 15 ){
v2 = v2+0.0001
}
:a = 0.32 * (13-v2) / ( exp((13-v2)/4) - 1)
:b = 0.28 * (v2-40) / ( exp((v2-40)/5) - 1)
a = 0.32 * vtrap(v2-13,4)
b = 0.28 * vtrap(40-v2,5)
tau_m = 1 / (a + b) / tcorr
m_inf = a / (a + b)
a = 0.128 * exp((17-v2)/18)
b = 4 / ( 1 + exp((40-v2)/5) )
tau_h = 1 / (a + b) / tcorr
h_inf = a / (a + b)
:a = 0.032 * (15-v3) / ( exp((15-v3)/5) - 1)
a = 0.032 * vtrap(v3-15,5)
b = 0.5 * exp((10-v3)/40)
tau_n = 1 / (a + b) / tcorr
n_inf = a / (a + b)
m_exp = 1 - exp(-dt/tau_m)
h_exp = 1 - exp(-dt/tau_h)
n_exp = 1 - exp(-dt/tau_n)
}
FUNCTION vtrap(x,c) {
: Traps for 0 in denominator of rate equations
if (fabs(x/c) < 1e-6) {
vtrap = c + x/2
} else {
vtrap = x / (1-exp(-x/c))
}
}
UNITSON