TITLE High threshold calcium current
:
: Ca++ current, L type channels, responsible for calcium spikes
: Differential equations
:
: Model of Huguenard & McCormick, J Neurophysiol, 1992
: Formalism of Goldman-Hodgkin-Katz
:
: Kinetic functions were fitted from data of hippocampal pyr cells
: (Kay & Wong, J. Physiol. 392: 603, 1987)
:
: Written by Alain Destexhe, Salk Institute, Sept 18, 1992
: Modified by Zhu et al, 1999: Neuroscience 91, 1445-1460 (1999).
: Modified by Geir Halnes, Norwegian University of Life Sciences, June 2011
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ical
USEION Ca READ Cai, Cao WRITE iCa VALENCE 2
RANGE pcabar, g
GLOBAL m_inf, taum, sh1, sh2
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
FARADAY = (faraday) (coulomb)
R = (k-mole) (joule/degC)
}
PARAMETER {
v (mV)
celsius = 36 (degC)
eCa = 120 (mV)
Cai = .00005 (mM) : initial [Ca]i = 50 nM
Cao = 2 (mM) : [Ca]o = 2 mM
pcabar = 9e-4 (mho/cm2)
sh1 = -17 : Modified (-10 in Zhu et al. 99a)
sh2 = -7 : Modified (0 in Zhu et al. 99a)
}
STATE {
m
}
INITIAL {
tadj = 3 ^ ((celsius-21.0)/10)
evaluate_fct(v)
m = m_inf
}
ASSIGNED {
iCa (mA/cm2)
g (mho/cm2)
m_inf
taum (ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = pcabar * m * m
iCa = g * ghk(v, Cai, Cao)
}
DERIVATIVE states {
evaluate_fct(v)
m' = (m_inf - m) / taum
}
UNITSOFF
PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b
: activation kinetics of Kay-Wong were at 20-22 deg. C
: transformation to 36 deg assuming Q10=3
a = 1.6 / (1 + exp(-0.072*(v+sh1+5)) )
b = 0.02 * (v+sh2-1.31) / ( exp((v+sh2-1.31)/5.36) - 1)
taum = 1.0 / (a + b) / tadj
m_inf = a / (a + b)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
LOCAL z, eci, eco
z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
eco = co*efun(z)
eci = ci*efun(-z)
:high co charge moves inward
:negative potential charge moves inward
ghk = (.001)*2*FARADAY*(eci - eco)
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
UNITSON