// $Id: analyze_spiketuft.hoc,v 1.4 2007/03/17 00:19:52 ted Exp $
// split off from older version of control_spiketuft.hoc
// analyses results
// monx can't detect v at 0 or 1 end
// so we must use Vector record() to determine peak at origin of tuft
objref vorigin
vorigin = new Vector() // this is used by procs plotresults() and plotvmaxrvp()
apic[2] vorigin.record(&v(0))
objref areavec, normareavec, vpeakvec, resultvec
totalarea = 0
proc preanalysis() {
areavec = new Vector()
forsec tuft for (x,0) {
areavec.append(area(x))
}
// areavec.printf()
totalarea = areavec.sum()
normareavec = new Vector()
normareavec = areavec.c.div(totalarea)
}
// calculate totalarea and contents of areavec and normareavec just once, before doing any simulations
preanalysis()
// for diagnosis and development
LOWPCTTHRESH = 10
/*
Modified from implementation in processpeakdata.hoc
$o1 is vpvec
$2 is LOWPCTTHRESH
In implementation from processpeakdata.hoc, $o3 is temprvec which returns results
*/
objref si, normareacusum, svpvec, snormareavec
wmedian = -1 // three nonsense values
wpctlo = -1
wpcthi = -1
// proc percentiles() { local ii, wmedian, wpctlo, wpcthi
proc percentiles() { local ii
si = new Vector(normareavec.size())
$o1.sortindex(si) // the elements of si sort $o1 (which is vpvec) in numerical order
normareacusum = new Vector(normareavec.size())
// set up snormareavec here--we'll use it later for the distribution graph
snormareavec = new Vector()
snormareavec.index(normareavec, si)
normareacusum = snormareavec.c
// snormareavec and normareacusum hold the normalized areas
// in order of increasing peak v
for ii=1,normareavec.size()-1 normareacusum.x[ii] += normareacusum.x[ii-1]
// normareacusum.printf()
// now normareacusum holds the cusum of the normalized areas
svpvec = $o1.c.sort() // we're going to use the sorted vpvec repeatedly
// so might as well sort it once and for all
// find the index of the first element of normareacusum
// whose value is > 0.5
ii = normareacusum.indwhere(">", 0.5)
wmedian = svpvec.x[ii-1] // we want the immediately preceding value
ii = normareacusum.indwhere(">", $2/100)
wpctlo = svpvec.x[ii-1]
ii = normareacusum.indwhere(">", (100-$2)/100)
wpcthi = svpvec.x[ii-1]
/*
$o3.x[MEDIAN] = wmedian
$o3.x[PCTLO] = wpctlo
$o3.x[PCTHI] = wpcthi
*/
print "wmedian ", wmedian, " wpctlo ", wpctlo, " wpcthi ", wpcthi
}
//////////////////////////////////////
proc analyze() { local ii, num, wmean, wvar, wstdev localobj tmpvec
vpeakvec = new Vector()
forsec tuft for (x,0) {
vpeakvec.append(vmax_monx(x))
}
// weighted mean
tmpvec = vpeakvec.c()
tmpvec.mul(areavec)
wmean = tmpvec.sum()/totalarea
// weighted variance
tmpvec = vpeakvec.c()
tmpvec.sub(wmean)
for ii=0,tmpvec.size()-1 tmpvec.x[ii]*=tmpvec.x[ii]
tmpvec.mul(areavec)
num = tmpvec.size()
wvar = (tmpvec.sum()/totalarea)*(num/(num-1))
// weighted stdev
wstdev = sqrt(wvar)
printf("Mean %4.3f Min %4.3f Max %4.3f Var %5.4f StDev %5.4f\n", \
wmean, vpeakvec.min(), vpeakvec.max(), wvar, wstdev)
resultvec = new Vector()
resultvec.append(wmean)
resultvec.append(vpeakvec.min())
resultvec.append(vpeakvec.max())
resultvec.append(wvar)
resultvec.append(wstdev)
percentiles(vpeakvec, LOWPCTTHRESH)
}