// This is a fully wired network that functions with 50000 GCs and 1 PP input
// Auto init and run
secondorder=2
tstep=0
period=2
dt=0.1
tstop=100 //1500
objref parameters
parameters = new File()
parameters.ropen("parameters.dat")
percentSclerosis = parameters.scanvar
scalingFactor = parameters.scanvar
ngcell = parameters.scanvar
nmcell = parameters.scanvar
nbcell = parameters.scanvar
nhcell = parameters.scanvar
npp = parameters.scanvar
randnet = parameters.scanvar
parameters.close()
// define final network size after sclerosis
nmcell = int(nmcell * ((100-percentSclerosis)/100))
nhcell = int(nhcell * ((100-percentSclerosis)/100))
if (nmcell == 0) {nmcell = 1}
if (nhcell == 0) {nhcell = 1}
totalCells = ngcell + nmcell + nbcell + nhcell
//***********************************************************************************************
//Defining granule cell
objref Gcell[ngcell]
begintemplate GranuleCell
ndend1=4
ndend2=4
public pre_list, connect_pre, subsets, is_art, is_connected
public vbc2gc, vmc2gc, vhc2gc, vgc2bc, vbc2bc, vmc2bc, vhc2bc, vgc2mc, vbc2mc, vmc2mc, vhc2mc, vgc2hc, vmc2hc
public soma, gcdend1, gcdend2
public all, gcldend, pdend, mdend, ddend
nst=10
objectvar stim[nst]
double stimdur[nst], stimdel[nst], stimamp[nst]
public stim, stimdur, stimamp, stimdel
create soma, gcdend1[ndend1], gcdend2[ndend2]
objref syn, pre_list
proc init() {
pre_list = new List()
subsets()
gctemp()
synapse()
}
objref all, gcldend, pdend, mdend, ddend
proc subsets(){ local i
objref all, gcldend, pdend, mdend, ddend
all = new SectionList()
soma all.append()
for i=0, 3 gcdend1 [i] all.append()
for i=0, 3 gcdend2 [i] all.append()
gcldend = new SectionList()
gcdend1 [0] gcldend.append()
gcdend2 [0] gcldend.append()
pdend = new SectionList()
gcdend1 [1] pdend.append()
gcdend2 [1] pdend.append()
mdend = new SectionList()
gcdend1 [2] mdend.append()
gcdend2 [2] mdend.append()
ddend = new SectionList()
gcdend1 [3] ddend.append()
gcdend2 [3] ddend.append()
}
proc gctemp() {
soma {nseg=1 L=16.8 diam=16.8} // changed L & diam
gcdend1 [0] {nseg=1 L=50 diam=3}
for i = 1, 3 gcdend1 [i] {nseg=1 L=150 diam=3}
gcdend2 [0] {nseg=1 L=50 diam=3}
for i = 1, 3 gcdend2 [i] {nseg=1 L=150 diam=3}
forsec all {
insert ccanl
catau_ccanl = 10
caiinf_ccanl = 5.e-6
Ra=210
}
soma {insert ichan2 //ildikos ichan
gnatbar_ichan2=0.12 //original 0.030 to .055
gkfbar_ichan2=0.016 //original 0.015
gksbar_ichan2=0.006
insert borgka
gkabar_borgka=0.012
insert nca // HAV-N- Ca channel
gncabar_nca=0.002 // check to modify- original 0.004
insert lca
glcabar_lca=0.005
insert cat
gcatbar_cat=0.000037
insert gskch
gskbar_gskch=0.001
insert cagk
gkbar_cagk=0.0006
gl_ichan2 = 0.00004
cm=1
}
forsec gcldend {insert ichan2
gnatbar_ichan2=0.018 //original 0.015
gkfbar_ichan2=0.004
gksbar_ichan2=0.006
insert nca // HAV-N- Ca channel
gncabar_nca=0.003 // check to modify- original 0.004
insert lca
glcabar_lca=0.0075
insert cat
gcatbar_cat=0.000075
insert gskch
gskbar_gskch=0.0004
insert cagk
gkbar_cagk=0.0006
gl_ichan2 = 0.00004
cm=1}
forsec pdend {insert ichan2
gnatbar_ichan2=0.013
gkfbar_ichan2=0.004
gksbar_ichan2=0.006
insert nca // HAV-N- Ca channel
gncabar_nca=0.001 // check to modify- original 0.004
insert lca
glcabar_lca=0.0075
insert cat
gcatbar_cat=0.00025
insert gskch
gskbar_gskch=0.0002
insert cagk
gkbar_cagk=0.001
gl_ichan2 = 0.000063
cm=1.6
}
forsec mdend {insert ichan2
gnatbar_ichan2=0.008
gkfbar_ichan2=0.001
gksbar_ichan2=0.006
insert nca // HAV-N- Ca channel
gncabar_nca=0.001 // check to modify- original 0.004
insert lca
glcabar_lca=0.0005
insert cat
gcatbar_cat=0.0005
insert gskch
gskbar_gskch=0.0
insert cagk
gkbar_cagk=0.0024
gl_ichan2 = 0.000063
cm=1.6}
forsec ddend {insert ichan2
gnatbar_ichan2=0.0
gkfbar_ichan2=0.001
gksbar_ichan2=0.008
insert nca // HAV-N- Ca channel
gncabar_nca=0.001 // check to modify- original 0.004
insert lca
glcabar_lca=0.0
insert cat
gcatbar_cat=0.001
insert gskch
gskbar_gskch=0.0
insert cagk
gkbar_cagk=0.0024
gl_ichan2 = 0.000063
cm=1.6}
connect gcdend1[0](0), soma(1)
connect gcdend2[0](0), soma(1)
for i=1,3 {
connect gcdend1[i](0), gcdend1[i-1](1)
}
for i=1,3 {
connect gcdend2[i](0), gcdend2[i-1](1)
}
forsec all {enat = 45 ekf = -90 eks = -90 ek=-90 elca=130 etca=130 esk=-90
el_ichan2 =-70
cao_ccanl=2 } // make catau slower70e-3 cao=2 cai=50.e-6
}
proc connect_pre() { // $o1 target point process, $o2 returned NetCon
soma $o2 = new NetCon (&v(1), $o1)
}
objref syn
proc synapse() {
gcdend1[3] syn = new Exp2Syn(0.5) // PP syn based on Greg and Staley
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
gcdend2[3] syn = new Exp2Syn(0.5) // PPsyn based on Greg and Staley
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
gcdend1[1] syn = new Exp2Syn(0.5) // MC syn *** Estimated
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
