/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "mech_api.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__mAHP
#define _nrn_initial _nrn_initial__mAHP
#define nrn_cur _nrn_cur__mAHP
#define _nrn_current _nrn_current__mAHP
#define nrn_jacob _nrn_jacob__mAHP
#define nrn_state _nrn_state__mAHP
#define _net_receive _net_receive__mAHP
#define _f_mcarate _f_mcarate__mAHP
#define mcarate mcarate__mAHP
#define rates rates__mAHP
#define states states__mAHP
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define gkcamax _p[0]
#define gkcamax_columnindex 0
#define gcamax _p[1]
#define gcamax_columnindex 1
#define depth _p[2]
#define depth_columnindex 2
#define taur _p[3]
#define taur_columnindex 3
#define ik _p[4]
#define ik_columnindex 4
#define ica _p[5]
#define ica_columnindex 5
#define mca _p[6]
#define mca_columnindex 6
#define n _p[7]
#define n_columnindex 7
#define cai _p[8]
#define cai_columnindex 8
#define ek _p[9]
#define ek_columnindex 9
#define eca _p[10]
#define eca_columnindex 10
#define ninf _p[11]
#define ninf_columnindex 11
#define ntau _p[12]
#define ntau_columnindex 12
#define minfca _p[13]
#define minfca_columnindex 13
#define drive_channel _p[14]
#define drive_channel_columnindex 14
#define Dmca _p[15]
#define Dmca_columnindex 15
#define Dn _p[16]
#define Dn_columnindex 16
#define Dcai _p[17]
#define Dcai_columnindex 17
#define v _p[18]
#define v_columnindex 18
#define _g _p[19]
#define _g_columnindex 19
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#define _ion_eca *_ppvar[3]._pval
#define _ion_ica *_ppvar[4]._pval
#define _ion_dicadv *_ppvar[5]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_mcarate(void);
static void _hoc_rates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_mAHP", _hoc_setdata,
"mcarate_mAHP", _hoc_mcarate,
"rates_mAHP", _hoc_rates,
0, 0
};
static void _check_mcarate(double*, Datum*, Datum*, NrnThread*);
static void _check_table_thread(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, int _type) {
_check_mcarate(_p, _ppvar, _thread, _nt);
}
/* declare global and static user variables */
#define bKCa bKCa_mAHP
double bKCa = 0.1;
#define cainf cainf_mAHP
double cainf = 0.0001;
#define caix caix_mAHP
double caix = 2;
#define fKCa fKCa_mAHP
double fKCa = 0.1;
#define mtauca mtauca_mAHP
double mtauca = 1;
#define mslpca mslpca_mAHP
double mslpca = 4;
#define mvhalfca mvhalfca_mAHP
double mvhalfca = -30;
#define usetable usetable_mAHP
double usetable = 1;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_mAHP", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"mvhalfca_mAHP", "mV",
"mslpca_mAHP", "mV",
"mtauca_mAHP", "ms",
"cainf_mAHP", "mM",
"gkcamax_mAHP", "S/cm2",
"gcamax_mAHP", "S/cm2",
"depth_mAHP", "um",
"taur_mAHP", "ms",
"cai_mAHP", "mM",
"ik_mAHP", "mA/cm2",
"ica_mAHP", "mA/cm2",
0,0
};
static double cai0 = 0;
static double delta_t = 0.01;
static double mca0 = 0;
static double n0 = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"mvhalfca_mAHP", &mvhalfca_mAHP,
"mslpca_mAHP", &mslpca_mAHP,
"mtauca_mAHP", &mtauca_mAHP,
"caix_mAHP", &caix_mAHP,
"cainf_mAHP", &cainf_mAHP,
"fKCa_mAHP", &fKCa_mAHP,
"bKCa_mAHP", &bKCa_mAHP,
"usetable_mAHP", &usetable_mAHP,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(NrnThread*, _Memb_list*, int);
static void nrn_state(NrnThread*, _Memb_list*, int);
