/*---------------------------------------------------------------------------- CURRENT-CLAMP SIMULATIONS OF CORTICAL PYRAMIDAL CELLS ===================================================== "precise" simulation: about 20,000 synapses simulated "passive": only passive properties Morphology - reconstructed Layer VI pyramidal cell from Contreras, Destexhe and Steriade, 1997 - correction for spines: 45% of dendritic membrane area - simple axon Passive properties - passive parameters adjusted to recordings in the absence of synaptic activity (TTX + synaptic blockers) - passive parameters adjusted by simplex fitting to both somatic and dendritic recordings (dendritic recording: cell x210x4, Rin of 154 Meg after NBQX) => Rin of 58.942 Meg in soma and 146 meg in dend1[12](0.179) Synaptic coverage: - AMPA and NMDA synapses in dendrites only; GABAa everywhere - exact synapse coverage for exc synapses (1.7um2) - exact synapse coverage for inh synapses (10um2) => synapse densities consistent with morphological estimates (DeFelipe & Farinas, 1992; Larkman 1991) Model adjusted to minis - quantal conductance compatible with patch-clamp (Sakmann) - uniform freq of release - parameters estimated from histograms => gives minies with correct sigma and histograms Synaptic bombardment in passive model: - KCl: Erev_GABA = -55 mV; KAc: Erev_GABA = -75 mV - adjust freq to get 80% Rin change (Ketamine-Xylazine) - constrained by avg Vm under KCl (ECl=-55) and KAc (ECl=-75) Correlated bombardment: - correlated presynaptic random generator (corrGen8) Optimized algorithm: - multisynapse mechanisms in each segment => tremendous acceleration of computation time Details of the models can be found in: Destexhe, A. and Pare D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81: 1531-1547, 1999. A PDF copy of this paper is available in http://cns.iaf.cnrs-gif.fr Alain Destexhe, destexhe@iaf.cnrs-gif.fr ----------------------------------------------------------------------------*/ //---------------------------------------------------------------------------- // load and define general graphical procedures //---------------------------------------------------------------------------- load_file("nrngui.hoc") objectvar g[20] // max 20 graphs ngraph = 0 proc addgraph() { local ii // define subroutine to add a new graph // addgraph("variable", minvalue, maxvalue) ngraph = ngraph+1 ii = ngraph-1 g[ii] = new Graph() g[ii].size(tstart,tstop,$2,$3) g[ii].xaxis() g[ii].yaxis() g[ii].addvar($s1,1,0) g[ii].save_name("graphList[0].") graphList[0].append(g[ii]) } proc addshape() { local ii // define subroutine to add a new shape // addshape() ngraph = ngraph+1 ii = ngraph-1 g[ii] = new PlotShape() g[ii].scale(-130,50) } nrnmainmenu() // create main menu nrncontrolmenu() // create control menu //---------------------------------------------------------------------------- // transient time //---------------------------------------------------------------------------- CURRINJ = 0 // amount of injected current - serves as flag if(CURRINJ == 0) { trans = 150 // transient to reach steady state } else { trans = 300 // transient to skip injected current } v_init = -65 // initial condition print " " print ">> Transient time of ",trans," ms" print " " DEBUG=0 //---------------------------------------------------------------------------- // create multi-compartment geometry //---------------------------------------------------------------------------- print " " print ">> Reading geometry of neuron..." print " " xopen("layer6.geo") // Layer VI pyramidal cell corrD = 1.449 // dendritic correction for spines (44% of membrane) //---------------------------------------------------------------------------- // add a simple axon //---------------------------------------------------------------------------- xopen("add_just_axon.oc") // add simplified axon //---------------------------------------------------------------------------- // Passive currents //---------------------------------------------------------------------------- // Best fit for TTX-bicuculline with Layer 6 cell, soma // fixed: rev=-65, cm=1, Ra=250, corrD=1.449 // fit: g_pas=4.52e-5 (Error=5.0221802) leak_cond = 4.52e-5 leak_rev = -65 leak_rev = -70 // adjusted to cell x210x4 leak_rev = -80 // fr3 capacit = 1 axial_res = 250 forall { // insert passive current everywhere insert pas g_pas = leak_cond e_pas = leak_rev cm = capacit Ra = axial_res L = L } forsec "axon" { // exceptions along the axon cm = 0.04 g_pas = 0.02 } forsec "dend" { // correction for dendrites g_pas = g_pas * corrD cm = cm * corrD } //---------------------------------------------------------------------------- // localize synapses //---------------------------------------------------------------------------- // Nov 27, 1997: recalculated densities to make them compatible with the // proportion of synapses found in pyramidal cells cutoff = 40 // cutoff distance (um) where spines begin ex_dend_unit = 1.7 // 100 // unit membrane area for excitatory synapses in_dend_unit = 10 // 100 // unit membrane area for inh synapses in dendrites in_soma_unit = 2.5 // 25 // unit membrane area for inh synapses in soma in_iseg_unit = 1.7 // 17 // unit membrane area for inh synapses in init seg // With 100,100,25,17 um2 (exc dend, inh dend, inh soma, inh iseg), one // excitatory synapse represents 55-65 real synapses and one inhibitory // synapse represents 8.8-10.4 real synapses... (ratio of 6.25) // (according to high spine density; and 7% GABAergic in soma) xopen("localize_synapses_corrgen_mul.oc") // procedures and initializations SEED = 1 // flag for seed if(SEED) set_seed(0.1,0.2,0.3,0.4) // set seed for random numbers EXC = 1 // flag variable to insert excitatory synapses NMDA = 0 // flag variable for NMDA INH = 1 // flag variable to insert inhibitory synapses if(INH) { insert_GABA_prox() // insert GABAa synapses in soma, prox dend & axon insert_GABA_dend() // insert GABAa synapses in dendrites } if(EXC) { insert_AMPA_dend() // insert AMPA synapses in dendrites if(NMDA) { insert_NMDA_dend() // insert NMDA synapses in dendrites } } // // Presynaptic parameters // pre_freq_I = 5.5 // inh presynaptic frequency pre_freq_E = 1.0 // exc presynaptic frequency // (if inh is 0.1, exc should be 0.625) pre_dur = 1e6 // duration of presynaptic firing corr_E = 0.7 // exc correlation corr_I = 0.7 // inh correlation set_generators() // // KINETICS // Erev_multiGABAa = -55 // chloride (from Denis) Erev_multiGABAa = -75 // K-Ac //Cdur_multiGABAa = 0.3 //Alpha_multiGABAa = 20 //Beta_multiGABAa = 0.05 // from SimFit to Denis recordings //Beta_multiGABAa = 0.18 // SimFit to hippocampal GABAa Cdur_multiGABAa = 1 // idem Meth Neuronal Modeling Cmax_multiGABAa = 1 // idem Meth Neuronal Modeling Alpha_multiGABAa = 5 // idem Meth Neuronal Modeling Beta_multiGABAa = 0.1 // fr3 //Cdur_multiAMPA = 0.3 //Alpha_multiAMPA = 5 //Alpha_multiAMPA = 20 // better (higher amplitude) //Beta_multiAMPA = 0.243 // from SimFit to Denis recordings Cdur_multiAMPA = 1 // idem Meth Neuronal Modeling Cmax_multiAMPA = 1 // idem Meth Neuronal Modeling Alpha_multiAMPA = 1.1 // idem Meth Neuronal Modeling Beta_multiAMPA = 0.67 // fast AMPA to get a decay of 1.5 ms (Markram) // // QUANTAL CONDUCTANCES // g_AMPA = 0.001200 // quantal AMPA conductance (Denis is 0.000260) g_GABA = 0.000600 // quantal GABA conductance (consistent with in vitro) // By comparison, Sakmann is 200-400 nS for GABA, AMPA is 0.35-1 nS (McBain // and Dingledine, 1992; Burgard and Hablitz, 1993) if(EXC) { if(NMDA) { g_NMDA = 4 * g_AMPA } else { g_NMDA = 0 } } else { g_AMPA = 0 g_NMDA = 0 } if(INH) { // do nothing } else { g_GABA = 0 } proc stim_uniform() { set_generators() if(EXC) { set_AMPA_dend(g_AMPA*corrD) // dendritic AMPA conductances if(NMDA) { set_NMDA_dend(g_NMDA*corrD) // dendritic NMDA conductances } } if(INH) { set_GABA_prox(g_GABA) // perisomatic GABA conductances set_GABA_dend(g_GABA*corrD) // dendritic GABA conductances } printf("\nSetting generators and synaptic conductances:\n") printf(" Exc f = %g Hz\n Inh f = %g Hz\n",pre_freq_E,pre_freq_I) printf(" gAMPA = %g uS\n gNMDA = %g uS\n gGABA = %g uS\n", \ g_AMPA,g_NMDA,g_GABA) } stim_uniform() //---------------------------------------------------------------------------- // insert electrode in dendrite or soma //---------------------------------------------------------------------------- xopen("Electrode.oc") // template for electrode access soma //access dend1[12] objectvar El // create electrode El = new Electrode(0.5) soma