gcdend2[1] syn = new Exp2Syn(0.5) // MC syn *** Estimated
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
gcdend1[3] syn = new Exp2Syn(0.5) // HIPP syn based on Harney and Jones corrected for temp
syn.tau1 = 0.5 syn.tau2 = 6 syn.e = -70
pre_list.append(syn)
gcdend2[3] syn = new Exp2Syn(0.5) // HIPP syn based on Harney and Jones corrected for temp
syn.tau1 = 0.5 syn.tau2 = 6 syn.e = -70
pre_list.append(syn)
soma syn = new Exp2Syn(0.5) // BC syn syn based on Bartos
syn.tau1 = 0.26 syn.tau2 = 5.5 syn.e = -70
pre_list.append(syn)
gcdend1[1] syn = new Exp2Syn(0.5) // Sprouted Syn*************
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
gcdend2[1] syn = new Exp2Syn(0.5) // Sprouted Syn*********
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
// Total of 7 synapses per GC 0,1 PP; 2,3 MC; 4,5 HIPP and 6 BC 7,8 Sprout
}
func is_art() { return 0 }
endtemplate GranuleCell
// ************************************************************************************************************
objref Bcell[nbcell]
begintemplate BasketCell
ndend1=4
ndend2=4
ndend3=4
ndend4=4
public pre_list, connect_pre, subsets, is_art, is_connected
public vbc2gc, vmc2gc, vhc2gc, vgc2bc, vbc2bc, vmc2bc, vhc2bc, vgc2mc, vbc2mc, vmc2mc, vhc2mc, vgc2hc, vmc2hc
public soma, bcdend1, bcdend2, bcdend3, bcdend4
public all, adend, bdend, cdend, ddend
create soma, bcdend1[ndend1], bcdend2[ndend2], bcdend3[ndend3], bcdend4[ndend4]
objref syn, pre_list
nst=10
objectvar stim[nst]
double stimdur[nst], stimdel[nst], stimamp[nst]
public stim, stimdur, stimamp, stimdel
objref syn
proc init() {
pre_list = new List()
subsets()
temp()
synapse()
}
objref all, adend, bdend, cdend, ddend
proc subsets() { local i
objref all, adend, bdend, cdend, ddend
all = new SectionList()
soma all.append()
for i=0, 3 bcdend1 [i] all.append()
for i=0, 3 bcdend2 [i] all.append()
for i=0, 3 bcdend3 [i] all.append()
for i=0, 3 bcdend4 [i] all.append()
adend = new SectionList()
bcdend1 [0] adend.append()
bcdend2 [0] adend.append()
bcdend3 [0] adend.append()
bcdend4 [0] adend.append()
bdend = new SectionList()
bcdend1 [1] bdend.append()
bcdend2 [1] bdend.append()
bcdend3 [1] bdend.append()
bcdend4 [1] bdend.append()
cdend = new SectionList()
bcdend1 [2] cdend.append()
bcdend2 [2] cdend.append()
bcdend3 [2] cdend.append()
bcdend4 [2] cdend.append()
ddend = new SectionList()
bcdend1 [3] ddend.append()
bcdend2 [3] ddend.append()
bcdend3 [3] ddend.append()
bcdend4 [3] ddend.append()
}
proc temp() {
soma {nseg=1 L=20 diam=15} // changed L & diam
bcdend1 [0] {nseg=1 L=75 diam=4} // bcdend 1 and 2 are apical
bcdend1 [1] {nseg=1 L=75 diam=3}
bcdend1 [2] {nseg=1 L=75 diam=2}
bcdend1 [3] {nseg=1 L=75 diam=1}
bcdend2 [0] {nseg=1 L=75 diam=4}
bcdend2 [1] {nseg=1 L=75 diam=3}
bcdend2 [2] {nseg=1 L=75 diam=2}
bcdend2 [3] {nseg=1 L=75 diam=1}
bcdend3 [0] {nseg=1 L=50 diam=4} // bcdend 3 and 4 are basal
bcdend3 [1] {nseg=1 L=50 diam=3}
bcdend3 [2] {nseg=1 L=50 diam=2}
bcdend3 [3] {nseg=1 L=50 diam=1}
bcdend4 [0] {nseg=1 L=50 diam=4}
bcdend4 [1] {nseg=1 L=50 diam=3}
bcdend4 [2] {nseg=1 L=50 diam=2}
bcdend4 [3] {nseg=1 L=50 diam=1}
forsec all {
insert ccanl
catau_ccanl = 10
caiinf_ccanl = 5.e-6
insert borgka
gkabar_borgka=0.00015
insert nca // HAV-N- Ca channel
gncabar_nca=0.0008
insert lca
glcabar_lca=0.005
insert gskch
gskbar_gskch=0.000002
insert cagk
gkbar_cagk=0.0002
}
soma {insert ichan2 //ildikos ichan
gnatbar_ichan2=0.12
gkfbar_ichan2=0.013
gl_ichan2 = 0.00018
cm=1.4
}
forsec adend {insert ichan2
gnatbar_ichan2=0.12
gkfbar_ichan2=0.013
gl_ichan2 = 0.00018
cm=1.4
}
forsec bdend {insert ichan2
gnatbar_ichan2=0.0
gkfbar_ichan2=0.00
gl_ichan2 = 0.00018
cm=1.4}
forsec cdend {insert ichan2
gnatbar_ichan2=0.0
gkfbar_ichan2=0.00
gl_ichan2 = 0.00018
cm=1.4}
forsec ddend {insert ichan2
gnatbar_ichan2=0.0
gkfbar_ichan2=0.00
gl_ichan2 = 0.00018
cm=1.4}
connect bcdend1[0](0), soma(1)
connect bcdend2[0](0), soma(1)
connect bcdend3[0](0), soma(0)
connect bcdend4[0](0), soma(0)
for i=1,3 {
connect bcdend1[i](0), bcdend1[i-1](1)
}
for i=1,3 {
connect bcdend2[i](0), bcdend2[i-1](1)
}
for i=1,3 {
connect bcdend3[i](0), bcdend3[i-1](1)
}
for i=1,3 {
connect bcdend4[i](0), bcdend4[i-1](1)
}
forsec all {Ra=100}
forsec all {enat = 55 ekf = -90 ek=-90 elca=130 esk=-90
el_ichan2 =-60.06
cao_ccanl=2 } // make catau slower70e-3 cao=2 cai=50.e-6
}
objref syn
proc synapse() {
bcdend1 [3] syn = new Exp2Syn(0.5) //PP(AMPA) syn to apical dist dend Dingledine '95
syn.tau1 = 2 syn.tau2 = 6.3 syn.e = 0
pre_list.append(syn)
bcdend2 [3] syn = new Exp2Syn(0.5) //PP(AMPA) syn to apical dist dend Dingledine '95
syn.tau1 = 2 syn.tau2 = 6.3 syn.e = 0
pre_list.append(syn)
bcdend1 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend Geiger '97
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
bcdend2 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend Geiger '97
