%================================================================================
%
% CSIM implementation of a benchmark simulation described in the paper
% "Simulation of networks of spiking neurons: A review of tools and strategies"
% using the "Circuit Tools" available from www.lsm.tugraz.at.
%
% Benchmark 1: Conductance-based (COBA) IF network. This benchmark consists of a
% network of intefrate-and-fire neurons connected with
% conductance-based synapses.
%
% The "Circuit Tools" and CSIM are freely available from www.lsm.tugraz.at
%
% Authors: Dejan Pecevski, dejan@igi.tugraz.at
% Thomas Natschlaeger, thomas.natschlaeger@scch.at
%
% Date: April 2006
%
%================================================================================
close all; clear csim;
% Global parameter values
ConnP = 0.02; % connectivity probability
Tsim = 0.4; % duration of the simulation [sec]
DTsim = 0.1e-3; % simulation time step [sec]
Tinp = 50e-3; % length of the initial stimulus [sec]
nInputNeurons = 10 ; % number of neurons which provide initial input (for a time span of Tinp)
inpConnP = 0.01 ; % connectivity from input neurons to network neurons
inputFiringRate = 80; % firing rate of the input neurons during the initial input
% initialize an empty neural microcircuit object
nmc = neural_microcircuit('dt_sim', DTsim);
% Add a pool of conductance based neurons to the circuit
[nmc, pool] = add(nmc, 'pool', 'type', 'CbNeuron', ...
'size', [20 20 10], 'origin', [20 1 1], ...
'Neuron.Cm', 2e-10, ...
'Neuron.Rm', 1e8, ...
'Neuron.Vthresh', -50e-3, ...
'Neuron.Vresting', -60e-3, ...
'Neuron.Vreset', -60e-3, ...
'Neuron.Trefract', 5e-3, ...
'Neuron.Vinit', -60e-3, ...
'Neuron.Iinject', [0 0], ...
'frac_EXC', 0.8) ;
% Create the connections in the network
[nmc, cn] = add( nmc, 'Conn', 'dest', pool, 'src', pool, 'type', ... % connect pool with itself
'StaticSpikingCbSynapse', 'lambda', Inf, 'C', ConnP * ones(1,4), ... % connectivity does not depend on distance
'SH_W', 0, 'SH_delay', 0, 'rescale', 0, 'constW', 0, ... % no synaptic heterogeneity (SH)
'Synapse.delay', 0, ... % no transmission delay
'Synapse([EE IE]).W', 6e-9, 'Synapse([EE IE]).E', 0e-3, 'Synapse([EE IE]).tau', 5e-3, ... % excitatory synapses
'Synapse([EI II]).W', 67e-9, 'Synapse([EI II]).E', -80e-3, 'Synapse([EI II]).tau', 10e-3 ); % inhibitory synapses
% Create the input neurons for the inital stimulation
[nmc, inp] = add(nmc, 'pool', 'origin', [1 nInputNeurons 1], 'size', [1 nInputNeurons 1], ...
'type', 'SpikingInputNeuron', 'frac_EXC', 1);
% Connect the input neurons to the network
[nmc, cinp] = add( nmc, 'Conn', 'src', inp, 'dest', pool, ...
'type', 'StaticSpikingCbSynapse', 'lambda', Inf, 'C', inpConnP*ones(1,4), ...
'SH_W', 0, 'SH_delay', 0, 'rescale', 0, 'constW', 0, ...
'Synapse.W', 6e-9, 'Synapse.E', 0, 'Synapse.tau', 5e-3, 'Synapse.delay', 0);
% Create the stimulus
S = generate( constant_rate('nChannels', nInputNeurons, 'f', inputFiringRate, 'Tstim', Tinp) );
% Record the spikings of some random neurons
nmc = record(nmc, 'Volume', [20 1 1 ; 30 20 1 ], 'Field', 'spikes', 'dt', DTsim);
% Record also the membrane potential of two neurons
nmc = record(nmc, 'Volume', [30 10 5 ; 30 10 5], 'Field', 'Vm', 'dt', DTsim);
nmc = record(nmc, 'Volume', [25 15 5 ; 25 15 5], 'Field', 'Vm', 'dt', DTsim);
% Simulate the network
tic; fprintf('Running simulation: ');
reset(nmc);
R = simulate(nmc, Tsim, S);
fprintf('Done. %gsec CPU time for %gms simulation time\n', round(toc), Tsim*1000 );
% Finally make some plots
% note that plot_response is part of the circuit tools
plot_response(R);