static void nrn_cur(NrnThread*, _Memb_list*, int);
static void nrn_jacob(NrnThread*, _Memb_list*, int);
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(NrnThread*, _Memb_list*, int);
static void _ode_matsol(NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[6]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"mAHP",
"gkcamax_mAHP",
"gcamax_mAHP",
"depth_mAHP",
"taur_mAHP",
0,
"ik_mAHP",
"ica_mAHP",
0,
"mca_mAHP",
"n_mAHP",
"cai_mAHP",
0,
0};
static Symbol* _k_sym;
static Symbol* _ca_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 20, _prop);
/*initialize range parameters*/
gkcamax = 0.03;
gcamax = 3e-05;
depth = 0.1;
taur = 20;
_prop->param = _p;
_prop->param_size = 20;
_ppvar = nrn_prop_datum_alloc(_mechtype, 7, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[3]._pval = &prop_ion->param[0]; /* eca */
_ppvar[4]._pval = &prop_ion->param[3]; /* ica */
_ppvar[5]._pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _mAHP_reg() {
int _vectorized = 1;
_initlists();
ion_reg("k", -10000.);
ion_reg("ca", -10000.);
_k_sym = hoc_lookup("k_ion");
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
_nrn_thread_table_reg(_mechtype, _check_table_thread);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 20, 7);
hoc_register_dparam_semantics(_mechtype, 0, "k_ion");
hoc_register_dparam_semantics(_mechtype, 1, "k_ion");
hoc_register_dparam_semantics(_mechtype, 2, "k_ion");
hoc_register_dparam_semantics(_mechtype, 3, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 4, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 5, "ca_ion");
hoc_register_dparam_semantics(_mechtype, 6, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 mAHP mAHP.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
#define FARADAY _nrnunit_FARADAY[_nrnunit_use_legacy_]
static double _nrnunit_FARADAY[2] = {0x1.78e555060882cp+16, 96485.3}; /* 96485.3321233100141 */
static double *_t_minfca;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_mcarate(_threadargsprotocomma_ double);
static int mcarate(_threadargsprotocomma_ double);
static int rates(_threadargsprotocomma_ double);
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static void _n_mcarate(_threadargsprotocomma_ double _lv);
static int _slist1[3], _dlist1[3];
static int states(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {int _reset = 0; {
drive_channel = - ( 10000.0 ) * ica / ( 2.0 * FARADAY * depth ) ;
if ( drive_channel <= 0. ) {
drive_channel = 0. ;
}
Dcai = drive_channel + ( cainf - cai ) / taur ;
rates ( _threadargscomma_ cai ) ;
Dn = ( ninf - n ) / ntau ;
mcarate ( _threadargscomma_ v ) ;
Dmca = ( minfca - mca ) / mtauca ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
drive_channel = - ( 10000.0 ) * ica / ( 2.0 * FARADAY * depth ) ;
if ( drive_channel <= 0. ) {
drive_channel = 0. ;
}
Dcai = Dcai / (1. - dt*( ( ( ( - 1.0 ) ) ) / taur )) ;
rates ( _threadargscomma_ cai ) ;
Dn = Dn / (1. - dt*( ( ( ( - 1.0 ) ) ) / ntau )) ;
mcarate ( _threadargscomma_ v ) ;
Dmca = Dmca / (1. - dt*( ( ( ( - 1.0 ) ) ) / mtauca )) ;
return 0;
}
/*END CVODE*/
static int states (double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) { {
drive_channel = - ( 10000.0 ) * ica / ( 2.0 * FARADAY * depth ) ;
if ( drive_channel <= 0. ) {
drive_channel = 0. ;
}