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
bcdend3 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend Geiger '97
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
bcdend4 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend Geiger '97
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
bcdend1 [1] syn = new Exp2Syn(0.5) //MC(AMPA) syn to apical IML dend
syn.tau1 = 0.9 syn.tau2 = 3.6 syn.e = 0 // *** Estimated based on CA3>BC min stim Dingledine '95
pre_list.append(syn)
bcdend2 [1] syn = new Exp2Syn(0.5) //MC(AMPA) syn to apical IML dend
syn.tau1 = 0.9 syn.tau2 = 3.6 syn.e = 0 // *** Estimated based on CA3>BC min stim Dingledine '95
pre_list.append(syn)
bcdend1 [1] syn = new Exp2Syn(0.5) //BC(GABA) syn to apical IML dend Bartos
syn.tau1 = 0.16 syn.tau2 = 1.8 syn.e = -70
pre_list.append(syn)
bcdend2 [1] syn = new Exp2Syn(0.5) //BC(GABA) syn to apical IML dend Bartos
syn.tau1 = 0.16 syn.tau2 = 1.8 syn.e = -70
pre_list.append(syn)
bcdend1 [3] syn = new Exp2Syn(0.5) //HIPP(GABA) syn to apical distal dend
syn.tau1 = 0.4 syn.tau2 = 5.8 syn.e = -70 // *** Estimated as HIPP>GC
pre_list.append(syn)
bcdend2 [3] syn = new Exp2Syn(0.5) //HIPP(GABA) syn to apical distal dend
syn.tau1 = 0.4 syn.tau2 = 5.8 syn.e = -70 // *** Estimated as HIPP>GC
pre_list.append(syn)
// Total of 12 synapses 0,1 PP; 2-5 GC; 6,7 MC; 8,9 BC; 10,11 HIPP
}
proc connect_pre() { // $o1 target point process, $o2 returned NetCon
soma $o2 = new NetCon (&v(1), $o1)
}
func is_art() { return 0 }
endtemplate BasketCell
//***********************************************************************************************************
objref Mcell[nmcell]
begintemplate MossyCell
ndend1=4
ndend2=4
ndend3=4
ndend4=4
public pre_list, connect_pre, subsets, is_art, is_connected
public vbc2gc, vmc2gc, vhc2gc, vgc2bc, vbc2bc, vmc2bc, vhc2bc, vgc2mc, vbc2mc, vmc2mc, vhc2mc, vgc2hc, vmc2hc
public soma, mcdend1, mcdend2, mcdend3, mcdend4
create soma, mcdend1[ndend1], mcdend2[ndend2], mcdend3[ndend3], mcdend4[ndend4]
public all, adend, bdend, cdend, ddend
objref syn, pre_list, fl
nst=10
objectvar stim[nst]
double stimdur[nst], stimdel[nst], stimamp[nst]
public stim, stimdur, stimamp, stimdel
objref syn
proc init() {
pre_list = new List()
subsets()
temp()
synapse()
}
objref all, pdend, ddend
proc subsets() { local i
objref all, pdend, ddend
all = new SectionList()
soma all.append()
for i=0, 3 mcdend1 [i] all.append()
for i=0, 3 mcdend2 [i] all.append()
for i=0, 3 mcdend3 [i] all.append()
for i=0, 3 mcdend4 [i] all.append()
pdend = new SectionList()
mcdend1 [0] pdend.append()
mcdend2 [0] pdend.append()
mcdend3 [0] pdend.append()
mcdend4 [0] pdend.append()
ddend = new SectionList()
for i=1, 3 mcdend1 [i] ddend.append()
for i=1, 3 mcdend2 [i] ddend.append()
for i=1, 3 mcdend3 [i] ddend.append()
for i=1, 3 mcdend4 [i] ddend.append()
}
proc temp() {
soma {nseg=1 L=20 diam=20} // changed L & diam
mcdend1 [0] {nseg=1 L=50 diam=5.78}
mcdend1 [1] {nseg=1 L=50 diam=4}
mcdend1 [2] {nseg=1 L=50 diam=2.5}
mcdend1 [3] {nseg=1 L=50 diam=1}
mcdend2 [0] {nseg=1 L=50 diam=5.78}
mcdend2 [1] {nseg=1 L=50 diam=4}
mcdend2 [2] {nseg=1 L=50 diam=2.5}
mcdend2 [3] {nseg=1 L=50 diam=1}
mcdend3 [0] {nseg=1 L=50 diam=5.78}
mcdend3 [1] {nseg=1 L=50 diam=4}
mcdend3 [2] {nseg=1 L=50 diam=2.5}
mcdend3 [3] {nseg=1 L=50 diam=1}
mcdend4 [0] {nseg=1 L=50 diam=5.78}
mcdend4 [1] {nseg=1 L=50 diam=4}
mcdend4 [2] {nseg=1 L=50 diam=2.5}
mcdend4 [3] {nseg=1 L=50 diam=1}
forsec all {
insert ccanl
catau_ccanl = 10
caiinf_ccanl = 5.e-6
insert borgka
gkabar_borgka=0.00001
insert nca // HAV-N- Ca channel
gncabar_nca=0.00008 // check to modify- original 0.004
insert lca
glcabar_lca=0.0006
insert gskch
gskbar_gskch=0.016
insert cagk
gkbar_cagk=0.0165
insert hyperde3
ghyfbar_hyperde3=0.000005
ghysbar_hyperde3=0.000005
}
soma {insert ichan2 //ildikos ichan
gnatbar_ichan2=0.12 //original 0.030 to .055
gkfbar_ichan2=0.0005 //original 0.015
gl_ichan2 = 0.000011
cm=0.6}
forsec pdend {insert ichan2
gnatbar_ichan2=0.12 //original 0.015
gkfbar_ichan2=0.0005
gl_ichan2 = 0.000044
cm=2.4}
forsec ddend {insert ichan2
gnatbar_ichan2=0.0
gkfbar_ichan2=0.00
gl_ichan2 = 0.000044
cm=2.4}
connect mcdend1[0](0), soma(1)
connect mcdend2[0](0), soma(1)
connect mcdend3[0](0), soma(0)
connect mcdend4[0](0), soma(0)
for i=1,3 {connect mcdend1[i](0), mcdend1[i-1](1)}
for i=1,3 {connect mcdend2[i](0), mcdend2[i-1](1)}
for i=1,3 {connect mcdend3[i](0), mcdend3[i-1](1)}
for i=1,3 {connect mcdend4[i](0), mcdend4[i-1](1)}
forsec all {Ra=100}
forsec all {enat = 55 ekf = -90 ek=-90 esk=-90 elca=130
ehyf=-40 ehys=-40
el_ichan2 =-59
cao_ccanl=2 } // make catau slower70e-3 cao=2 cai=50.e-6
soma stim = new IClamp(0.5)
stim.del = 0.01
stim.dur = 4000
stim.amp = 0.5
objref fl
soma fl = new Gfluct2(0.5)
//fl.g_e0 = 0.0242
//fl.g_i0 = 0.1146
//fl.std_e = 0.0375
