/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "mech_api.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__L_Ca_inact
#define _nrn_initial _nrn_initial__L_Ca_inact
#define nrn_cur _nrn_cur__L_Ca_inact
#define _nrn_current _nrn_current__L_Ca_inact
#define nrn_jacob _nrn_jacob__L_Ca_inact
#define nrn_state _nrn_state__L_Ca_inact
#define _net_receive _net_receive__L_Ca_inact
#define evaluate_fct evaluate_fct__L_Ca_inact
#define states states__L_Ca_inact
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gcabar _p[0]
#define gcabar_columnindex 0
#define icaL _p[1]
#define icaL_columnindex 1
#define m_inf _p[2]
#define m_inf_columnindex 2
#define m _p[3]
#define m_columnindex 3
#define h _p[4]
#define h_columnindex 4
#define ecaL _p[5]
#define ecaL_columnindex 5
#define Dm _p[6]
#define Dm_columnindex 6
#define Dh _p[7]
#define Dh_columnindex 7
#define h_inf _p[8]
#define h_inf_columnindex 8
#define tadj _p[9]
#define tadj_columnindex 9
#define v _p[10]
#define v_columnindex 10
#define _g _p[11]
#define _g_columnindex 11
#define _ion_ecaL *_ppvar[0]._pval
#define _ion_icaL *_ppvar[1]._pval
#define _ion_dicaLdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static void _hoc_Exp(void);
static void _hoc_evaluate_fct(void);
static void _hoc_vtrap(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_L_Ca_inact", _hoc_setdata,
"Exp_L_Ca_inact", _hoc_Exp,
"evaluate_fct_L_Ca_inact", _hoc_evaluate_fct,
"vtrap_L_Ca_inact", _hoc_vtrap,
0, 0
};
#define Exp Exp_L_Ca_inact
#define vtrap vtrap_L_Ca_inact
extern double Exp( _threadargsprotocomma_ double );
extern double vtrap( _threadargsprotocomma_ double , double );
/* declare global and static user variables */
#define kappa_h kappa_h_L_Ca_inact
double kappa_h = 4;
#define kappa_m kappa_m_L_Ca_inact
double kappa_m = -6;
#define tau_h tau_h_L_Ca_inact
double tau_h = 1500;
#define tau_m tau_m_L_Ca_inact
double tau_m = 20;
#define theta_h theta_h_L_Ca_inact
double theta_h = 14;
#define theta_m theta_m_L_Ca_inact
double theta_m = -30;
#define vca vca_L_Ca_inact
double vca = 80;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"tau_m_L_Ca_inact", "ms",
"vca_L_Ca_inact", "mV",
"theta_m_L_Ca_inact", "mV",
"kappa_m_L_Ca_inact", "-mV",
"tau_h_L_Ca_inact", "ms",
"theta_h_L_Ca_inact", "mV",
"kappa_h_L_Ca_inact", "-mV",
"gcabar_L_Ca_inact", "mho/cm2",
"icaL_L_Ca_inact", "mA/cm2",
0,0
};
static double delta_t = 0.01;
static double h0 = 0;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"tau_m_L_Ca_inact", &tau_m_L_Ca_inact,
"vca_L_Ca_inact", &vca_L_Ca_inact,
"theta_m_L_Ca_inact", &theta_m_L_Ca_inact,
"kappa_m_L_Ca_inact", &kappa_m_L_Ca_inact,
"tau_h_L_Ca_inact", &tau_h_L_Ca_inact,
"theta_h_L_Ca_inact", &theta_h_L_Ca_inact,
"kappa_h_L_Ca_inact", &kappa_h_L_Ca_inact,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(NrnThread*, _Memb_list*, int);
static void nrn_state(NrnThread*, _Memb_list*, int);
static void nrn_cur(NrnThread*, _Memb_list*, int);
static void nrn_jacob(NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(NrnThread*, _Memb_list*, int);
static void _ode_matsol(NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"L_Ca_inact",
"gcabar_L_Ca_inact",
0,
"icaL_L_Ca_inact",
"m_inf_L_Ca_inact",
0,
"m_L_Ca_inact",
"h_L_Ca_inact",
0,
0};
static Symbol* _caL_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 12, _prop);
/*initialize range parameters*/
gcabar = 0.0003;
_prop->param = _p;
_prop->param_size = 12;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_caL_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ecaL */
_ppvar[1]._pval = &prop_ion->param[3]; /* icaL */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dicaLdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _L_Ca_inact_reg() {
int _vectorized = 1;
_initlists();
ion_reg("caL", 2.0);
_caL_sym = hoc_lookup("caL_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 12, 4);
hoc_register_dparam_semantics(_mechtype, 0, "caL_ion");
hoc_register_dparam_semantics(_mechtype, 1, "caL_ion");
hoc_register_dparam_semantics(_mechtype, 2, "caL_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 L_Ca_inact L_Ca_inact.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Motoneuron L-type Calcium channels";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {int _reset = 0; {
evaluate_fct ( _threadargscomma_ v ) ;
Dm = ( m_inf - m ) / tau_m ;
Dh = ( h_inf - h ) / tau_h ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
