TITLE Motoneuron L-type Calcium channels
:
: The parameters for this current come from V. Booth et al. J Neurophysiol 78:3371-3385, 1997
: Iterative equations
: Modified by RP to provide calcium to a separate pool (caL)and to have adjustable equilibrium
: potential vca
NEURON {
SUFFIX L_Ca_inact
USEION caL READ ecaL WRITE icaL VALENCE 2
RANGE gcabar,icaL,m_inf,m,h
GLOBAL vca,theta_m,kappa_m,theta_h,kappa_h
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
gcabar = 0.0003 (mho/cm2) :
ecaL (mV) : eca can't be set here, only in hoc
: celcius = 36 (degC)
dt (ms)
tau_m = 20 (ms) :
v (mV)
vca=80 (mV) :
theta_m = -30 (mV) :
kappa_m = -6 (-mV) :
tau_h = 1500 (ms) :
theta_h = 14 (mV) :
kappa_h = 4 (-mV) :
}
STATE {
m
h
}
ASSIGNED {
icaL (mA/cm2)
m_inf
h_inf
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp
icaL = gcabar * m *h* (v - vca) :I have tried this as m*m also
}
DERIVATIVE states {
evaluate_fct(v)
m' = (m_inf - m) / tau_m
h' = (h_inf - h) / tau_h
}
UNITSOFF
INITIAL {
:
: Q10 was assumed to be 3 for both currents
:
: tadj = 3.0 ^ ((celsius-36)/ 10 )
evaluate_fct(v)
m = m_inf
h = h_inf
}
PROCEDURE evaluate_fct(v(mV)) {
m_inf = 1 / (1 + (Exp((v - theta_m)/ kappa_m))): / tadj
h_inf = 1 / (1 + (Exp((v - theta_h)/ kappa_h))): / tadj
}
FUNCTION vtrap(x,y) {
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}
else{
vtrap = x/(Exp(x/y)-1)
}
}
FUNCTION Exp(x) {
if (x < -100) {
Exp = 0
}
else{
Exp = exp(x)
}
}