//fl.std_i = 0.01875
}
objref syn
proc synapse() {
mcdend1 [3] syn = new Exp2Syn(0.7) //PP(AMPA) syn to dist dend similar to PP to GC
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
mcdend2 [3] syn = new Exp2Syn(0.7) //PP(AMPA) syn to dist dend similar to PP to GC
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
mcdend3 [3] syn = new Exp2Syn(0.7) //PP(AMPA) syn to dist dend similar to PP to GC
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
mcdend4 [3] syn = new Exp2Syn(0.7) //PP(AMPA) syn to dist dend similar to PP to GC
syn.tau1 = 1.5 syn.tau2 = 5.5 syn.e = 0
pre_list.append(syn)
mcdend1 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>CA3 Jonas '93
syn.tau1 = 0.5 syn.tau2 = 6.2 syn.e = 0
pre_list.append(syn)
mcdend2 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>CA3 Jonas '93
syn.tau1 = 0.5 syn.tau2 = 6.2 syn.e = 0
pre_list.append(syn)
mcdend3 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>CA3 Jonas '93
syn.tau1 = 0.5 syn.tau2 = 6.2 syn.e = 0
pre_list.append(syn)
mcdend4 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>CA3 Jonas '93
syn.tau1 = 0.5 syn.tau2 = 6.2 syn.e = 0
pre_list.append(syn)
mcdend1 [0] syn = new Exp2Syn(0.5) //MC(AMPA) syn to prox dend similar to CA#>CA3 Aaron
syn.tau1 = 0.45 syn.tau2 =2.2 syn.e = 0
pre_list.append(syn)
mcdend2 [0] syn = new Exp2Syn(0.5) //MC(AMPA) syn to prox dend similar to CA#>CA3 Aaron
syn.tau1 = 0.45 syn.tau2 = 2.2 syn.e = 0
pre_list.append(syn)
mcdend3 [0] syn = new Exp2Syn(0.5) //MC(AMPA) syn to prox dend similar to CA#>CA3 Aaron
syn.tau1 = 0.45 syn.tau2 = 2.2 syn.e = 0
pre_list.append(syn)
mcdend4 [0] syn = new Exp2Syn(0.5) //MC(AMPA) syn to prox dend similar to CA#>CA3 Aaron
syn.tau1 = 0.45 syn.tau2 = 2.2 syn.e = 0
pre_list.append(syn)
soma syn = new Exp2Syn(0.5) //BC(GABA) syn to prox dend based on BC>CA3 Bartos PNAS (mice)
syn.tau1 = 0.3 syn.tau2 = 3.3 syn.e = -70
pre_list.append(syn)
mcdend1 [2] syn = new Exp2Syn(0.5) //HIPP(GABA) syn to prox dend based on Hilar>GC Harney&Jones
syn.tau1 = .5 syn.tau2 = 6 syn.e = -70
pre_list.append(syn)
mcdend2 [2] syn = new Exp2Syn(0.5) //HIPP(GABA) syn to prox dend based on Hilar>GC Harney&Jones
syn.tau1 = .5 syn.tau2 = 6 syn.e = -70
pre_list.append(syn)
mcdend3 [2] syn = new Exp2Syn(0.5) //HIPP(GABA) syn to prox dend based on Hilar>GC Harney&Jones
syn.tau1 = .5 syn.tau2 = 6 syn.e = -70
pre_list.append(syn)
mcdend4 [2] syn = new Exp2Syn(0.5) //HIPP(GABA) syn to prox dend based on Hilar>GC Harney&Jones
syn.tau1 = .5 syn.tau2 = 6 syn.e =-70
pre_list.append(syn)
// Total of 17 synapses 0-3 PP; 4-7 GC; 8-11 MC; 12 BC; 13-16 HIPP
}
proc connect_pre() { // $o1 target point process, $o2 returned NetCon
soma $o2 = new NetCon (&v(1), $o1)
}
func is_art() { return 0 }
endtemplate MossyCell
//**************************************************************************************************
objref Hcell[nhcell]
begintemplate HIPPCell
ndend1=3
ndend2=3
ndend3=3
ndend4=3
public pre_list, connect_pre, subsets, is_art, is_connected
public vbc2gc, vmc2gc, vhc2gc, vgc2bc, vbc2bc, vmc2bc, vhc2bc, vgc2mc, vbc2mc, vmc2mc, vhc2mc, vgc2hc, vmc2hc
public soma, hcdend1, hcdend2, hcdend3, hcdend4
create soma, hcdend1[ndend1], hcdend2[ndend2], hcdend3[ndend3], hcdend4[ndend4]
public all, pdend, ddend
objref syn, pre_list
nst=10
objectvar stim[nst]
double stimdur[nst], stimdel[nst], stimamp[nst]
public stim, stimdur, stimamp, stimdel
objref syn
proc init() {
pre_list = new List()
subsets()
temp()
synapse()
}
objref all, pdend, ddend
proc subsets() { local i
objref all, pdend, ddend
all = new SectionList()
soma all.append()
for i=0, 2 hcdend1 [i] all.append()
for i=0, 2 hcdend2 [i] all.append()
for i=0, 2 hcdend3 [i] all.append()
for i=0, 2 hcdend4 [i] all.append()
pdend = new SectionList()
hcdend1 [0] pdend.append()
hcdend2 [0] pdend.append()
hcdend3 [0] pdend.append()
hcdend4 [0] pdend.append()
ddend = new SectionList()
for i=1, 2 hcdend1 [i] ddend.append()
for i=1, 2 hcdend2 [i] ddend.append()
for i=1, 2 hcdend3 [i] ddend.append()
for i=1, 2 hcdend4 [i] ddend.append()
}
proc temp() {
soma {nseg=1 L=20 diam=10} // changed L & diam
hcdend1 [0] {nseg=1 L=75 diam=3}
hcdend1 [1] {nseg=1 L=75 diam=2}
hcdend1 [2] {nseg=1 L=75 diam=1}
hcdend2 [0] {nseg=1 L=75 diam=3}
hcdend2 [1] {nseg=1 L=75 diam=2}
hcdend2 [2] {nseg=1 L=75 diam=1}
hcdend3 [0] {nseg=1 L=50 diam=3}
hcdend3 [1] {nseg=1 L=50 diam=2}
hcdend3 [2] {nseg=1 L=50 diam=1}
hcdend4 [0] {nseg=1 L=50 diam=3}
hcdend4 [1] {nseg=1 L=50 diam=2}
hcdend4 [2] {nseg=1 L=50 diam=1}
forsec all {
insert ccanl
catau_ccanl = 10
caiinf_ccanl = 5.e-6
insert borgka
gkabar_borgka=0.0008
insert nca // HAV-N- Ca channel
gncabar_nca=0.0
insert lca
glcabar_lca=0.0015
insert gskch
gskbar_gskch=0.003
insert cagk
gkbar_cagk=0.003
insert hyperde3
ghyfbar_hyperde3=0.000015
ghysbar_hyperde3=0.000015
}