cai = cai + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taur)))*(- ( drive_channel + ( ( cainf ) ) / taur ) / ( ( ( ( - 1.0 ) ) ) / taur ) - cai) ;
rates ( _threadargscomma_ cai ) ;
n = n + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / ntau)))*(- ( ( ( ninf ) ) / ntau ) / ( ( ( ( - 1.0 ) ) ) / ntau ) - n) ;
mcarate ( _threadargscomma_ v ) ;
mca = mca + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / mtauca)))*(- ( ( ( minfca ) ) / mtauca ) / ( ( ( ( - 1.0 ) ) ) / mtauca ) - mca) ;
}
return 0;
}
static int rates ( _threadargsprotocomma_ double _lcai ) {
double _la , _lb ;
_la = fKCa * pow( ( 1e3 * ( _lcai - cainf ) ) , caix ) ;
_lb = bKCa ;
ntau = 1.0 / ( _la + _lb ) ;
ninf = _la * ntau ;
return 0; }
static void _hoc_rates(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
_r = 1.;
rates ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static double _mfac_mcarate, _tmin_mcarate;
static void _check_mcarate(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_mvhalfca;
static double _sav_mslpca;
if (!usetable) {return;}
if (_sav_mvhalfca != mvhalfca) { _maktable = 1;}
if (_sav_mslpca != mslpca) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_mcarate = - 100.0 ;
_tmax = 100.0 ;
_dx = (_tmax - _tmin_mcarate)/200.; _mfac_mcarate = 1./_dx;
for (_i=0, _x=_tmin_mcarate; _i < 201; _x += _dx, _i++) {
_f_mcarate(_p, _ppvar, _thread, _nt, _x);
_t_minfca[_i] = minfca;
}
_sav_mvhalfca = mvhalfca;
_sav_mslpca = mslpca;
}
}
static int mcarate(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _lv) {
#if 0
_check_mcarate(_p, _ppvar, _thread, _nt);
#endif
_n_mcarate(_p, _ppvar, _thread, _nt, _lv);
return 0;
}
static void _n_mcarate(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_mcarate(_p, _ppvar, _thread, _nt, _lv); return;
}
_xi = _mfac_mcarate * (_lv - _tmin_mcarate);
if (isnan(_xi)) {
minfca = _xi;
return;
}
if (_xi <= 0.) {
minfca = _t_minfca[0];
return; }
if (_xi >= 200.) {
minfca = _t_minfca[200];
return; }
_i = (int) _xi;
_theta = _xi - (double)_i;
minfca = _t_minfca[_i] + _theta*(_t_minfca[_i+1] - _t_minfca[_i]);
}
static int _f_mcarate ( _threadargsprotocomma_ double _lv ) {
minfca = 1.0 / ( 1.0 + exp ( - ( _lv - mvhalfca ) / mslpca ) ) ;
return 0; }
static void _hoc_mcarate(void) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; NrnThread* _nt;
if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
_thread = _extcall_thread;
_nt = nrn_threads;
#if 1
_check_mcarate(_p, _ppvar, _thread, _nt);
#endif
_r = 1.;
mcarate ( _p, _ppvar, _thread, _nt, *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ return 3;}
static void _ode_spec(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
eca = _ion_eca;
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
ek = _ion_ek;
eca = _ion_eca;
_ode_matsol_instance1(_threadargs_);
}}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
nrn_update_ion_pointer(_ca_sym, _ppvar, 3, 0);
nrn_update_ion_pointer(_ca_sym, _ppvar, 4, 3);
nrn_update_ion_pointer(_ca_sym, _ppvar, 5, 4);
}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt) {
int _i; double _save;{
cai = cai0;
mca = mca0;
n = n0;
{
cai = cainf ;
rates ( _threadargscomma_ cai ) ;
mcarate ( _threadargscomma_ v ) ;
n = ninf ;
mca = minfca ;
}
}
}
static void nrn_init(NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if 0
