/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "mech_api.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__kdrRL
#define _nrn_initial _nrn_initial__kdrRL
#define nrn_cur _nrn_cur__kdrRL
#define _nrn_current _nrn_current__kdrRL
#define nrn_jacob _nrn_jacob__kdrRL
#define nrn_state _nrn_state__kdrRL
#define _net_receive _net_receive__kdrRL
#define _f_rate _f_rate__kdrRL
#define rate rate__kdrRL
#define state state__kdrRL
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gMax _p[0]
#define gMax_columnindex 0
#define ik _p[1]
#define ik_columnindex 1
#define g _p[2]
#define g_columnindex 2
#define m _p[3]
#define m_columnindex 3
#define ek _p[4]
#define ek_columnindex 4
#define mtau _p[5]
#define mtau_columnindex 5
#define minf _p[6]
#define minf_columnindex 6
#define Dm _p[7]
#define Dm_columnindex 7
#define v _p[8]
#define v_columnindex 8
#define _g _p[9]
#define _g_columnindex 9
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static void _hoc_rate(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_kdrRL", _hoc_setdata,
"rate_kdrRL", _hoc_rate,
0, 0
};
static void _check_rate(double*, Datum*, Datum*, NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, int _type) {
_check_rate(_p, _ppvar, _thread, _nt);
}
/* declare global and static user variables */
#define mslp mslp_kdrRL
double mslp = 20;
#define mVh mVh_kdrRL
double mVh = -25;
#define taumax taumax_kdrRL
double taumax = 11.9;
#define tmin tmin_kdrRL
double tmin = 1.4;
#define tslp tslp_kdrRL
double tslp = 5.5;
#define tVh tVh_kdrRL
double tVh = -39;
#define usetable usetable_kdrRL
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_kdrRL", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"mVh_kdrRL", "mV",
"mslp_kdrRL", "mV",
"tVh_kdrRL", "mV",
"tslp_kdrRL", "mV",
"tmin_kdrRL", "ms",
"taumax_kdrRL", "ms",
"gMax_kdrRL", "S/cm2",
"ik_kdrRL", "mA/cm2",
"g_kdrRL", "S/cm2",
0,0
};
static double delta_t = 0.01;
static double m0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"mVh_kdrRL", &mVh_kdrRL,
"mslp_kdrRL", &mslp_kdrRL,
"tVh_kdrRL", &tVh_kdrRL,
"tslp_kdrRL", &tslp_kdrRL,
"tmin_kdrRL", &tmin_kdrRL,
"taumax_kdrRL", &taumax_kdrRL,
"usetable_kdrRL", &usetable_kdrRL,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(NrnThread*, _Memb_list*, int);
static void nrn_state(NrnThread*, _Memb_list*, int);
static void nrn_cur(NrnThread*, _Memb_list*, int);
static void nrn_jacob(NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(NrnThread*, _Memb_list*, int);
static void _ode_matsol(NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[3]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"kdrRL",
"gMax_kdrRL",
0,
"ik_kdrRL",
"g_kdrRL",
0,
"m_kdrRL",
0,
0};
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 10, _prop);
/*initialize range parameters*/
gMax = 0.1;
_prop->param = _p;
_prop->param_size = 10;
_ppvar = nrn_prop_datum_alloc(_mechtype, 4, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _kdrRL_reg() {
int _vectorized = 1;
_initlists();
ion_reg("k", -10000.);
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 10, 4);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 kdrRL kdrRL.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double *_t_minf;
static double *_t_mtau;
static int _reset;
static char *modelname = "Potassium Delayed Rectifier Channel";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_rate(_threadargsprotocomma_ double);
static int rate(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static void _n_rate(_threadargsprotocomma_ double _lv);
static int _slist1[1], _dlist1[1];
static int state(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {int _reset = 0; {
rate ( _threadargscomma_ v ) ;
Dm = ( minf - m ) / mtau ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
rate ( _threadargscomma_ v ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtau )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) { {
rate ( _threadargscomma_ v ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtau)))*(- ( ( ( minf ) ) / mtau ) / ( ( ( ( - 1.0 ) ) ) / mtau ) - m) ;
}