soma {insert ichan2 //ildikos ichan
gnatbar_ichan2=0.2
gkfbar_ichan2=0.006
gl_ichan2 = 0.000036
cm=1.1}
forsec pdend {insert ichan2
gnatbar_ichan2=0.2
gkfbar_ichan2=0.006
gl_ichan2 = 0.000036
cm=1.1}
forsec ddend {insert ichan2
gnatbar_ichan2=0.0
gkfbar_ichan2=0.00
gl_ichan2 = 0.000036
cm=1.1}
connect hcdend1[0](0), soma(1)
connect hcdend2[0](0), soma(1)
connect hcdend3[0](0), soma(0)
connect hcdend4[0](0), soma(0)
for i=1,2 {connect hcdend1[i](0), hcdend1[i-1](1)}
for i=1,2 {connect hcdend2[i](0), hcdend2[i-1](1)}
for i=1,2 {connect hcdend3[i](0), hcdend3[i-1](1)}
for i=1,2 {connect hcdend4[i](0), hcdend4[i-1](1)}
forsec all {Ra=100}
forsec all {enat = 55 ekf = -90 ek=-90 esk=-90 elca=130
el_ichan2 =-70.45 ehyf=-40 ehys=-40
cao_ccanl=2 } // make catau slower70e-3 cao=2 cai=50.e-6
}
objref syn
proc synapse() {
hcdend1 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>BC
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
hcdend2 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>BC
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
hcdend3 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>BC
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
hcdend4 [0] syn = new Exp2Syn(0.5) //GC(AMPA) syn to prox dend similar to GC>BC
syn.tau1 = .3 syn.tau2 = .6 syn.e = 0
pre_list.append(syn)
hcdend1 [1] syn = new Exp2Syn(0.5) //MC(AMPA) syn to mid dend similar to CA3>int Aaron
syn.tau1 = .9 syn.tau2 = 3.6 syn.e = 0 //*** Assumed data at physio temp
pre_list.append(syn)
hcdend2 [1] syn = new Exp2Syn(0.5) //MC(AMPA) syn to mid dend similar to CA3>int Aaron
syn.tau1 = 0.9 syn.tau2 = 3.6 syn.e = 0 //*** Assumed data at physio temp
pre_list.append(syn)
hcdend3 [1] syn = new Exp2Syn(0.5) //MC(AMPA) syn to mid dend similar to CA3>int Aaron
syn.tau1 = 0.9 syn.tau2 = 3.6 syn.e = 0 //*** Assumed data at physio temp
pre_list.append(syn)
hcdend4 [1] syn = new Exp2Syn(0.5) //MC(AMPA) syn to mid dend similar to CA3>int Aaron
syn.tau1 = 0.9 syn.tau2 = 3.6 syn.e = 0 //*** Assumed data at physio temp
pre_list.append(syn)
// Total of 12 synapses 0-3 PP; 4-7 GC; 8-11 MC
}
proc connect_pre() { // $o1 target point process, $o2 returned NetCon
soma $o2 = new NetCon (&v(1), $o1)
}
func is_art() { return 0 }
endtemplate HIPPCell
//************************************************************************************************************
objref PPSt[npp]
begintemplate PPstim
public pp, connect_pre, is_art, acell
create acell
objref pp
proc init() {
actemp()
}
proc actemp() {
acell pp = new NetStim(.5)
pp.interval = 100
pp.number = 1
pp.start = 5
}
func is_art() {return 1}
proc connect_pre() {acell $o2 = new NetCon(pp, $o1)}
endtemplate PPstim
//###############################################################################################################
//NETWORK CONSTANTS AND VALUES
dentateBins = 100 /* equivalent subdivisions of the 6mm dentate */
dentateLength = 6000 /* in micrometers */
dentateBinSize = int(dentateLength/dentateBins) /* in micrometers */
numCellTypes = 4
// NETWORK SPECIFICATION INTERFACE
objref gcellPos, bcellPos, mcellPos, hcellPos, numElements_vec, tempPosition_vec, totalPosition_vec
gcellPos = new Vector(ngcell)
bcellPos = new Vector(nbcell)
mcellPos = new Vector(nmcell)
hcellPos = new Vector(nhcell)
totalPosition_vec = new Vector ()
numElements_vec = new Vector()
tempPosition_vec = new Vector()
for i=0, ngcell-1 {
Gcell[i] = new GranuleCell(i)
if (i%1000 == 0) print "Gcell: ",i
}
for i=0, nbcell-1 {
Bcell[i] = new BasketCell(i)
if (i%20 == 0) print "Bcell: ",i
}
for i=0, nmcell-1 {
Mcell[i] = new MossyCell(i)
if (i%50 == 0) print "Mcell: ",i
}
for i=0, nhcell-1 {
Hcell[i] = new HIPPCell(i)
if (i%20 == 0) print "Hcell: ",i
}
for i=0, npp-1 {PPSt[i] = new PPstim(i)}
objref nclist[dentateBins], netcon, cells
{ cells = new List()
for i = 0, dentateBins - 1 {nclist[i] = new List()}
}
func cell_append() {cells.append($o1)
return cells.count -1}
counterz = 0
func nc_append() {
if ($3 >= 0 ) {
cells.object($1).connect_pre(cells.object($2).pre_list.object($3),netcon)
netcon.weight = $4 netcon.delay = $5 netcon.threshold = $6
counterz += 1
}
if ($1 <= totalPosition_vec.size - 1) {
whichBin = (totalPosition_vec.x[$1] + 30)/60 - 1
} else {whichBin = dentateBins-1}
nclist[whichBin].append(netcon)
return 1 /* nclist.count-1 */
}
// NETWORK INITIATION
for i = 0, ngcell-1 {cell_append(Gcell[i])} // cells 0-4 GCs
for i = 0, nmcell-1 {cell_append(Mcell[i])} // cells 5-6 BC
for i = 0, nbcell-1 {cell_append(Bcell[i])} // cell 7 MC
for i = 0, nhcell-1 {cell_append(Hcell[i])} // cell 8 HC
for i = 0, npp-1 {cell_append(PPSt[i])} // cell 9 PP
//**************************************************************************
// Procedure that assigns x coordinates to cells. It takes
// one argument, a number indicating the type of cell to be
// assigned positions.