evaluate_fct ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_h )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) { {
evaluate_fct ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ;
}
return 0;
}
static int evaluate_fct ( _threadargsprotocomma_ double _lv ) {
m_inf = 1.0 / ( 1.0 + ( Exp ( _threadargscomma_ ( _lv - theta_m ) / kappa_m ) ) ) ;
h_inf = 1.0 / ( 1.0 + ( Exp ( _threadargscomma_ ( _lv - theta_h ) / kappa_h ) ) ) ;
return 0; }
static void _hoc_evaluate_fct(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
double vtrap ( _threadargsprotocomma_ double _lx , double _ly ) {
double _lvtrap;
if ( fabs ( _lx / _ly ) < 1e-6 ) {
_lvtrap = _ly * ( 1.0 - _lx / _ly / 2.0 ) ;
}
else {
_lvtrap = _lx / ( Exp ( _threadargscomma_ _lx / _ly ) - 1.0 ) ;
}
return _lvtrap;
}
static void _hoc_vtrap(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = vtrap ( _p, _ppvar, _thread, _nt, *getarg(1) , *getarg(2) );
hoc_retpushx(_r);
}
double Exp ( _threadargsprotocomma_ double _lx ) {
double _lExp;
if ( _lx < - 100.0 ) {
_lExp = 0.0 ;
}
else {
_lExp = exp ( _lx ) ;
}
return _lExp;
}
static void _hoc_Exp(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = Exp ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ecaL = _ion_ecaL;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ecaL = _ion_ecaL;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_caL_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_caL_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_caL_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
int _i; double _save;{
h = h0;
m = m0;
{
evaluate_fct ( _threadargscomma_ v ) ;
m = m_inf ;
h = h_inf ;
}
}
}
static void nrn_init(NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ecaL = _ion_ecaL;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
icaL = gcabar * m * h * ( v - vca ) ;
}
_current += icaL;
} return _current;
}
static void nrn_cur(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ecaL = _ion_ecaL;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dicaL;
_dicaL = icaL;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dicaLdv += (_dicaL - icaL)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_icaL += icaL ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ecaL = _ion_ecaL;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = m_columnindex; _dlist1[0] = Dm_columnindex;
_slist1[1] = h_columnindex; _dlist1[1] = Dh_columnindex;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "L_Ca_inact.mod";
static const char* nmodl_file_text =
"TITLE Motoneuron L-type Calcium channels\n"
":\n"
": The parameters for this current come from V. Booth et al. J Neurophysiol 78:3371-3385, 1997\n"
": Iterative equations\n"
": Modified by RP to provide calcium to a separate pool (caL)and to have adjustable equilibrium\n"
": potential vca\n"
"\n"
"\n"
"NEURON {\n"
" SUFFIX L_Ca_inact\n"
" USEION caL READ ecaL WRITE icaL VALENCE 2\n"
" RANGE gcabar,icaL,m_inf,m,h\n"
" GLOBAL vca,theta_m,kappa_m,theta_h,kappa_h\n"
"}\n"
"\n"
"\n"
"UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
"}\n"
"\n"
"PARAMETER {\n"
" gcabar = 0.0003 (mho/cm2) :\n"
" ecaL (mV) : eca can't be set here, only in hoc\n"
": celcius = 36 (degC)\n"
" dt (ms)\n"
" tau_m = 20 (ms) :\n"
" v (mV)\n"
" vca=80 (mV) :\n"
" theta_m = -30 (mV) :\n"
" kappa_m = -6 (-mV) :\n"
" tau_h = 1500 (ms) :\n"
" theta_h = 14 (mV) :\n"
" kappa_h = 4 (-mV) :\n"
"}\n"
"\n"
"STATE {\n"
" m\n"
" h\n"
"}\n"
"\n"
"ASSIGNED {\n"
" icaL (mA/cm2)\n"
" m_inf\n"
" h_inf\n"
" tadj\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" icaL = gcabar * m *h* (v - vca) :I have tried this as m*m also\n"
"}\n"
"\n"
"DERIVATIVE states {\n"
" evaluate_fct(v)\n"
" m' = (m_inf - m) / tau_m\n"
" h' = (h_inf - h) / tau_h\n"
"}\n"
"\n"
"UNITSOFF\n"
"INITIAL {\n"
"\n"
":\n"
": Q10 was assumed to be 3 for both currents\n"
":\n"
": tadj = 3.0 ^ ((celsius-36)/ 10 )\n"
"\n"
" evaluate_fct(v)\n"
" m = m_inf\n"
" h = h_inf\n"
"}\n"
"\n"
"PROCEDURE evaluate_fct(v(mV)) {\n"
"\n"
" m_inf = 1 / (1 + (Exp((v - theta_m)/ kappa_m))): / tadj\n"
" h_inf = 1 / (1 + (Exp((v - theta_h)/ kappa_h))): / tadj\n"
"\n"
"}\n"
"\n"
"FUNCTION vtrap(x,y) {\n"
" if (fabs(x/y) < 1e-6) {\n"
" vtrap = y*(1 - x/y/2)\n"
" }\n"
" else{\n"
" vtrap = x/(Exp(x/y)-1)\n"
" }\n"
"}\n"
"\n"
"FUNCTION Exp(x) {\n"
" if (x < -100) {\n"
" Exp = 0\n"
" }\n"
" else{\n"
" Exp = exp(x)\n"
" }\n"
"} \n"
"\n"
;
#endif