TITLE HCN model from Tarfa Evans and Khaliq 2017
UNITS {
(molar) = (1/liter)
(S) = (siemens)
(mA) = (milliamp)
(mV) = (millivolt)
(mM) = (millimolar)
F = (faraday) (coulomb)
R = (mole k) (mV-coulomb/degC)
}
NEURON {
SUFFIX hcn
NONSPECIFIC_CURRENT ihcn
: make this sodium/potassium eventually
RANGE ghcnbar, ehcn, mhalf,tau1,aslope,tau2,bhalf,bslope,ghcn, minf,mtau,scale,km
:GLOBAL minf : creates a shared lookup table
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
v (mV)
dt (ms)
celsius = 35.0 (degC)
gcahvabar = 0.0e-6 (S/cm2)
ghcnbar = 11.196e-6 (S/cm2)
km = -5.0 (mV)
mhalf = -75.0 (mV) :
aslope = 10.2
bhalf = -10
bslope = -100
tau1 = 2.0e-8
tau2 = 7.6e-3
:vtau = -80.0 (mV)
:stau = 11.06 (mV)
ehcn = -35 (mV)
scale = 1.0
}
STATE {
m
}
ASSIGNED {
ihcn (mA/cm2)
ghcn (S/cm2)
minf
mtau
alpha
beta
}
BREAKPOINT {
SOLVE states METHOD cnexp
ghcn = ghcnbar*m
ihcn = ghcn*(v-ehcn)
}
UNITSOFF
INITIAL {
rates(v)
:mtau = gaussian(v,tau1,tau2,vtau,stau)
mtau = scale/(alpha+beta)
minf = boltz(v,mhalf,km)
m= minf
}
DERIVATIVE states { :Computes state variables m
:LOCAL minf, mtau
rates(v) : calculate alpha, beta
minf = boltz(v,mhalf,km)
:mtau = gaussian(v,tau1,tau2,vtau,stau)
mtau = scale/(alpha+beta)
m' = (minf-m)/mtau
}
PROCEDURE rates(vx) {
alpha = tau1*exp(-vx/aslope)
beta = tau2*boltz(vx,bhalf,-bslope)
}
FUNCTION gaussian(v,a,b,c,d) {
LOCAL arg
arg= b*exp(-0.5*(v-c)*(v-c)/(d*d)) +a
gaussian = arg
}
FUNCTION boltz(x,y,z) {
LOCAL arg
arg= -(x-y)/z
if (arg > 50) {boltz = 0}
else {if (arg < -50) {boltz = 1}
else {boltz = 1.0/(1.0 + exp(arg))}}
}
UNITSON