// 1 = granule; 2 = mossy; 3 = basket; 4 = HIPP; 0 = ALL
proc assignPos() {local celltype, numcell, numelementsperbin, leftovers, i, start, end, numstep
celltype = $1
// Assign which cells will receive coordinates.
if (celltype == 1) {numcell = ngcell}
if (celltype == 2) {numcell = nmcell}
if (celltype == 3) {numcell = nbcell}
if (celltype == 4) {numcell = nhcell}
if (celltype == 0) {
for i = 1, numCellTypes {
assignPos(i)
}
break
}
numelementsperbin = int (numcell/dentateBins)
numElements_vec.resize (dentateBins)
numElements_vec.fill (numelementsperbin, 0, dentateBins-1)
leftovers = numcell % dentateBins
tempPosition_vec.resize(numcell)
// Leftovers puts non-evenly divisible elements evenly into bins.
i=0
if (leftovers != 0) {numstep = int (dentateBins/leftovers)}
while (leftovers != 0) {
numElements_vec.x[i] += 1
i += numstep
leftovers -= 1
}
for i = 0, dentateBins - 1 {
if (numElements_vec.x[i] != 0) {
position = int(i*dentateBinSize + 0.5*dentateBinSize)
if (i == 0) {tempPosition_vec.fill(position, 0, numElements_vec.x[i]-1)
} else {
start = numElements_vec.sum (0, i-1)
if (start >= tempPosition_vec.size) {start = tempPosition_vec.size-1}
if ((numElements_vec.sum (0,i) - 1) >= tempPosition_vec.size) {
end = tempPosition_vec.size-1
} else {end = numElements_vec.sum (0, i)-1}
tempPosition_vec.fill(position, start, end)
}
}
}
totalPosition_vec.append(tempPosition_vec)
if (celltype == 1) {gcellPos = tempPosition_vec.c}
if (celltype == 2) {mcellPos = tempPosition_vec.c}
if (celltype == 3) {bcellPos = tempPosition_vec.c}
if (celltype == 4) {hcellPos = tempPosition_vec.c}
}
//****************************************************************************
assignPos(0)
print "I have successfully created all of the cells."
// DATA FILES AND OBJECTS
// numfiles needs to be greater than or equal to the expected number of files read in from getData
numfiles = 4
objref f1[numfiles], fileData_vec[numfiles], f2, tempFile
objref pgc_vec, pmc_vec, pbc_vec, phc_vec
objref gcdist_vec, mcdist_vec, bcdist_vec, hcdist_vec
strdef synapseFilename
pgc_vec = new Vector ()
pmc_vec = new Vector ()
pbc_vec = new Vector ()
phc_vec = new Vector ()
gcdist_vec = new Vector ()
mcdist_vec = new Vector ()
bcdist_vec = new Vector ()
hcdist_vec = new Vector ()
for i = 0, numfiles-1 {
f1[i] = new File()
fileData_vec[i] = new Vector()
}
//************************************************************************
// This procedure reads in data from files to vectors.
// It takes any number of arguments. The first must be an integer value
// corresponding to the number of files you would like to read in.
// The next arguments are the filenames, in quotation marks.
// e.g getData(4, "file1", "file2", "file3", "file4")
// Each vector is stored as fileData_vec[<filenumber>].
// Files should be a single column of values, with the first value indicating
// how many data entries there will be following it. Be sure the last line
// of the file ends with a value followed by a carriage return.
proc getData() {local i, j, sizeofvec
for i = 2, $1+1 {
f1[i-2].ropen($si)
sizeofvec = f1[i-2].scanvar
fileData_vec[i-2].resize(sizeofvec)
fileData_vec[i-2].scanf(f1[i-2])
}
}
//************************************************************************
getData (numfiles, "pgc.hoc", "pmc.hoc", "pbc.hoc", "phc.hoc")
pgc_vec = fileData_vec[0].c
if (randnet == 0) {pgc_vec.x[0] = pgc_vec.x[0] * percentSclerosis/100}
pmc_vec = fileData_vec[1].c
pbc_vec = fileData_vec[2].c
phc_vec = fileData_vec[3].c
getData (numfiles, "gcdist.hoc", "mcdist.hoc", "bcdist.hoc", "hcdist.hoc")
gcdist_vec = fileData_vec[0].c
mcdist_vec = fileData_vec[1].c
bcdist_vec = fileData_vec[2].c
hcdist_vec = fileData_vec[3].c
objref probConnection, distribution, randnum, synRand
//************************************************************************
// This procedure sets up a uniform random distribution of numbers between 0
// and 1. It is used in connectCells.
proc setupRand() {
ropen("/proc/uptime") // get a seed that is changing based on the processing time
{
rseed = fscan() // so simulation will not start with the same seed
}
//rseed = 1234
randnum = new Random(rseed) // use for syn.connections
randnum.uniform(0,1)
}
//************************************************************************
//************************************************************************
// This procedure sets up a uniform random distribution of numbers between 0
// and 1. It is used in connectCells.
proc setupSynRand() {
ropen("/proc/uptime") // get a seed that is changing based on the processing time
{
rseed = fscan() // so simulation will not start with the same seed
}
//rseed = 1234
synRand = new Random(rseed) // use for syn.connections
synRand.discunif(0,synRandomizer)
}
//************************************************************************
//************************************************************************
proc getSynapseData () {
strdef tempString
f2 = new File()
sprint(tempString,"%s.%s",$s1,$s2)
f2.ropen(tempString)
synRandomizer = f2.scanvar
synNumber = f2.scanvar
synWeight = f2.scanvar
synDelay = f2.scanvar
synThreshold = f2.scanvar
}
//************************************************************************
objref connectionMatrix, numCons
numCons = new File()
//************************************************************************
// This procedure determines which cells will connect to each other and
// calls the appropriate functions/procedures to make the connections.
// It takes 8 arguments, but should basically always be called from the
// procedure, makeConnections. The eight arguments are, in order,
// precellType, postcellType, precellStart, precellEnd, postcellStart
// postcellEnd, precellType_string, postcellType_string.
proc connectCells () {local precellType, postcellType, precellStart, precellEnd, postcellStart, postcellEnd, i, j, counterx, randSynNumber
precellType = $1
postcellType = $2
precellStart = $3
precellEnd = $4
postcellStart = $5
postcellEnd = $6
counterx = 0
getSynapseData($s7, $s8)
print "Hello! I am currently connecting: ", $s7, "s to ", $s8, "s."
setupRand()
setupSynRand()
prob = probConnection.x[postcellType - 1]
if (prob != 0) {
for i = precellStart, precellEnd {
for j = postcellStart, postcellEnd {
distNumber = dentateBins + ((totalPosition_vec.x[i] - totalPosition_vec.x[j]) / dentateBinSize)
if (randnum.repick < (scalingFactor * prob * distribution.x[distNumber-1])) {
randSynNumber = synRand.repick
nc_append(i, j, randSynNumber + synNumber, synWeight, synDelay, synThreshold)
counterx += 1
}
}
if (i%100 == 0) {print "This is the cell number I am currently on: ", i}
}
}
if ((percentSclerosis != 100) || !((precellType == 2) || (precellType == 4) || (postcellType == 2) || (postcellType == 4))) {
numCons.printf("%d\t%d\t%d\n",precellType,postcellType,counterx)
} else {numCons.printf("%d\t%d\t%d\n",precellType,postcellType,0)}
}
//************************************************************************
//************************************************************************
// This procedure is called from the program's main body and sets up the
// options which will be used in a call to connectCells. It takes two
// arguments, which are integers between 0 and numCellTypes (currently 4)
// and these integers correspond to the cell types that you want to connect
// to each other.