return 0;
}
static double _mfac_rate, _tmin_rate;
static void _check_rate(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_mVh;
static double _sav_mslp;
static double _sav_tVh;
static double _sav_tslp;
static double _sav_tmin;
static double _sav_taumax;
if (!usetable) {return;}
if (_sav_mVh != mVh) { _maktable = 1;}
if (_sav_mslp != mslp) { _maktable = 1;}
if (_sav_tVh != tVh) { _maktable = 1;}
if (_sav_tslp != tslp) { _maktable = 1;}
if (_sav_tmin != tmin) { _maktable = 1;}
if (_sav_taumax != taumax) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_rate = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_rate)/200.; _mfac_rate = 1./_dx;
for (_i=0, _x=_tmin_rate; _i < 201; _x += _dx, _i++) {
_f_rate(_p, _ppvar, _thread, _nt, _x);
_t_minf[_i] = minf;
_t_mtau[_i] = mtau;
}
_sav_mVh = mVh;
_sav_mslp = mslp;
_sav_tVh = tVh;
_sav_tslp = tslp;
_sav_tmin = tmin;
_sav_taumax = taumax;
}
}
static int rate(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _lv) {
#if 0
_check_rate(_p, _ppvar, _thread, _nt);
#endif
_n_rate(_p, _ppvar, _thread, _nt, _lv);
return 0;
}
static void _n_rate(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_rate(_p, _ppvar, _thread, _nt, _lv); return;
}
_xi = _mfac_rate * (_lv - _tmin_rate);
if (isnan(_xi)) {
minf = _xi;
mtau = _xi;
return;
}
if (_xi <= 0.) {
minf = _t_minf[0];
mtau = _t_mtau[0];
return; }
if (_xi >= 200.) {
minf = _t_minf[200];
mtau = _t_mtau[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]);
mtau = _t_mtau[_i] + _theta*(_t_mtau[_i+1] - _t_mtau[_i]);
}
static int _f_rate ( _threadargsprotocomma_ double _lv ) {
double _lb , _lf ;
_lb = exp ( ( _lv - tVh ) / tslp ) ;
_lf = pow( ( 1.0 + _lb ) , 2.0 ) ;
minf = 1.0 / ( 1.0 + exp ( - ( _lv - mVh ) / mslp ) ) ;
mtau = tmin + taumax * _lb / _lf ;
return 0; }
static void _hoc_rate(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
#if 1
_check_rate(_p, _ppvar, _thread, _nt);
#endif
_r = 1.;
rate ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 1;}
static void _ode_spec(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 1; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
int _i; double _save;{
m = m0;
{
rate ( _threadargscomma_ v ) ;
m = minf ;
}
}
}
static void nrn_init(NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_rate(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
g = gMax * pow( m , 4.0 ) ;
ik = g * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
{ state(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = m_columnindex; _dlist1[0] = Dm_columnindex;
_t_minf = makevector(201*sizeof(double));
_t_mtau = makevector(201*sizeof(double));
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "kdrRL.mod";
static const char* nmodl_file_text =
"TITLE Potassium Delayed Rectifier Channel\n"
" :This channel is a Voltage Dependent Potassium Channel\n"
" : and will create a current (ik) based on the voltage \n"
" :Simplied by RKP 3/22/07 to exlude references to different\n"
" : parts of Bob's split dendrite model\n"
"\n"
"UNITS {\n"
" (mV) = (millivolt)\n"
" (mA) = (milliamp)\n"
" (S) = (siemens)\n"
"}\n"
"\n"
"NEURON {\n"
" SUFFIX kdrRL\n"
" USEION k READ ek WRITE ik\n"
" RANGE ik, g, gMax\n"
" GLOBAL mVh,mslp, tVh, tslp, tmin,taumax\n"
"}\n"
"\n"
"PARAMETER {\n"
" gMax = 0.1 (S/cm2)\n"
" mVh = -25 (mV)\n"
" mslp = 20 (mV)\n"
" tVh = -39 (mV) \n"
" tslp = 5.5 (mV) \n"
" tmin = 1.4 (ms) \n"
" taumax = 11.9(ms)\n"
"} \n"
"\n"
"ASSIGNED {\n"
" v (mV)\n"
" ek (mV)\n"
" ik (mA/cm2)\n"
" g (S/cm2)\n"
" mtau (ms)\n"
" minf\n"
"}\n"
"\n"
"STATE {\n"
" m\n"
"}\n"
"\n"
"INITIAL {\n"
" rate(v)\n"
" m = minf\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" SOLVE state METHOD cnexp\n"
" g = gMax * m^4\n"
" ik = g*(v - ek)\n"
"}\n"
"\n"
"DERIVATIVE state {\n"
" rate(v)\n"
" m' = (minf - m)/mtau\n"
"}\n"
"\n"
"PROCEDURE rate(v (mV)) {\n"
" LOCAL b, f TABLE minf,mtau \n"
" DEPEND mVh,mslp,tVh,tslp,tmin,taumax \n"
" FROM -100 TO 100 WITH 200\n"
"\n"
" b = exp((v - tVh)/tslp)\n"
" f = (1 + b)^2\n"
" \n"
" minf = 1/(1+exp(-(v-mVh)/mslp))\n"
" mtau = tmin + taumax*b/f\n"
"}\n"
;
#endif