_check_mcarate(_p, _ppvar, _thread, _nt);
#endif
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
eca = _ion_eca;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
ica = gcamax * mca * ( v - eca ) ;
ik = gkcamax * n * ( v - ek ) ;
}
_current += ik;
_current += ica;
} return _current;
}
static void nrn_cur(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
eca = _ion_eca;
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ double _dica;
double _dik;
_dik = ik;
_dica = ica;
_rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
_ion_dikdv += (_dik - ik)/.001 ;
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
ek = _ion_ek;
eca = _ion_eca;
{ states(_p, _ppvar, _thread, _nt);
} }}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = cai_columnindex; _dlist1[0] = Dcai_columnindex;
_slist1[1] = n_columnindex; _dlist1[1] = Dn_columnindex;
_slist1[2] = mca_columnindex; _dlist1[2] = Dmca_columnindex;
_t_minfca = makevector(201*sizeof(double));
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "mAHP.mod";
static const char* nmodl_file_text =
"\n"
" COMMENT\n"
" \n"
" mAHP.mod\n"
" \n"
" Calcium-dependent potassium channel responsible for mAHP in motoneurons\n"
" Simplified calcium channel that provides Ca for the KCa conductance is included\n"
" \n"
" ENDCOMMENT\n"
"\n"
" NEURON {\n"
" SUFFIX mAHP\n"
" USEION k READ ek WRITE ik\n"
" USEION ca READ eca WRITE ica\n"
" RANGE n, gkcamax,gcamax,ik,cai,ica,depth,taur\n"
" GLOBAL fKCa, bKCa, caix\n"
" }\n"
"\n"
" \n"
" UNITS {\n"
" (mA) = (milliamp)\n"
" (mV) = (millivolt)\n"
" (S) = (siemens)\n"
" (um) = (micron)\n"
" (molar) = (1/liter) : moles do not appear in units\n"
" (mM) = (millimolar)\n"
" (msM) = (ms mM)\n"
" FARADAY = (faraday) (coulomb)\n"
" } \n"
" \n"
" PARAMETER {\n"
" gkcamax = 0.03 (S/cm2) \n"
" gcamax = 3e-5 (S/cm2)\n"
" mvhalfca = -30 (mV)\n"
" mslpca = 4 (mV)\n"
" mtauca = 1 (ms) \n"
" caix = 2 \n"
" cainf=0.0001 (mM)\n"
" depth = .1 (um) : depth of shell\n"
" taur = 20 (ms) : rate of calcium removal\n"
" \n"
" fKCa = 0.1 : max act rate \n"
" bKCa = 0.1 : max deact rate \n"
" \n"
" celsius (degC)\n"
" } \n"
" \n"
" \n"
" ASSIGNED {\n"
" ik (mA/cm2)\n"
" v (mV)\n"
" ica (mA/cm2)\n"
" ek (mV)\n"
" eca (mV)\n"
" ninf\n"
" ntau (ms)\n"
" minfca \n"
" drive_channel\n"
" }\n"
" \n"
" \n"
" STATE {\n"
" mca \n"
" n \n"
" cai (mM)\n"
"}\n"
" \n"
" INITIAL { \n"
" cai=cainf\n"
" rates(cai)\n"
" mcarate(v)\n"
" n = ninf\n"
" mca=minfca\n"
" }\n"
" \n"
" BREAKPOINT {\n"
" SOLVE states METHOD cnexp\n"
" ica = gcamax*mca*(v - eca)\n"
" ik = gkcamax *n* (v - ek)\n"
" } \n"
" \n"
"\n"
"DERIVATIVE states { \n"
" \n"
" drive_channel = - (10000) * ica/ (2 * FARADAY * depth)\n"
" if (drive_channel <= 0.) { drive_channel = 0. } : cannot pump inward\n"
" cai' = drive_channel + (cainf-cai)/taur : cai is internal ca concentration\n"
"\n"
" rates(cai) \n"
" n' = (ninf-n)/ntau\n"
" mcarate(v) \n"
" mca' = (minfca-mca)/mtauca\n"
"}\n"
"PROCEDURE rates(cai(mM)) { LOCAL a,b\n"
" UNITSOFF\n"
" a = fKCa * (1e3*(cai -cainf))^caix : rate constant depends on cai in uM\n"
" b = bKCa\n"
" ntau = 1/(a+b)\n"
" ninf = a*ntau\n"
" UNITSON\n"
" }\n"
"\n"
"PROCEDURE mcarate(v (mV)) {\n"
" TABLE minfca\n"
" DEPEND mvhalfca,mslpca \n"
" FROM -100 TO 100 WITH 200\n"
" \n"
" minfca = 1/(1+exp(-(v-mvhalfca)/mslpca))\n"
"}\n"
;
#endif