// 1 = granule; 2 = mossy; 3 = basket; 4 = HIPP; 0 = ALL
// The first argument indicates the presynaptic cell type, and the second
// the postsynaptic cell type.
// e.g. makeConnections (0, 0) will connect all presynaptic cell types to all
// postsynaptic cell types.
// makeConnections (1,2) will only connect granule cells to mossy cells.
proc makeConnections () {local precellType, postcellType, precellStart, precellEnd, postcellStart, postcellEnd
strdef precellType_string, postcellType_string
distribution = new Vector()
probConnection = new Vector ()
precellType = $1
postcellType = $2
if (precellType == 1) {
distribution = gcdist_vec
precellType_string = "gcell"
probConnection = pgc_vec
precellStart = 0
precellEnd = ngcell - 1
}
if (precellType == 2) {
distribution = mcdist_vec
precellType_string = "mcell"
probConnection = pmc_vec
precellStart = ngcell
precellEnd = ngcell + nmcell - 1
}
if (precellType == 3) {
distribution = bcdist_vec
precellType_string = "bcell"
probConnection = pbc_vec
precellStart = ngcell + nmcell
precellEnd = ngcell + nmcell + nbcell - 1
}
if (precellType == 4) {
distribution = hcdist_vec
precellType_string = "hcell"
probConnection = phc_vec
precellStart = ngcell + nmcell + nbcell
precellEnd = ngcell + nmcell + nbcell + nhcell - 1
}
if (precellType == 0) {
for i = 1, numCellTypes {
makeConnections (i, postcellType)
}
}
if (postcellType == 1) {
postcellStart = 0
postcellEnd = ngcell - 1
postcellType_string = "gcell"
}
if (postcellType == 2) {
postcellStart = ngcell
postcellEnd = ngcell + nmcell - 1
postcellType_string = "mcell"
}
if (postcellType == 3) {
postcellStart = ngcell + nmcell
postcellEnd = ngcell + nmcell + nbcell - 1
postcellType_string = "bcell"
}
if (postcellType == 4) {
postcellStart = ngcell + nmcell + nbcell
postcellEnd = ngcell + nmcell + nbcell + nhcell - 1
postcellType_string = "hcell"
}
if ((postcellType == 0) && (precellType != 0)) {
for j = 1, numCellTypes {
makeConnections (precellType, j)
}
}
if ((precellType != 0) && (postcellType != 0)) {
connectCells (precellType, postcellType, precellStart, precellEnd, postcellStart, postcellEnd, precellType_string, postcellType_string)
}
}
//************************************************************************
//**************Perforant Path synaptic connections ******************************
proc initNet() { local i,j
for i=0, npp-1 {
for j=int(0.45*ngcell) - 1, int(0.54*ngcell) - 1 {
nc_append(i+ngcell+nbcell+nmcell+nhcell, j, 0, 2e-2, 3, 10)
nc_append(i+ngcell+nbcell+nmcell+nhcell, j, 1, 2e-2, 3, 1)
}
for j= ngcell+nmcell+int(0.45*nbcell) - 1, ngcell+nmcell+int(0.54*nbcell) - 1 {
nc_append(ngcell+nbcell+nmcell+nhcell, j, 0, 1e-2, 3, 10)
nc_append(ngcell+nbcell+nmcell+nhcell, j, 1, 1e-2, 3, 10)
}
synRandomizer = 3
setupSynRand()
for j=ngcell + int(0.45*nmcell) -1, ngcell + int(0.45*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.46*nmcell) -1, ngcell + int(0.46*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.47*nmcell) -1, ngcell + int(0.47*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.48*nmcell) -1, ngcell + int(0.48*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.49*nmcell) -1, ngcell + int(0.49*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.50*nmcell) -1, ngcell + int(0.50*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.51*nmcell) -1, ngcell + int(0.51*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.52*nmcell) -1, ngcell + int(0.52*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.53*nmcell) -1, ngcell + int(0.53*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
for j=ngcell + int(0.54*nmcell) -1, ngcell + int(0.54*nmcell) - 1{
nc_append(ngcell+nbcell+nmcell+nhcell, j, synRand.repick, 1.75e-2, 3, 10)
}
}
}
//******************************************************************************************
objref killList, killWhich
//******************************************************************************************
proc killHilarCells () { local h, i, j, killCount, numKill, cell2Kill, percentKill, killIndex
killCount = 0
percentKill = $1
killList = new List()
synRandomizer = nmcell - 1
setupSynRand()
numKill = int(percentKill * nmcell / 100)
if (numKill != 0) {
killWhich = new Vector(numKill, -1)
while (killCount != numKill) {
cell2Kill = synRand.repick()
if (killWhich.contains(cell2Kill) == 0) {
killWhich.x(killCount) = cell2Kill
killCount += 1
}
}
for h = 0, killWhich.size - 1 {
killList = cvode.netconlist(MossyCell[killWhich.x(h)],"","")
print "Now killing MossyCell #",killWhich.x(h)
i = int((mcellPos.x(killWhich.x(h))-0.5*dentateBinSize)/dentateBinSize)
for j = 0, killList.count-1 {
killIndex = nclist[i].index(killList.object(j))
if (killIndex != -1) {
nclist[i].remove(killIndex)
}
}
}
killList.remove_all()
}
killCount = 0
numKill = int(percentKill * nmcell / 100)
if (numKill != 0) {
killWhich.x[0]= -1
while (killCount != numKill) {
cell2Kill = synRand.repick()
if (killWhich.contains(cell2Kill) == 0) {
killWhich.x(killCount) = cell2Kill
killCount += 1
}
}
for h = 0, killWhich.size - 1 {
killList = cvode.netconlist(HIPPCell[killWhich.x(h)],"","")
print "Now killing HIPPCell #",killWhich.x(h)
i = int((hcellPos.x(killWhich.x(h))-0.5*dentateBinSize)/dentateBinSize)
for j = 0, killList.count-1 {
killIndex = nclist[i].index(killList.object(j))
if (killIndex != -1) {
nclist[i].remove(killIndex)
}
}
}
killList.remove_all()
}
}
//******************************************************************************************
objref connectionFile, cellsFile
//******************************************************************************************
proc writeConnections () {local i,j