El.stim.loc(0.5) // locate in soma //dend1[12] El.stim.loc(0.179) // locate in dendrite El.stim.del = 0 El.stim.dur = 1e6 El.stim.amp = 0 objectvar dc // create DC-current dc = new Electrode(0.5) soma dc.stim.loc(0.5) // locate in soma //dend1[12] dc.stim.loc(0.179) // locate in dendrite dc.stim.del = 0 dc.stim.dur = 1e6 dc.stim.amp = 0 //---------------------------------------------------------------------------- // setup simulation parameters //---------------------------------------------------------------------------- Dt = 0.1 npoints = 10000 // 600000 objectvar SIMsoma,SIMdend // create vectors of simulation points SIMsoma = new Vector(npoints+500) SIMdend = new Vector(npoints+500) dt = 0.1 // must be submultiple of Dt tstart = 0 tstop = npoints * Dt runStopAt = tstop steps_per_ms = 1/Dt celsius = 36 statpts = npoints+1-trans/Dt // nb of points to analyze objectvar Vsoma, Vdend // create vectors for histogram analysis Vsoma = new Vector(statpts) Vdend = new Vector(statpts) //---------------------------------------------------------------------------- // Define histogram procedures //---------------------------------------------------------------------------- nbins = 100 // nb of points in histogram vmin = -80 // min value of Vm vmax = 0 // max value of Vm hmax = 20000 // max value of histogram binsize = (vmax-vmin)/nbins // size of bin objectvar Hsoma,Hdend // create vectors for histograms Hsoma = new Vector(nbins) Hdend = new Vector(nbins) objectvar HX HX = new Vector(nbins) // Vector for histogram's absissa x = vmin for i=0, nbins-1 { HX.set(i,x) x = x + binsize } hgr = ngraph g[hgr] = new Graph() // graph for histogram g[hgr].size(vmin,vmax,0,hmax) g[hgr].xaxis() g[hgr].yaxis() g[hgr].save_name("graphList[0].") graphList[0].append(g[hgr]) ngraph = ngraph + 1 proc init() { // initialization procedure finitialize(v_init) fcurrent() index = 0 // add definition of an index } proc step() {local i // advance-one-step (Dt) procedure Plot() SIMsoma.set(index,soma.v(0.5)) // memorize data SIMdend.set(index,dend1[12].v(0.179)) // memorize data index = index + 1 for i=1,nstep_steprun { advance() } } // // calculate sigma from histogram (skipping spikes) // proc calc_sigma() { local sum,avg,sig x = vmin for i=0, nbins-1 { if(x <= $1) { y = Hsoma.get(i) sum = sum + y avg = avg + y * x sig = sig + y * x*x } x = x + binsize } avg = avg / sum sig = sqrt(sig/sum - avg*avg) printf("\n=> Values computed by cutting spikes: avg=%g, sigma=%g\n\n",avg,sig) } niter = 1 Rin = 0 proc run_histo() { for i=0, niter-1 { if(SEED) set_seed(0.1,0.2,0.3,0.4) // set seed run() // run simulation Vsoma.copy(SIMsoma,trans/Dt,npoints-1) // truncate data Hsoma = Vsoma.histogram(vmin,vmax,binsize) // make histogram Hsoma.plot(g[hgr],HX) // draw histogram Avg = SIMsoma.mean(trans/Dt,npoints-1) // calc statistics Std = SIMsoma.stdev(trans/Dt,npoints-1) if(CURRINJ != 0) { Rin=-(SIMsoma.mean(320/Dt,400/Dt)-SIMsoma.mean(120/Dt,200/Dt))/CURRINJ } printf("\nSoma:\tRin=%g\tAvg=%g\tStd=%g\n",Rin,Avg,Std) calc_sigma(-40) Vdend.copy(SIMdend,trans/Dt,npoints-1) // truncate data Hdend = Vdend.histogram(vmin,vmax,binsize) // make histogram Hdend.plot(g[hgr],HX) // draw histogram Avg = SIMdend.mean(trans/Dt,npoints-1) // calc statistics Std = SIMdend.stdev(trans/Dt,npoints-1) if(CURRINJ != 0) { Rin=-(SIMsoma.mean(320/Dt,400/Dt)-SIMsoma.mean(120/Dt,200/Dt))/CURRINJ } printf("dend:\tRin=%g\tAvg=%g\tStd=%g\n",Rin,Avg,Std) } } proc make_SBpanel() { // make panel xpanel("Syn Bombardment") xpvalue("g_AMPA",&g_AMPA) xpvalue("g_NMDA",&g_NMDA) xpvalue("g_GABA",&g_GABA) xpvalue("Exc freq",&pre_freq_E) xpvalue("Inh freq",&pre_freq_I) xpvalue("Exc correlation",&corr_E) xpvalue("Inh correlation",&corr_I) xpvalue("Cl reversal",&Erev_multiGABAa) xpvalue("AMPA decay",&Beta_multiAMPA) xpvalue("GABA decay",&Beta_multiGABAa) xbutton("Apply","stim_uniform()") xbutton("Set seed","set_seed(0.1,0.2,0.3,0.4)") xpvalue("Nb iterations",&niter) xbutton("Run + calc histogram","run_histo()") xpanel() } make_SBpanel() //---------------------------------------------------------------------------- // add graphs //---------------------------------------------------------------------------- addgraph("soma.v(0.5)",vmin,vmax) // soma addgraph("dend1[12].v(0.179)",vmin,vmax)