print "I am writing cells.dat.\n"
cellsFile = new File()
connectionFile = new File()
cellsFile.wopen("cells.dat")
connectionFile.wopen("connections.dat")
if (percentSclerosis != 100) {cellsFile.printf("%d\n%d\n%d\n%d\n%d\n",ngcell,nmcell,nbcell,nhcell,totalCells)}
if (percentSclerosis == 100) {cellsFile.printf("%d\n%d\n%d\n%d\n%d\n",ngcell,nmcell-1,nbcell,nhcell-1,totalCells-2)}
cellsFile.close()
print "I am writing out the Connection Matrix to connections.dat. This may take a few minutes.\n"
for i = 0, totalCells-1 {
if ((percentSclerosis != 100) || !((i == ngcell + nmcell - 1) || (i == ngcell + nmcell + nbcell + nhcell - 1))) {
for j = 0, totalCells-1 {
if ((percentSclerosis != 100) && (connectionMatrix.getval[i][j] == 1)) {connectionFile.printf("%d\t",j)}
if ((percentSclerosis == 100) && (connectionMatrix.getval[i][j] == 1)) {
if (j < ngcell) {connectionFile.printf("%d\t",j)}
if (j > ngcell && j < ngcell+nmcell+nbcell) {connectionFile.printf("%d\t",j-1)}
}
}
connectionFile.printf ("-1\n")
}
if (i == int(totalCells/2)) {print "I am halfway done writing connections.dat. Please wait.\n"}
}
}
//******************************************************************************************
objref VmMat
first_time_called = 1
double time_before[cells.count-1]
double time [cells.count-1]
double time_after [cells.count-1]
VmMat = new Matrix(tstop*10, totalCells, 2)
proc VecMx() { local i
for i=0, cells.count-2 {
if (first_time_called == 1) {
time_before[i] = 7000
time_after[i] = -7000
time[i] = 7000
}
time_before[i] = time[i]
time[i] = time_after[i]
time_after[i] = cells.object[i].soma.v(0.5)
if ((time[i]>0)&&(time[i]>time_before[i])&&(time[i]>time_after[i])) {
VmMat.x[t*10-1][i]=1}
}
first_time_called = 0
}
objref dfile
dfile = new File()
proc SpkMx() { local i, j
dfile.wopen("spikerast.txt")
for i=0, VmMat.nrow-1 {
for j = 0, cells.count-2 {
if(VmMat.getval(i,j)==1) {
dfile.printf("%f\t%d\n", i/10, j)}
}
}
dfile.close("spikerast.txt")
}
objref r_plt
proc initrPlt() {
r_plt = new Graph(0)
r_plt.size(0, tstop,0, cells.count)
r_plt.label(0.95, 0.02, "ms")
r_plt.label(0.01, 0.82, "neu")
r_plt.view(0,0, tstop, cells.count,320,20,300,230)
}
initrPlt()
//################################################################################################
proc init() { local dtsav, temp, secsav
finitialize(v_init)
t = -500
dtsav = dt
secondorder =0
dt= 10
// if cvode is on, turn it off to do large fixed step
temp= cvode.active()
if (temp!=0) {cvode.active(0)}
while(t<-100) { fadvance() print t}
//restore cvode if reqd
if (temp!=0) {cvode.active(1)}
dt = dtsav
secondorder =2
t = 0
if (cvode.active()){
cvode.re_init()
}else{
fcurrent()
}
frecord_init() // added on March 11, 2014 by Marianne Bezaire. If this is left out, the recording index will
// not be reset. It must be reset because the repeated calls to fadvance() during the
// while loop above increment the recording index. This means that recordings using the vector
// record method (for example, to record soma potential) will have their indices shifted by the
// number of times fadvance() was called, causing a delay in the readout of the recorded variable.
}
proc continuerun() {local rt
eventcount =0
eventslow =1
stoprun =0
if (using_cvode_) {
cvode.event($1)
}
while(t < $1 && stoprun == 0) {
step()
VecMx()
rt = stopsw()
if (rt > realtime) {
realtime = rt
if (!stdrun_quiet) fastflushPlot()
doNotify()
if (realtime == 2 && eventcount > 50) {
eventslow = int(eventcount/50)+1
}
eventcount = 0
}else{
eventcount = eventcount +1
if ((eventcount%eventslow) == 0) {
doEvents()
}
}
}
flushPlot()
}
objectvar save_window_, rvp_
objectvar scene_vector_[4]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List() scene_list_ = new List()}
{
xpanel("RunControl", 0)
v_init = -60
xvalue("Init","v_init", 1,"stdinit()", 1, 1 )
xbutton("Init & Run","run()")
xbutton("Stop","stoprun=1")
runStopAt = 5
xvalue("Continue til","runStopAt", 1,"{continuerun(runStopAt) stoprun=1}", 1, 1 )
runStopIn = 1
xvalue("Continue for","runStopIn", 1,"{continuerun(t + runStopIn) stoprun=1}", 1, 1 )
xbutton("Single Step","steprun()")
t = 0
xvalue("t","t", 2 )
tstop = 100 //1500
xvalue("Tstop","tstop", 1,"tstop_changed()", 0, 1 )
dt = 0.1
xvalue("dt","dt", 1,"setdt()", 0, 1 )
steps_per_ms = 10 //40
xvalue("Points plotted/ms","steps_per_ms", 1,"setdt()", 0, 1 )
xpanel(544,121)
}
{
save_window_ = new Graph(0)
save_window_.size(0,100,-80,40)
scene_vector_[2] = save_window_
{save_window_.view(0, -80, 100, 120, 290, 470, 579.84, 208)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("Gcell[50].soma.v(0.5)",1,1)
save_window_.addexpr("Bcell[10].soma.v(0.5)",2,1)
save_window_.addexpr("Mcell[10].soma.v(0.5)",3,1)
save_window_.addexpr("Hcell[4].soma.v(0.5)",4,1)
save_window_.addexpr("Gcell[25].soma.v(0.5)",5,1)
save_window_.addexpr("Bcell[2].soma.v(0.5)",6,1)
save_window_.addexpr("Mcell[3].soma.v(0.5)",7,1)
save_window_.addexpr("Hcell[1].soma.v(0.5)",8,1)
}
proc rrun(){
numCons.wopen("numCons.dat")
makeConnections(0,0)
numCons.close()
//if (percentSclerosis == 100) {killHilarCells(percentSclerosis)}
//writeConnections()
initNet()
// below two lines moved outside below to create start button
// so that initialization of network simulation and running
// the simulation are seperated in case the model wants to be
// browsed or parameters of the run are desired to be modified
// run()
// SpkMx()
}
rrun()
xpanel("Start button for Morgan et al. 2007, 2008")
xlabel("press below \"Start\" for an under 2 minute")
xlabel("simulation (on a 2.8 GHz Pentium 4)")
xbutton("Start","{run() SpkMx()}")
xbutton("Quit","quit()")
xpanel()
objectvar scene_vector_[1]
{doNotify()}